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Abstract: To improve the search ability of biogeography-based optimization (BBO), this work
proposed an improved biogeography-based optimization based on Affinity Propagation.
We introduced the Memetic framework to the BBO algorithm, and used the simulated annealing
algorithm as the local search strategy. MBBO enhanced the exploration with the Affinity Propagation
strategy to improve the transfer operation of the BBO algorithm. In this work, the MBBO algorithm
was applied to IEEE Congress on Evolutionary Computation (CEC) 2015 benchmarks optimization
problems to conduct analytic comparison with the first three winners of the CEC 2015 competition.
The results show that the MBBO algorithm enhances the exploration, exploitation, convergence
speed and solution accuracy and can emerge as the best solution-providing algorithm among
the competing algorithms.
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1. Introduction

As an important branch in artificial intelligence, Evolutionary Algorithms (EAs) are derived from
the simulation of complex biological systems in nature with the ability to cognize things of humans
based on their interaction with nature. The biogeography-based optimization (BBO) algorithm is
a new intelligent optimization algorithm that was proposed by Simon who was enlightened by
biogeography theory [1] in 2008 based on the research of a mathematics model for biological species
migration [2]. BBO has been widely studied, and good research achievements in theoretical analysis,
improvement, and application have been achieved.

Some variations of BBO have recently been developed to improve the performance of basic
BBO [3–7]. However, in these improved BBOs, the migration operation judges only the method of the
immigration operation in terms of the immigration and emigration rates in different habitats without
considering the interactional relationship among habitats. Therefore, there is still an insufficiency in
these improved BBOs regarding the migration operator, which is good for exploitation but poor for
exploration. Currently, we need changes that are more important than a simple hybrid.

This work proposes an improved BBO algorithm with Affinity Propagation (AP) [8] based on
the Memetic framework [9–12] (MBBO). This algorithm improves the migration operation of the basic
BBO algorithm by using the AP strategy to promote exploration. Further, the MBBO algorithm uses
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simulated annealing (SA) [13] as a local search strategy to promote exploitation and strengthen the
ability to get out of the local optimum. This work also tests the MBBO algorithm and the three
first winners of the CEC 2015 competition [14–16] in the CEC 2015 benchmarks and compares their
operation results. After the modification of BBO, the Wilcoxon signed-rank test is used to demonstrate
the differences between different implementations of the MBBO and the other three algorithms of the
CEC 2015 competition, based on which it can be found that MBBO proposed in this work performs
significantly better than do the three algorithms.

To summarize, our contributions are as follows:

• This work proposed an improved BBO algorithm using the AP strategy to modify the migration
operation to promote exploration and

• proposed a MBBO algorithm using the Memetic framework and SA as the local search strategy to
promote exploitation.

2. Improved BBO with Affinity Propagation based on Memetic Framework

2.1. BBO

In an ecosystem, the habitat suitability index (HSI) [17] can be used to describe the fitting degree
of a habitat for species living in it [18]. HSI can be expressed with suitability index variables (SIV),
which describe the characteristics of HSI, such as precipitation, humidity, and vegetation diversity
in a habitat. A habitat with high HSI has more species living in it, whereas a habitat with low HSI
has fewer species. In other words, HSI is directly proportional to the diversity of species. The largest
possible number of species that a habitat can support is Smax; the immigration of species is λ, with
a maximum of I; and the emigration rate is µ, with a maximum of E, with E = I, as shown in Figure 1.

S1 S0 S2

I=E

emigration µ

immigration λ

Smax

ra
te

number of species

Figure 1. The relationship of fitness of habitats (species count), immigration rate λ and emigration rate µ. S1 is
a relatively poor solution, whereas S2 is a relatively good solution.

When the number of species in this habitat is 0, the immigration rate at this time is obviously
the maximum I. With the immigration of species, the number of species in the habitat increases;
further, the immigration rate decreases when the emigration rate increases. When the number of
species reaches the upper limit Smax, the habitat achieves the saturation state; thus, the immigration
rate decreases to 0, and the emigration rate reaches the maximum E. In Figure 1, S1 < S2 and
HSI at S1 is smaller than that at S2. Obviously, when the number of species in the habitat is S1,
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the immigration rate λ(S1) at S1 is larger than λ(S2) at S2. Similarly, the emigration rate µ(S1) at S2 is
smaller than µ(S2) at S2. For immigration among different habitats, the probability of immigration or
emigration behavior occurring in one habitat is directly proportional to its immigration or emigration
rate. Therefore, the immigration rate in one habitat can be used as the criterion for the immigration
behavior, and the emigration rate can be further used to judge the emigration behavior from that
habitat. In contrast, a habitat with high HSI can attract more species; however, this habitat may tend
to be saturated with an increase in the number of species; thus, a larger amount of species may start
to emigrate. For habitats with low HSI, more species may immigrate into it from other habitats upon
the saturation of the number of species if few species live in habitats with low HSI. Such a behavior is
called the migration behavior of species. In another situation, a habitat with low HSI has few species
living in it, but no large species immigration occurs, which keeps the HSI low. Species in these habitats
either go extinct or immigrate to other habitats. Such behavior is called mutation behavior. Using the
descriptions of the immigration and emigration rates, consider the probability Ps that the habitat
contains exactly S species. Ps changes from time t to time t+∆t according to Formula (1).

Ps(t + ∆t) = Ps(t)(1− λs∆t− µs∆t) + Ps−1λs−1∆t + Ps+1µs+1∆t (1)

where, λs and µs represent the immigration rate and emigration rate, respectively, when the number
of species in the habitat is S. There are three conditions that satisfy this formula:

• At t time, there were S species in the habitat and no migration behavior in period ∆t;
• At t time, there were S + 1 species in the habitat, with one species immigrating in period λs;
• At t time, there were S − 1 species in the habitat, with one species emigrating in period λs.

According to the linear relationship between immigration rate and emigration rate shown in
Figure 1, the computational method of immigration rate and emigration rate when the number of
species is k can be obtained as Formulas (2) and (3), respectively.

λk = I(1− k
n ) (2)

µk = E( k
n ) (3)

where n is Smax. Assume the special case E = I. In this case, λk + µk = E can be obtained. When ∆t→ 0,
Formula (3) can be converted into Formula (4).

ps =


−(λs + µs)Ps + µs+1Ps+1, S = 0
−(λs + µs)Ps + λs−1Ps−1 + µs+1Ps+1, 1 ≤ S ≤ Smax − 1
−(λs + µs)Ps + λs−1Ps−1, S = Smax

(4)

If the probability of each species being counted in a habitat is low, mutation behavior may
easily occur. In other words, the function of mutation probability is inversely proportional to the
probability of species being counted in this habitat. Therefore, the corresponding mutation function
can be obtained as Formula (5).

ms = mmax(1− Ps
Pmax

) (5)

Assuming that a feasible solution of the optimization problem can be expressed with an integer
vector, every integer component in the vector is defined as a SIV. If the objective function for the
problem to be solved is known, the feasible solution with a higher adaptive value can be defined as
the habitat with higher HSI. Assuming that the habitat is H ∈ SIVm where H is the feasible solution
of the optimization problem, m is the dimensionality of the solution vector and HSI is the adaptive
value of the objective function, the basic procedure of the BBO algorithm can be obtained.
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2.2. BBO with Affinity Propagation

Affinity propagation (AP) is a clustering strategy proposed by Frey and Dueck [8]. The basic idea
of this strategy is to calculate the cluster center of all samples, which are treated as nodes in a network,
via information transfer in all lines of the network. During the clustering, two types of information
are transferred among nodes: attractiveness and availability. The clustering result is dependent on
the similarity and information transfer among samples. This feature makes the strategy suitable as an
auxiliary means for information transfer among habitats in the BBO algorithm. Among all habitats,
a habitat with a high immigration rate can attract species from a habitat with a high emigration rate.
Definitions related to AP applied to the BBO algorithm are as follows.

Definition 1. Migration matrix of habitat. Assuming that the habitat count is n, the similarity
s(Hi, Hj) between any two habitats (the similarity can be either symmetric or asymmetric) can be
calculated to represent the probability of habitat Hj attracting species emigrating from habitat Hi and
immigrating into habitat Hj. The similarity matrix sn×n, which is composed of similarities between
two habitats, is called the migration matrix of the habitat. s(Hi, Hj) is calculated as Formula (6).

s
(

Hi, Hj
)
= −

∥∥∥SIVm
i − SIVm

j

∥∥∥ (6)

Definition 2. Habitat immigration reference (HIR). Similarity s(Hk, Hk) shows whether habitat Hk
is more likely to be immigrating which is denoted by HIR(k) (k = 1, 2,. . . , n). The value of HIR(k)
can affect the ratio between the number of habitats to be immigrated into and that of habitats to be
emigrated from. This ratio can determine whether the migration operation of the MBBO algorithm
can effectively search the global optimum of the optimization problem.

The definition regarding HIR in [8] shows that the number of habitats to be immigrated into is
directly proportional to HIR(k). According to Formula (1), HIR(k) is proportional to the immigration
rate λk and inversely proportional to the emigration rate for any habitat Hk. In this work, let the value
of s(Hk, Hk) be the ratio between the immigration rate λk and the emigration rate µk of habitat Hk,
λk/µk. In Section 3.3, another method for obtaining the value is used for comparison to discuss how
to select a more optimal value of HIR(k) (e.g., the mid-value of similarity S in [8], the average of
similarity S, half of the mid-value of similarity S, and half of the average of similarity S).

Definition 3. Habitat attractiveness. Let habitat Hj belong to habitat set Hn
i . For candidate habitat

Hj to be immigrated into, evidence r(Hi, Hj) is collected from habitat Hi (called the attractiveness of
habitat Hj to habitat Hi) to describe the attractiveness of habitat Hj to attract species emigrating from
habitat Hi and immigrating into habitat Hj. Such attractiveness can be called habitat attractiveness.

Definition 4. Habitat availability. For habitat Hj, evidence a(Hi, Hj) is collected for habitat Hi to
be emigrated from (called the availability of habitat Hi to habitat Hj) to describe the suitability of
species emigrating from habitat Hj and immigrating into habitat Hi. Such availability can be called
habitat availability.

The stronger the evidence is (the larger the sum of r(Hi, Hj) and a(Hi, Hj)), the larger
the probability is of species emigrating from habitat Hi and immigrating into habitat Hj. The methods
for calculating and updating information matrix are shown as Formulas (7) and (8), respectively.
The basic procedure of AP is shown in Figure 2.

r(Hi, Hj)← s(Hi, Hj)− max
j′s.t.j′ 6=j

{a(Hi, Hj′) + s(Hi, Hj′)} (7)
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a(Hi, Hj)←


min{0, r(Hj, Hj) + ∑

Hi′ s.t.Hi′ /∈{Hi ,Hj}
max{0, r(Hi′ , Hj)}}, i 6= j

∑
Hi′ s.t.Hi′ /∈{Hi ,Hj}

max{0, r(Hi′ , Hj)}, i = j
(8)

where r(Hj, Hj) and a(Hi, Hj) can be obtained using the migration immigration matrix of habitat
s(Hi, Hj) and the habitat immigration reference HIR(k).

r(Hi,Hj)
a(Hi,Hj')

Hi Hi

Candidate immigration 
habitat  Hj

Candidate immigration 
habitat  Hj

Competing candidate 
immigration habitat  Hj'

Supporting 
habitat  Hi'

r(Hi',Hj)

a(Hi,Hj)

Sending responsibilities Sending availabilities

Figure 2. Responsibilities r(Hi , Hj) are sent from habitat Hi to candidate immigration habitat Hj and indicate
how strongly each habitat favors the candidate immigration habitat over other immigration habitats. Availabilities
a(Hi , Hj) are sent from the candidate immigration habitat to habitat Hi and indicate to what degree each candidate
immigration habitat is available as an immigration habitat for the habitat.

2.3. Local Search Strategies

To ensure population diversity under the precondition of fast convergence, this work uses SA
as the local search (LS) strategy of the MBBO algorithm. SA uses the Metropolis criterion to accept
non-prepreerence solutions and prevent them from falling into a local optimum. If the function is
f (S), the current solution is f (S1), the new solution is f (S2), and the increment is df = f (S2) − f (S1),
then the Metropolis criterion can be expressed as Formula (9).

p =

{
1, d f < 0

exp(− d f
T ), d f ≥ 0

(9)

2.4. MBBO Algorithm

In this section, we provide some definitions as a first step towards formalizing the BBO algorithm
and provide an outline of the algorithm.

Definition 5. Habitat migration strategy Ω(r, a) : Hn → H is a probabilistic operator used to control
the migration operation. It can be judged that when the species emigrate from habitat Hi, they
immigrate into habitat Hj with habitat attractiveness r and habitat availability a.

Definition 6. Habitat mutation strategy M(λ, µ) : H → H is a probabilistic operator used to control
the mutation operation. Habitat mutation operation with randomly changing SIVm is determined by
the existing probability of species count Ps. Existing probability of species count Ps can be calculated
using Formula (4). For the basic procedure of the habitat mutational strategy, refer to the mutational
operation of the BBO algorithm.

Definition 7. Global search strategy of MBBO G = {m, n, λ, µ, Ω, M} is a 6-tuple that can iteratively
optimize the initialized habitat.



ISPRS Int. J. Geo-Inf. 2016, 5, 129 6 of 14

Definition 8. Local search strategy of MBBO L = {t, l, P} : Hn → H is a 3-tuple set that can conduct
local optimization of the evolution of the habitat in every generation. To provide this ability without
the limit of a local optimum to the optimization of a habitat, the non-prepreerence solution can be
accepted for a certain probability. t is a sufficiently large initial temperature, l is the Metropolis chain
length that is, the performance time under temperature T, and P is the probability of acceptance,
which can be calculated with using Formula (9).

Definition 9. MBBO algorithm MBBO = {Φ, G, L, T} is a 4-tuple where Φ = ∅→ {Hn,HSIn} refers
to initializing a set of habitats and calculating the function of the HSI value of a habitat. G is
the global search strategy which can perform global optimization of the habitat. L is the local
search strategy, which can perform local optimization of the habitat. T = Hn → {true, f alse} is
a termination criterion.

The basic procedure of the MBBO algorithm is as Algorithm 1.

Algorithm 1: MBBO
Initialize the BBO parameters, including the habitat modification probability, mutation probability,
maximum species count S, maximum migration rates E and I, maximum mutation rate mmax, the
generation counter: g=0, the Metropolis chain length: L, the initial temperature T;

Create a random initial population H(g)
i , i = 1, 2, 3,. . . ,N and g = 0, 1, 2,. . . ,MAXGEN ;

Evaluate f (H(g)
i ), i = 1, 2, 3,. . . ,N;

for g = 1 to MAXGEN do
for i = 1 to N do

Sort the population from best f (H(g)
i ) to least f (H(g)

i );
Map the HSI to the number of species;
Calculate the immigration rate λi, the emigration rate µi, the Habitat attractiveness a and the
Habitat availability r;

for i = 1 to N do
Modify the non-elite members of the population probabilistically with the migration operator;

for i = 1 to N do
Evaluate the new individuals in the population;
Replace the habitats with their new versions;
Replace the worst with the previous generation’s elites;

while T 6=0 do
for L = 1 to l do

Create a random H(g)′

i ;

Calculate df = f (H(g)′

i ) − f (H(g)
i );

if df < 0 then

H(g)′

i is accepted as the new current solution
else

H(g)′

i is accepted as the new current solution as probability∝exp(−∆t/kT)
T = T − 1; g = g + 1;

3. Experimental Settings and Results

3.1. CEC 2015 Benchmarks

In this work, to investigate the performance of the MBBO, we compared it with
SPS-L-SHADE-EIG algorithm [14], DEsPA algorithm [15] and MVMO algorithm [16] using the CEC
2015 benchmarks. For convenient description, these functions [19] are denoted as F1-F15, as shown
in Table 1. The SPS-L-SHADE-EIG algorithm combines the adaptive differential evolution [20,21]
with linear population size reduction(L-SHADE) [22] with the eigenvector-based (EIG) [23] crossover
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and successful-parent-selecting (SPS) frameworks [24]. The DEsPA algorithm is a new Differential
Evolution algorithm with a success-based parameter adaptation with resizing population space [25].
The MVMO algorithm is Mean-variance mapping optimization that uses a special mapping function
for mutation operation. These three algorithms are state-of-the-art evolutionary mechanisms.

Table 1. Summary of the Congress on Evolutionary Computation (CEC)’15 Benchmark functions used
in our experimental study.

Test Functions F∗
i = Fi(x∗)

Unimodal Functions
F1 Rotated High Conditioned Elliptic Function 100
F2 Rotated Cigar Function 200
Simple Multimodal Functions
F3 Shifted and Rotated Ackley’s Function 300
F4 Shifted and Rotated Rastrigin’s Function 400
F5 Shifted and Rotated Schwefel’s Function 500
Hybrid Functions
F6 Hybrid Function 1 (N = 3) 600
F7 Hybrid Function 2 (N = 4) 700
F8 Hybrid Function 3(N = 5) 800
Composition Functions
F9 Composition Function 1 (N = 3) 900
F10 Composition Function 2 (N = 3) 1000
F11 Composition Function 3 (N = 5) 1100
F12 Composition Function 4 (N = 5) 1200
F13 Composition Function 5 (N = 5) 1300
F14 Composition Function 6 (N = 7) 1400
F15 Composition Function 7 (N = 10) 1500

Search Range: [−100, 100]D

3.2. CEC 2015 Benchmarks Results and Analysis

3.2.1. Experiment Parameter Setting

The three aforementioned optimization techniques are used to optimize the 15 CEC2015
benchmark functions given in Table 1. For each test function, each algorithm is run 100 times.
As suggested in [19], 10, 000× D function evaluations were used for the test functions with 10 and
50 dimensions. The search range was set to [−100, 100]D for each dimension.

The parameters of MBBO should be set according to [2]. Let the maximum number of species
in a habitat N = 50; habitat modification probability Pmod = 1; mutation probability m = 0; elitism
parameter K = 2; and maximum immigration and emigration rate for each island I = E = 1.

3.2.2. Experiment Result and Analysis

The experiment results are shown in Table 2. For unimodal functions F1 and F2, it can be found
that the MBBO algorithm and the other three algorithms are able to obtain the optimal solution.
Benchmarks F3-F5 are simple and multimodal; the MBBO algorithm uses the Affinity Propagation
which can relatively accurately judge the global optimal solution according to the mutual affinity
relationship between different solutions.

Benchmarks F6–F8 are hybrid functions, whereas the remaining benchmarks are composition
functions. For these functions, the MBBO algorithm is better than the other three algorithms regarding
the optimization result when the peak of function F9 shows undulation and jumpiness. Therefore,
the Affinity Propagation of the MBBO algorithm can find the optimal solution of a function by
propagating migration information among solutions. The MBBO algorithm uses SA as a local search
strategy which can make the algorithm accept non-prepreerence under a certain probability and have
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a stronger ability to skip the local optimum. Therefore, MBBO can accurately obtain the optimal
solution. MBBO uses the Memetic framework to optimize the complex function in global search
and local search. With the strong global optimization ability of Affinity Propagation and the strong
ability of SA to skip the local optimum, the MBBO algorithm can effectively solve complex functions
such as F10-F15.

To performance the MBBO algorithm and the other three algorithms for limited budget, we
added the experiment over 50 number of evaluations to compare the performance evolution among
these algorithms. For 10-D function F3, F4, F7, F8, F14 and F15, the cumulative distribution function
(CDF) plots can be found in Figure 3 that compared with the three other algorithms over 50 function
evaluations. Figure 3a–f are the optimization processes of MBBO, SPS-L-SHADE-EIG, DEsPA and
MVMO algorithms in F3, F4, F7, F8, F14 and F15 benchmark functions. For hybrid function F7 and
F8, it can be found that MBBO algorithm is better than the other three algorithms in Figure 3c,d.
For composition Function F14 and F15, it can be found in Figure 3e,f that compared with other
three algorithms, MBBO algorithm has larger difference, while the result of this function solved with
SPS-L-SGADE-EIG algorithm is more stable.

3.2.3. Statistical Analysis

A Wilcoxon signed-rank test has been conducted to determine whether the differences among
the median results of the MBBO algorithm, SPS-L-SHADE-EIG algorithm, DEsPA algorithm and
MVMO algorithm given in Table 2 are statistically significant.

Table 3 shows the statistical comparison of the MBBO algorithm with the other three algorithms
(SPS-L-SHADE-EIG, DEsPA and MVMO) for the 10-D benchmark functions using the Wilcoxon
signed-rank test, with freedom at a 0.05 level of significance and 95 % confidence level.

The Wilcoxon signed-rank test results can be summarized as follows:

• MBBO algorithm and SPS-L-SHADE-EIG algorithm: A Wilcoxon signed-rank test showed that the
MBBO algorithm did not elicit a statistically significant change in F1 (z = −0.367, p = 0.713),
F2 (z =−0.920, p = 0.357), F4 (z = −1.134, p = 0.254) and F15 (z = −1.090, p = 0.091). In these
four functions, the median change from MBBO algorithm to SPS-L-SHADE-EIG algorithm is not
significantly different from zero. This suggests that with 95 % confidence, the difference between
the algorithms is statistically significant for the remaining 11 functions.

• MBBO algorithm and DEsPA algorithm: A Wilcoxon signed-rank test showed that the MBBO
algorithm did not elicit a statistically significant change in F1 (z = −1.547, p = 0.122),
F2 (z =−0.178, p = 0.859) and F4 (z = −1.932, p = 0.061) with a 95 % confidence level. Therefore,
the test has not provided statistically significant evidence that the two algorithms are different for
these benchmark functions. For the other 12 cases, the median change from MBBO algorithm to
DEsPA algorithm is very different from zero.

• MBBO algorithm and MVMO algorithm: A Wilcoxon signed-rank test showed that the MBBO
algorithm did not elicit a statistically significant change in F1 (z = −1.249, p = 0.212),
F2 (z = −1.823, p = 0.068) and F4 (z = −1.823, p = 0.068). In these three functions, the median
change from MBBO algorithm to SPS-L-SHADE-EIG algorithm is not significantly different from
zero; for the other 12 cases, the two algorithms are different with a 95 % confidence level.

It can be concluded that, the compared algorithms are significantly different in most cases,
with 95% confidence. Therefore, it is evident that MBBO can significantly outperform the other
three algorithms and can emerge as the best solution-providing algorithm among the competing
SPS-L-SHADE-EIG, DEsPA and MVMO algorithms.
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Table 2. Comparison of MBBO, SPS-L-SHADE-EIG, DEsPA and MVMO. Statistical results of the 10-D and 50-D benchmark functions, averaged over
100 independent runs.

MBBO SPS-L-SHADE-EIG DEsPA MVMO

Best Median Mean Distance Best Median Mean Distance Best Median Mean Distance Best Median Mean Distance

10-D
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 1.10E+01 1.50E+01 1.70E+01 1.10E+01 2.00E+01 2.20E+01 2.60E+01 2.00E+01 1.91E+01 2.19E+01 1.90E+01 1.91E+01 2.01E+01 2.33E+01 1.40E+01 2.01E+01
F4 1.34E-01 6.25E-01 1.23E+00 1.34E-01 7.83E-01 8.72E-01 1.95E+00 7.83E-01 8.93E-01 9.95E-01 1.17E+00 8.93E-01 9.83E-01 1.23E+00 9.76E-01 9.83E-01
F5 9.93E+00 1.34E+01 2.14E+01 9.93E+00 1.24E+01 1.64E+01 2.35E+01 1.24E+01 1.43E+01 1.86E+01 2.56E+01 1.43E+01 2.19E+01 2.35E+01 2.98E+01 2.19E+01
F6 0.00E+00 0.00E+00 1.01E-01 0.00E+00 0.00E+00 0.00E+00 1.23E-01 0.00E+00 0.00E+00 0.00E+00 8.79E-01 0.00E+00 0.00E+00 0.00E+00 7.98E-01 0.00E+00
F7 6.70E-03 1.02E-02 2.23E-02 6.70E-03 9.76E-03 1.94E-02 2.78E-02 9.76E-03 1.23E-02 2.31E-02 3.21E-02 1.23E-02 2.35E-02 3.12E-02 5.37E-02 2.35E-02
F8 7.63E-05 1.26E-04 7.32E-04 7.63E-05 1.01E-04 1.37E-04 8.81E-04 1.01E-04 2.13E-04 4.34E-04 9.86E-04 2.13E-04 3.98E-04 6.98E-04 9.98E-04 3.98E-04
F9 2.39E+01 8.69E+01 9.51E+01 2.39E+01 6.92E+01 1.00E+02 1.50E+02 6.92E+01 9.21E+01 1.02E+02 1.02E+02 9.21E+01 1.02E+02 1.97E+02 1.28E+02 1.02E+02
F10 2.03E+02 2.21E+02 2.04E+02 2.03E+02 1.98E+02 3.68E+02 3.53E+02 1.98E+02 2.58E+02 2.76E+02 2.37E+02 2.58E+02 2.98E+02 3.97E+02 3.15E+02 2.98E+02
F11 3.28E-02 7.52E-02 4.37E-01 3.28E-02 7.82E-02 9.79E-02 9.27E-01 7.82E-02 8.27E-02 9.86E-01 7.78E-01 8.27E-02 5.24E-02 1.00E-01 3.33E-01 5.24E-02
F12 2.39E+01 8.96E+01 1.00E+02 2.39E+01 9.82E+01 1.32E+02 1.06E+02 9.82E+01 1.92E+02 2.94E+02 2.36E+02 1.92E+02 2.01E+02 2.96E+02 2.75E+02 2.01E+02
F13 3.30E-03 1.23E-02 2.12E-02 3.30E-03 3.46E-02 8.26E-02 2.31E-02 3.46E-02 8.72E-02 9.26E-02 7.89E-02 8.72E-02 2.05E-02 2.83E-02 7.23E-02 2.05E-02
F14 1.03E+02 1.98E+02 3.94E+02 1.03E+02 1.95E+02 2.35E+02 5.21E+02 1.95E+02 4.32E+02 8.92E+02 7.26E+02 4.32E+02 3.95E+02 4.77E+02 5.67E+02 3.95E+02
F15 3.61E+01 8.70E+01 9.50E+01 3.61E+01 9.32E+01 1.02E+02 1.67E+02 9.32E+01 1.01E+02 1.36E+02 2.34E+02 1.01E+02 2.51E+02 3.55E+02 2.45E+02 2.51E+02
50-D
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 1.09E+01 1.83E+01 1.93E+01 1.09E+01 2.91E+01 3.22E+01 2.32E+01 2.91E+01 2.81E+01 3.11E+01 2.82E+01 2.81E+01 4.15E+01 6.51E+01 2.82E+01 4.15E+01
F4 9.23E-01 1.23E+00 1.98E+00 9.23E-01 1.02E+00 3.52E+00 2.55E+00 1.02E+00 1.92E+00 2.46E+00 3.26E+00 1.92E+00 2.24E+00 3.86E+00 4.62E+00 2.24E+00
F5 1.70E+03 1.92E+03 1.87E+03 1.70E+03 1.53E+03 2.98E+03 1.75E+03 1.53E+03 2.42E+03 2.99E+03 2.68E+03 2.42E+03 2.73E+03 3.82E+03 3.00E+03 2.73E+03
F6 1.35E+02 1.98E+02 1.75E+02 1.35E+02 1.87E+02 2.11E+02 2.39E+02 1.87E+02 2.06E+02 2.67E+02 2.49E+02 2.06E+02 2.94E+02 3.22E+02 3.15E+02 2.94E+02
F7 2.31E+01 3.92E+01 2.56E+01 2.31E+01 3.52E+01 4.05E+01 2.74E+01 3.52E+01 3.94E+01 4.96E+01 3.16E+01 3.94E+01 4.52E+01 5.81E+01 4.87E+01 4.52E+01
F8 9.23E+00 2.16E+01 4.58E+01 9.23E+00 1.81E+01 2.79E+01 5.57E+01 1.81E+01 2.02E+01 2.62E+01 6.58E+01 2.02E+01 3.31E+01 6.32E+01 5.18E+01 3.31E+01
F9 7.20E+01 1.06E+02 1.02E+02 7.20E+01 1.36E+02 2.56E+02 2.37E+02 1.36E+02 1.84E+02 3.35E+02 3.02E+00 1.84E+02 4.89E+02 6.51E+02 5.56E+02 4.89E+02
F10 3.29E+02 7.95E+02 6.87E+02 3.29E+02 7.23E+02 8.09E+02 8.35E+02 7.23E+02 7.84E+02 9.86E+02 8.76E+02 7.84E+02 5.91E+02 6.98E+02 7.92E+02 5.91E+02
F11 1.36E+02 2.78E+02 2.69E+02 1.36E+02 2.47E+02 3.00E+02 3.00E+02 2.47E+02 2.84E+02 3.76E+02 3.56E+02 2.84E+02 3.34E+02 5.87E+02 4.98E+02 3.34E+02
F12 4.50E+01 1.00E+02 1.10E+02 4.50E+01 9.32E+01 1.04E+02 1.23E+02 9.32E+01 1.07E+02 1.98E+02 1.79E+02 1.07E+02 2.04E+02 3.01E+02 2.96E+02 2.04E+02
F13 1.32E-02 6.54E-02 5.77E-02 1.32E-02 3.73E-02 7.57E-02 7.62E-02 3.73E-02 6.25E-02 8.27E-02 7.26E-02 6.25E-02 6.13E-02 7.60E-02 6.67E-02 6.13E-02
F14 3.47E+04 5.98E+04 4.79E+04 3.47E+04 5.95E+04 6.83E+04 6.35E+04 5.95E+04 5.74E+04 7.89E+04 7.12E+04 5.74E+04 6.95E+04 8.63E+04 8.01E+04 6.95E+04
F15 3.72E+01 9.60E+01 1.01E+02 3.72E+01 1.03E+02 1.56E+02 1.35E+02 1.03E+02 1.62E+02 2.32E+02 2.17E+02 1.62E+02 3.74E+02 6.19E+02 5.97E+02 3.74E+02
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3.3. Effect of the HIR on the Performance of MBBO

3.3.1. Experiment Setting

The HIR value in Affinity Propagation of the MBBO algorithm is the ratio between the habitat
immigration rate and habitat emigration rate. To the compare efficiency with different values of HIR,
a comparison experiment is set. Let the HIR value be the ratio between the habitat immigration
and emigration rates, the mid-value in habitat similarity matrix S, half of the mid-value of habitat
similarity matrix S, the average of habitat similarity matrix S, and half of the average of habitat
similarity matrix S. Then, compare the efficiency of algorithms with the averages and standard
deviations in the 25 independent tests using the CEC 2015 benchmarks. The parameters of the MBBO
algorithm for five HIR sampling methods are set according to Subsection 3.2.1. Let the maximum
species count in habitat N = 50; habitat modification probability Pmod = 1; mutation probability m = 0;
elitism parameter K = 2; and maximum immigration and migration rates for each island I = E = 1.

Table 3. The statistical comparison of the MBBO algorithm with the other three algorithms, using the
Wilcoxon signed-rank test with freedom at a 0.05 level of significance and 95 % confidence level.

MBBO and SPS-L-SHADE-EIG MBBO and DEsPA MBBO and MVMO

z p-Value (2-Tailed) z p-Value (2-Tailed) z p-Value (2-Tailed)

F1 −0.367 0.713 −1.547 0.122 −1.249 0.212
F2 −0.920 0.357 −0.178 0.859 −1.823 0.068
F3 −2.077 0.038 −2.505 0.012 −2.716 0.007
F4 −1.134 0.254 −1.932 0.061 −1.899 0.058
F5 −2.139 0.032 −2.660 0.008 −2.634 0.008
F6 −3.696 0.000 −3.705 0.000 −3.702 0.000
F7 −2.996 0.003 −2.820 0.004 −2.492 0.013
F8 −2.323 0.025 −2.432 0.014 −2.814 0.005
F9 −2.928 0.003 −2.413 0.015 −3.203 0.001

F10 −3.222 0.001 −2.995 0.003 −3.220 0.001
F11 −2.746 0.006 −2.395 0.017 −2.466 0.014
F12 −2.640 0.008 −3.324 0.001 −5.244 0.000
F13 −5.376 0.000 −4.278 0.000 −4.437 0.000
F14 −2.934 0.003 −2.666 0.008 −2.936 0.003
F15 −1.090 0.091 −2.936 0.003 −6.232 0.000

3.3.2. Experimental Results and Analysis

The experimental results are shown in Table 4 According to these results, it can be found that
the effect of MBBO algorithm (HIR(k) = λk/µk) is better than that of the other four situations for
the solutions of the CEC 2015 benchmarks. The setting of the HIR value as the ratio between the
habitat immigration and emigration rates can use the information regarding the number of species in
a habitat. The propagation of information regarding attractiveness and availability among habitats
can more accurately guide the species migration behavior among habitats.

3.4. Experimental Results Analysis

The MBBO algorithm uses Affinity Propagation which can relatively accurately judge the global
optimal solution according to the mutual affinity relationship between different solutions. The MBBO
algorithm uses SA as the local search strategy which can make the algorithm accept non-prepreerence
under a certain probability and have a stronger ability to skip the local optimum. Therefore, MBBO
can accurately obtain the optimal solution. MBBO uses the Memetic framework to optimize a
complex function in global search and local search. With the strong global optimization ability of
Affinity Propagation and the strong ability of SA to skip the local optimum, the MBBO algorithm can
effectively solve complex functions.
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Table 4. Comparison of efficiency with different values of habitat immigration reference (HIR). Let the HIR value be the ratio between habitat immigration rate and
emigration rate, the mid-value in habitat similarity matrix S, half of the mid-value of habitat similarity matrix S, the average of habitat similarity matrix S, and half
of the average of habitat similarity matrix S. Then, compare the efficiency of algorithms with the averages and standard deviations in 25 independent tests using the
CEC 2015 Benchmarks

MBBO (H IR(k) = λk/µk) MBBO (H IR(k) = Median) MBBO (H IR(k) = Median/2) MBBO (H IR(k) = Average) MBBO (H IR(k) = Average/2)

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

F1 1.78E+00 6.27E-01 2.30E+00 9.89E-01 2.13E+00 8.51E-01 2.84E+00 7.58E-01 2.59E+00 1.26E+00
F2 4.68E+03 1.62E+03 4.76E+03 1.39E+03 4.93E+03 1.33E+03 5.19E+03 1.34E+03 4.82E+03 1.92E+03
F3 4.11E+01 8.11E+00 4.84E+01 1.04E+01 4.45E+01 9.63E+00 4.13E+01 1.02E+01 4.41E+01 1.15E+01
F4 5.91E+00 1.56E+00 7.56E+00 2.31E+00 6.37E+00 1.14E+00 7.27E+00 1.60E+00 7.03E+00 1.69E+00
F5 9.97E+01 2.91E+01 1.14E+02 3.65E+01 1.13E+02 4.02E+01 1.14E+02 2.50E+01 1.18E+02 3.82E+01
F6 6.04E+02 2.63E+02 8.86E+02 3.03E+02 7.77E+02 2.65E+02 1.02E+03 4.75E+02 1.06E+03 4.16E+02
F7 4.65E-02 3.60E-02 1.07E-01 1.14E-01 7.23E-02 6.15E-02 1.13E-01 8.00E-02 9.99E-02 1.11E-01
F8 7.31E+02 2.09E+02 8.49E+02 2.21E+02 8.74E+02 2.33E+02 9.65E+02 2.34E+02 8.67E+02 2.79E+02
F9 3.02E+01 6.21E+00 3.45E+01 5.78E+00 3.16E+01 5.81E+00 3.46E+01 7.08E+00 3.45E+01 6.64E+00
F10 7.26E+00 1.09E+00 8.47E+00 9.48E-01 7.66E+00 9.36E-01 8.22E+00 1.34E+00 8.33E+00 1.01E+00
F11 7.22E+00 2.41E+00 9.63E+00 2.82E+00 7.70E+00 2.93E+00 1.04E+01 3.11E+00 9.70E+00 3.79E+00
F12 6.18E+04 2.72E+04 6.92E+04 2.41E+04 6.39E+04 1.97E+04 7.28E+04 3.49E+04 6.42E+04 1.91E+04
F13 2.13E+00 4.68E-01 3.52E+00 3.14E-01 3.40E+00 4.55E-01 6.23E+02 5.39E+02 3.23E+03 2.41E+03
F14 6.40E+01 1.47E+01 2.77E+02 1.03E+02 1.71E+02 2.01E+02 4.32E+02 2.43E+01 5.62E+02 3.31E+02
F15 1.02E+02 7.31E+00 1.07E+02 9.03E+00 1.23E+02 1.46E+01 5.11E+03 3.21E+03 6.42E+04 1.91E+04
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Figure 3. (a–f) are the cumulative distribution function (CDF) plots for 10-D function F3, F4, F7, F8,
F14 and F15 of MBBO, SPS-L-SHADE-EIG, DEsPA and MVMO algorithms. (a) F3; (b) F4; (c) F7; (d) F8;
(e) F14; (f) F15.

4. Conclusions

This work proposed a MBBO algorithm that uses the AP strategy to modify the migration
operation of the BBO algorithm and based on the Memetic frame, with SA as the local search
strategy. According to an analysis of the test results of MBBO regarding the CEC 2015 benchmarks,
this algorithm can better solve the limit value of function optimization. Compared with the
SPS-L-SHADE-EIG, DEsPA and MVMO algorithms, it can be found that the MBBO algorithm has
significantly better performance than do the other three algorithms. However, the study of the BBO
algorithm is still in its infancy stage compared with other EAs (such as Genetic Algorithms [26,27] and
Particle Swarm Optimizer [28,29]). In future work, other algorithm framework (such as the cultural
algorithm framework [30]) models should be used to modify the performance of the BBO algorithm.
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