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Abstract: It is generally acknowledged that the urban environment presents different types of risk
factors, but how the structural effects of areas influence the risk levels in neighboring areas has been
less widely investigated. This research assesses the local effects of burglary contributory factors on
burglary over small areas in a large metropolitan region. A comparative framework is developed
for analyzing the effects of geographic dependence on burglary rates, and for assessing how such
dependence conditions the community context and the urban land use. A local indicators spatial
autocorrelation analysis assesses burglaries over five years (2011–2015) to identify risk clusters.
Thereafter, effects of different variables (e.g., unemployment, building density) on burglary frequency
are estimated in a series of regression models while controlling for changes in the risk levels of nearby
surrounding areas. Results uncover strong evidence that the configuration of the surroundings
influences risk. After controlling for area-based interaction, patterns are identified that contrast
with the previous literature, such as lower burglary frequency in areas with higher tenancy in social
housing units. Together the findings demonstrate that the spatial arrangement of areas is as crucial as
contextual crime factors, particularly when assessing the risk for small areas.
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1. Introduction

Crime analysts have commonly applied the ecological tradition to explain burglary concentrations
in terms of socioeconomic and political structures [1]. The connection of unstable institutions and crime
within areas is well established in the literature, but the extent to which crime is influenced by instability
and crime problems of nearby surrounding areas has often been overlooked [2,3]. This omission
detaches the crime analysis from practice because human mobility and interaction, and the decay of
these with increasing distance, together induce changes to the distribution of risk factors [1]. In contrast,
unilateral focus on risk within areas assumes that areas with uniform characteristics are equivalent
and does not assess whether or not their neighbors are similar, akin to closing off crime scenes and
assessing only the evidence found within each scene.

With exceptions, such as during the analysis of whole countries, or when assessing areas that have
been sampled randomly with no respect to their geographic interconnectivity, mobility and interaction
have significant implications to the measured observations [4]. One way to envision the fallacy of
overlooking spatial interaction is through the hypothetical exchange of locations for two areas, one
located in crime-prone zone, and the other on a crime-free zone. Since such a locational shift is bound
to affect the resultant crime levels for both zones, it follows that interaction between areas can drive the
overall crime statistics. Consistently, crime analysts often draw links from crime factors that stem from
broader area-based processes, such as economic inflation, regional borrowing, and social stratification
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whose influences extend beyond areas [5]. However, few studies have investigated how localized
criminogenic places coexist [5].

The necessity of investigating the nature and intensity of spatial relationships in this study is
motivated, among other aspects, by the fact that routine activities cause formations of origin-crime
paths that are spatially unconstrained. Transportation systems interconnecting small areas, cities and
regions enable residents to leave their census delineated areas to work, shop, or visit friends each
day [6], large numbers of people aggregate at different public places and/or for different events [7–9],
and individuals are released from prisons to settle in geographically distributed areas [10]. Phenomena
such as these often generate shifts in crime opportunities. Thus, while the structural compositions of
areas are meaningful for explaining crime, the interaction occurring during routine activities is also
highly relevant [11,12].

This crime investigation contributes knowledge about the implication of socio-structural effects
for generation of burglary. More importantly, it also investigates risk effects that are due to spatial
arrangement of areas. Burglary is convenient for this analytical design because previous studies have
often focused on other volume crimes such as theft and violence [13–15]. Unlike with these crimes,
offender–target investigation for burglary does not involve uncertainty of mobile targets. This allows a
more focused analysis.

2. Area-Based Burglary Influences

Studies have applied theoretical frameworks for understanding crime, such as “collective efficacy”
and “social disorganization” [13,16,17]. These theories attribute area-based risk clusters to two main
causes: (a) variation in the ability of communities to exercise informal safety mechanisms; and
(b) adverse aspects of areas that discourage individuals from intervening for the common good [15,17].
Therefore, vulnerable target environments allow offenders to establish a “comfort zone” that expands
with increasing successes [18–20]. This results in clusters at specific areas [2,13,21,22], within specific
household types and locations [23–25], and during specific times of the day or days of the week [21,26].
Environmental criminologists investigate such crime patterns by tracking offender journeys to
crime [27,28]. However, offender-specific datasets are usually not detailed enough to provide all
clues about offender interactions and how these lead to crime concentrations [28].

The increasing ability to conduct micro-level studies has led analysts to draw more information
from attributes of the target areas as conditions for burglars’ choices. This line of investigation
pursues the area-based socioeconomic and land-use factors which are likely to promote or hinder
the development of crime [2]. Sociological studies have investigated links between burglary and
concentrated disadvantage [22,25], high population density [29,30], disadvantage [1,20,25], and
residential instability [31–33], and many significant associations have been found. In an extensive
study of 352 U.S. cities over 30 years, Hipp [34] discovered that the level of economic stratification
had significant implications for burglary. Cities which combined different economic levels in the same
areas experienced higher risk levels that cities with uniform economies. However, cities with high
socioeconomic stratification suffered high burglary rates irrespective of the economic configurations.
Further evidence shows that the inability of residents to exercise informal social control can cause crime
effects from the surrounding areas to be felt [13]. It was additionally discovered that the likelihood
for victimization by burglary was higher in areas where affluent households bordered deprived
households than in areas where affluent households were surrounded by surrounded by equally
affluent households [35].

Structural aspects of the built environment have also been investigated. For instance, Ward and
his colleagues [25] discovered that areas with high accessibility by the road network experienced a
low burglary risk, while areas with higher affluence suffered higher rates despite good connectivity.
The authors attributed this observation to the rational balance of risks and benefits by offenders.
The prospect of increased profitability is likely to direct burglars to select a hunting area comprising
affluent households than disadvantaged ones. It has also been proposed that certain urban land use
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features, such as commercial places and permeable roads (i.e., crime generators) attract large numbers
of people for noble reasons, but nevertheless provide offending opportunities [2,8,10,19]. Many urban
places also include crime attractors, such as drug markets, lending places, pawnbrokers, red-light
districts that to lead to high crime concentrations because they host illegal activities and attract willing
participants, with motivated offenders and vulnerable targets among these [8,10,36–38].

The discoveries above suggest that crimes result from both the risk factors available in areas
and from nearby influences. Unfortunately, many of the studies highlighted above have assumed
either that home–crime paths of burglars are randomly distributed or that no spatial constraint such
as distance or connectivity of areas is present [2]. Little work has been done to discover whether
interconnectivity generates more crime opportunities in certain places than others [2,10,38]. Because
crime influences transect the boundaries of census tracts, reliable risk estimation must take into account
the interaction that occurs among groups of areas. The analysis of this paper provides one of the early
investigations into area-based interactions and patterns of officially reported burglaries by exploring
two questions:

1. To what extent does the spatial arrangement of areas mediate the structural influence on an area’s
internal burglary risk?

2. How do risk factors of interconnected areas affect the cumulative burglary frequency?

The rest of this paper is structured as follows. First we present the study area and methods.
Results are presented thereafter, as well as a discussion of the implications. The paper concludes with
policy recommendations.

3. Materials and Methods

3.1. Study Area

The focus of this study is the metropolitan region of Greater London, the largest urban area of
the UK and the most populous in the European Union [39]. This area was chosen for three main
reasons. First, the London region is a busy commercial environment with different types of crime
generators, rising house prices, and accelerating rates of crime [40–42]. It therefore offers an ideal scene
for investigating area-based crime influences. Secondly, high socio-economic inequality characterizes
the London region. The gap between the London rich and poor is one of the largest in Europe, with
Inner London being the most economically unequal region of England [40]. On the one hand, certain
areas on the east, north and north-west of London were classified by the UK indices of multiple
deprivation as the most deprived in all of England [43]. On the other hand, the collective value of
properties in ten boroughs in London’s downtown outstrips the combined value of properties in Wales,
Northern Ireland, and Scotland [44]. Such pronounced economic inequality is bound to affect crime
levels. Finally, the London authorities have made different types of highly detailed datasets freely
available for research, a factor that is bound to promote future comparative investigations of this kind.

3.2. Data and Variables

The study data were obtained from various sources. The dependent variable is continuous and
denotes the number of burglaries per hectare. It makes use of 425,393 police-recorded burglary events
that occurred throughout the Greater London, UK region over five years (2011–2015).

The analysis employs 12 independent variables. A number of socioeconomic indicators were
drawn from the ONS census data for 2011 as guided by the previous literature [1,12,35,36,45]. The first
four variables correspond to conditions of areas where social problems are likely to arise and affect
informal controls over crime [14,17]. Different proportions of households were measured with respect
to; (1) unemployment (UNEMP); (2) no automobile (NOAUTO); (3) no central heating (NOHEAT);
and (4) living on social housing units (SOCHSE). Three additional variables control for factors that
can directly aggravate the burglary behavior, consistent with previous studies [15,17,35]; (5) the value
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of mortgage lending for post code sectors (MORTAGE) was obtained from the ONS and averaged
over the four quarters of 2014. We employed area-weighted means to extract values for the analysis
units. Values correspond to the proportions of data in originating areas that intersect target areas,
assuming a uniform distribution of values within areas. For example, if the originating area has
a mortgage lending value of 5 million £ and it constitutes a half of the target area, it contributes
2.5 million as the area-weighted mean value to the target area. (6) House prices (HSEPRICE) were
obtained from the ONS at the geography of analysis areas; and (7) the presence of payday lending
shops, mortgage brokers, and pawnbrokers (LENDERS) was determined using actual locations of these
facilities. LENDERS quantifies the potential for criminogenesis because such facilities create adequate
grounds for burglary [46–48]. The variable, LENDERS was constructed by searching the yellow
pages and querying unique locations of operational facilities using the Google mapping application.
A weighted exposure was measured over the road network and employed the official roads data of the
Ordnance Survey. This applies inverse distance weights using the shortest path route by road from an
area’s population-weighted centroid to the location of facilities. The weights employs the difference
between the pre-defined threshold distance value (1 km) and the distance value of each facility to an
area’s centroid over the maximum value, summed for all observations within 1 km.

Two variables correspond to affluent areas and crime mitigating influence, employing the ONS
census data for the analysis areas; (8) INCOME is the total median household income per year,
averaged over five years (2008–2013); and (9) HOMEOWN represents the proportion of residential
properties that are owned outright. Finally, three variables signal opportunities for offender–target
interaction [1,17,30,48,49]; (10) POPDENS is a variable measuring population density, i.e., the number
of persons per 100 m2; (11) DIST2CITY represents proximity to the City of London. It employs inverse
distance weights using the shortest path from each area’s centroid to the City. This measure was
adjusted for the decreasing distance of areas to the city center. It represents the difference between the
maximum recorded distance and the area’s distance, weighted by the maximum distance value, i.e.,
1 ´ [(dmax ´ dij)/dmax]); (12) BUILDDENS is the number of buildings per hectare and employs the
Ordnance Survey’s latest official release of building footprints (July, 2015).

3.3. Methods

This study is focused on examining effects of burglary between small interlinked areas. Spatial
interaction was hence conceptualized as a measure of contiguity for observation areas (n = 4,835).
While differences between various contiguity-based weighting schemes were not substantial, the
binary-weighted measure (0 = not neighbor, 1= neighbor) was found to be effective for avoiding
artificial clustering, as consistent with previous observations [6,50–52]. First, local burglary clusters
were investigated against different types of burglary-influencing factors using bivariate local indicators
of spatial autocorrelation (LISA; [51]). Bivariate LISA assesses local correlations involving the
cross-product of standardized values for one variable (e.g., burglary rates) and those of averaged
neighboring values of another variable (e.g., unemployment rates) [53]. The statistic reports significant
clusters (p < 0.05) of four types: high-high (areas of high clusters surrounded by areas of high clusters),
low-low (areas of low clusters surrounded by areas of low clusters), high-low (areas of high clusters
surrounded by areas of low clusters) and low-high (areas of low clusters surrounded by areas of high
clusters) [51,52].

Additionally, four regression models were estimated for the burglary data; an ordinary least
squares (OLS) model and three spatial models (i.e., spatial lag model—SLM, spatial error model—SEM,
and spatial Durbin model—SDM). The latter three models controlled for distinct aspects of spatial
interaction. On the one hand, based on the hypothesis that risk probabilities in an area are influenced
by risk probabilities in its nearby surrounding areas [54], the SLM adopted the following nonlinear
adjustment to ordinary least-squares estimation:
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lnpyq “ ρW lnpyq `
12
ÿ

i“1

Xiβi ` ε, ε „ Np0,σ2 Iq, (1)

where y is the natural log of burglary rates (i.e., events per ha.) and X is a 12 by n design matrix of the
12 predictor variables listed in Table 1. The parameters βi, ε, σ2, and I correspond respectively to the
regression coefficients, the vector of residuals, residual variance, and the identity matrix (i.e., the n ˆ n
diagonal matrix of 1s). ρ quantifies the spatial autocorrelation using an n ˆ n spatial matrix of binary
contiguity-based weights, W.

Table 1. Description of predictor variables for the regression models of burglary (n = 4,835).

Variable Description 1 Alias 2 Min. Mean Max. S.D.

1. Unemployment UNEMP 0.008 0.082 0.297 0.046
2. No automobile in household NOAUTO 0.027 0.400 0.863 0.185
3. No heating system NOHEAT 0.000 0.027 0.135 0.016
4. On social housing SOCHSE 0.000 0.235 0.909 0.202
5. Mortgage lending (£) MORTGAGE 2,790,728 241,021,712 687,895,559 104,665,763
6. House price (£) HSEPRICE 93,000 335,119 2,910,350 214,504
7. Payday lenders (inverse dist.) LENDERS 0.000 0.084 2.968 0.267
8. Average household income (£) INCOME 23,062 36,698 79,404 6,819
9. Homeownership HOMEOWN 0.032 0.511 0.974 0.220

10. Population density (persons per 100 m.) POPDENS 0.012 0.959 6.824 0.612
11. Distance to the City DIST2CITY 0.000 0.598 1.000 0.208
12. Building density (buildings per ha.) BUILDDENS 0.290 5.426 15.823 2.304

Notes: 1 Regression models employ standardized predictor variables; 2 Variable names are represented by
aliases in the subsequent reference.

The SDM extends the SLM to include effects of burglary-contributory factors in the surrounding
area [55]. Hence, the SDM has an additional parameter of the auto-regressive process for each spatially
lagged predictor and takes the following form:

lnpyq “ ρWlnpyq `
12
ÿ

i“1

Xiβi `WXγ` ε, ε „ Np0,σ2 Iq, (2)

where γ is a (12 ˆ 1) parameter measuring the marginal impact of variation in nearby areas on
burglary. Estimation of the two spatial models, SLM and SDM takes into account spill-over effects,
unless observations are randomly distributed in space (i.e., ρ = 0). These correspond to three types
of equilibrium effects modeled using Bayesian Markov’s Chain Monte Carlo (MCMC) simulation
approach [50]; (1) direct impact measures effects of contextual variables on the burglary risk in the
immediate location, as well as effects of feedback that cascades through the surrounding areas and
returns to the area where the adjustment process was initiated; (2) indirect impacts denote effects of
contextual variables in the immediate area on the burglary risk of all its neighbors; (3) total impacts is
the sum of direct and indirect impacts [54].

The final spatial model, the SEM, is estimated under the hypothesis that burglary variation is
induced by unknown or omitted factors. It hence models the spatial autocorrelation of residuals:

lnpyq “
12
ÿ

i“1

Xiβi ` υ, υ “ λWµ` ε, ε „ Np0,σ2 Iq, (3)

where υ is a spatially correlated error term and λ is the coefficient of spatial dependence. The SEM
does not model equilibrium effects. This is because the matrix elements which link the spatial effects
parameter, λ with the regression coefficients, β are usually zero [54].

Tests for the clustering of model residuals employed the Moran’s I coefficient and standard
deviation. Goodness of fit tests assessed the Akaike Information Criteria (AIC) and R2 values of
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competing models. Additionally, likelihood ratio statistics tested the benefit of modeling spatial effects
over applying a non-spatial linear regression to the burglary data.

4. Results

This section presents the identified burglary risk measurement in terms of crime concentration
patterns, spatial clusters and correlations.

4.1. Exploratory Analysis

Areas experienced an average of 4.694 burglaries per hectare and significant variation in the
burglary rates (min. = 0, max. = 35.986, S.D. = 3.529). The highest burglary rate, 36 crimes per hectare,
was recorded for an area located near the City of London. In contrast, two areas located further away
from the City registered no burglary over five years. Observing these areas, one notices that aspects
of the nearby surrounding had significant influence on risk (Figure 1). The most burglary prone
area (labeled “i”) has two distinctive features. First, its neighbors also suffered high victimization.
Secondly, it has a high building density, and buildings in the surrounding areas are also clustered.
The burglary-free areas, labelled “j” and “k” in Figure 1 are both surrounded by areas that also
experienced few burglaries. It seemed that the strategic location of area k near docking facilities and
the river Thames protected it from the burglary influence emanating from areas on the eastern side.
Because of this extraneous influence, the comparison of safe versus risky places proceeds with reference
to the areas, i and j.
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Figure 1. Locations of burglary events for (A) the area with the highest burglary rate, and (B,C) areas
with the lowest rates.

The two areas i and j have several distinct features both in terms of their own characteristics
and the configurations of their neighbors (Figure 2). The latter is more affluent, with higher levels
of household income, homeownership, and house prices, and it is surrounded by areas that are less
affluent than itself. In contrast, the neighbors of area j are clearly more affluent (Figure 2D,H, and J),
and this may have reduced the attraction of this area for burglary. Both areas, i and j are comparable in
their mortgage status and the absence of payday lenders, but area i has a significantly higher exposure
to payday lending emergent from its neighbors on the north-west. Finally, i is more densely populated
than j, and it is also surrounded by densely populated areas. Cumulatively, these characteristics may
have caused the area, i to become a more likely target for burglary than the corresponding area, j.

Table 1 presents the descriptive statistics for predictor variables. Mortgage lending had the highest
mean value and the lack of central heating was the least valued. Exposure to payday lending and
pawnbroker facilities was the most varied across areas, with a larger value for the standard deviation
(i.e., 0.267) than for the mean (i.e., 0.084) of the variable, LENDERS. Variation was also tremendous
for the proportion of households on social housing (mean = 0.235, S.D. = 0.202), and the population
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density (mean = 0.959, S.D. = 0.612). Overall, all the predictor variables registered a significant amount
of variation, partly because of heterogeneity of the metropolitan region and also due to the large
number of observation areas. This led to the question of whether such variation would impact the
variation in burglary concentrations. The disparity in values across variables also called for scaling of
the predictor variables prior to regression analyses to make the coefficients estimates more legible.
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4.2. Detecting Spatial Clusters

A global assessment identified substantial clustering of burglary rates over geographic space
(Moran’s I = 0.593, z-score ~ 70.195). At the local level, dense and statistically significant risk clusters
were discovered for all predictor variables at the p = 0.05 level after 99,999 randomization tests
(Figure 3). Particularly, the center of the study region including the City of London had clusters of
high burglary risk surrounding high values of risk factors, consistent with the previous observation in
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(Figure 2 A,C,G, and K). The densest high-high clusters were detected for unemployment, households
without motor vehicles, population density, and distance to the City. Specifically, the latter variable
had the increase in its values being directly proportional to risk (Figure 3K). Pockets of high risk were
densely clustered from the City, and they spread outwards in a circular manner to several the nearby
areas. Afterwards there were low-high clusters in intermediate areas and low-low clusters near the
periphery. Similarly, the presence of payday lenders had an outward influence from the City on risk in
areas nearby (Figure 3G). The central region had high-high clusters spreading out into pockets of high
burglary-low lending facilities in all directions.
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Figure 3. Bivariate Moran’s I clusters of burglary rates (i.e., number of events per ha.) and
(A) unemployment; (B) no automobile; (C) no heating; (D) social housing; (E) mortgage lending;
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(K) distance to the City; and (L) building density. Correlated variables have been centered on the mean.

The region’s periphery had either clusters of no significance or low-low clusters for many variables.
In line with the expectation, homeownership influenced a risk reduction overall, and particularly in
peripheral areas where dense low-high risk clusters could be found. However, two dominant types of
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risk clusters were associated with homeownership near the central region; high-high, in which risk
existed in surrounding areas despite increased homeownership and high-low, where burglary was
frequent near areas with low homeownership. The former observation coincides with the previous
observation of high burglary risk in an area bordered by areas with large numbers of homeowners
(Figure 2G)

Unlike many variables which registered high-high clusters around the City itself, high
unemployment and social housing had no significant clustering with the burglary in this area.
A possible explanation is that effects of these two variables were mediated by the high numbers
of workers in the City, and the largely commercial land use respectively. Nevertheless high-high
clusters of risk and unemployment were the densest and most widespread overall and especially
in the northern areas. This is consistent with the hypothesis that burglars can comprise employed
persons who discover opportunities in the course of daily interaction [12]. Other elements of the city’s
structural profile appear to have registered as burglary generators. For example, dense clusters could
be found in London’s downtown where high burglary rates occurred near densely populated areas
and near areas with high building density.

4.3. Regression Analysis

Lagrange multiplier diagnostics of regression models estimated positive and significant Moran’s I
values for the spatially-lagged burglary variables and residuals. Table 2 shows the model diagnostics
for the ordinary least squares (OLS) model and the three spatial models; the spatial lag model (SLM),
the spatial error model (SEM), and spatial Durbin model (SDM). Coefficients of spatial autocorrelation
were significant for all the spatial models. Specifically, high rho values were estimated for the lag
models, the SLM and SDM (ρ = 0.383 and ρ = 0.468, p < 0.001), and the spatial error term was also
moderately significant (λ = 0.450, p < 0.05). This observation highlighted the implications of modeling
spatial effects. The SDM had the highest log-likelihood estimate (´2.506), despite this model having
twelve degrees of freedom more than the SLM and SEM. Likewise, the Akaike information criterion
(AIC) and Schwarz criterion (SC) estimates all showed that the SDM was substantially the most reliable
risk model. The coefficient of model determination (R2) was also the highest for the SDM, and it
appears that accounting for spatial dependence in both burglary and the contextual factors caused a
significant increase in the model estimation reliability.

Table 2. Parameter estimates of non-spatial and spatial models of burglary in Greater London output
areas (n = 4,835).

Parameters Non-Spatial Model Spatial Lag Model Spatial Error Model Spatial Durbin Model

Adjusted R2 0.652 0.690 0.695 0.742
AIC 6,087.519 5,543.231 5,448.203 5,065.682

Schwarz criterion 6,178.291 5,640.484 5,545.458 5,241.326
Rho (ρ) - 0.383 *** - 0.468 ***

Lambda (λ) - - 0.450 * -
Log likelihood (d.f) 3 ´3,030 (14) ´2,757 (15) ´2,709 (15) ´2,506 (27) 4

Likelihood ratio - 546.293 *** 631.320 *** 644.741 ***
Residual variance (σ2) 0.217 * 0.178 0.171 0.165

Residuals Moran’s I 0.245 *** 0.036 ** 0.021 * 0.013
Moran’s I z-score 29.032 4.301 2.945 1.095

Notes: Significance: “*” p < 0.05; “**” p < 0.01; “***” p < 0.001; 3 Likelihood ratio tests estimate the model
improvement after modeling spatial dependence; 4 The spatial mixed model has additional parameters equal to
the number of predictor variables.

Spatial models had less clustered residuals than the OLS regression model which registered a
highly significant Moran’s I value (i.e., 0.245, z-score = 29.032, p < 0.001). However, the Moran’s I
estimate was also moderately significant for the SLM (z-score = 4.301, p < 0.01), suggesting that the
adjustment for spatial autocorrelation in the dependent variable alone was insufficient. Of the two best
models (SEM and SDM), the latter had the least spatially autocorrelated residuals. Figure 4 examines
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the residuals for all models over geographic space. It emerges from observing the residuals pattern
that all the four models had clustered residuals within a distance of 4 km (Figure 4A), but the OLS
regression residuals were the most clustered at this distance. Thereafter, OLS residuals exhibited a
negative spatial autocorrelation beyond 30 km. Consistent with the previous observation (Table 2),
residuals for the SEM and SDM were the least correlated.
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Examining burglary rates plotted against the back-transformed regression values predicted by the
SEM and the SDM—the two best performing models—uncovered a distinct and positive correlation
for the latter (Figure 4C). The SEM had several outliers affecting its prediction power. Additionally,
residual variance was 7% lower for the SDM (SSE« 856) than the SEM (SSE« 904). These observations
and the goodness-of-fit statistics (Table 2) guided the subsequent analysis to adopt the SDM.

Table 3 presents burglary estimates of the SDM regression model. Direct, indirect, and total
(direct + indirect) effects of the regression estimates were measured between order 0 (the immediate
area) and order 3 (the third nearest neighbor). All risk effects were statistically significant except for
three variables; MORTGAGE, HSEPRICE, and INCOME. Additionally, more than half of the direct and
indirect impacts were significant, implying that interaction of nearby areas had a profound influence
on risk. For example, the direct effect for the variable, NOHEAT (i.e., 2.395) was substantially higher
than the partial effects estimated for this variable (i.e., 2.17). This implies that areas experienced a
burglary increase of 0.225 due to unemployment in the areas nearby. However, indirect effects were
less strongly felt. Contextual factors affected a lower magnitude of cumulative risk in the surrounding
areas, possibly owing to distance decay. Similarly, the overall feedback effects (the sum of direct and
indirect impacts) were less significant than the actual burglary estimates in areas for many variables.

All socioeconomic indicators of disadvantage except SOCHSE (i.e., UNEMP, NOAUTO, NOHEAT
and POPDENS) were significantly correlated with high risk. The magnitude of risk influence was
also much higher for these variables than for most contextual factors. However, DIST2CITY had the
greatest coefficient value overall (βDIST2CITY = 7.647, p > 0.001). Additionally, this variable and two
others (UNEMP, LENDERS) had significant values for all risk measurements, including the spill-over
effects. The coefficient of HSEPRICE was not significant, but both its direct and indirect influences
were significant. While from the observation of Figure 2G,H, it seemed that household income would
be correlated with risk, the SDM estimated no significant influence for the variable INCOME for either
the coefficient or spillovers. Similarly, the variable, MORTGAGE was not significantly correlated with
burglary, and this agrees with the uniform values observed earlier for areas of low versus high risk
(Figure 2A,B).
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Table 3. Estimates from the spatial Durbin model of burglary rates and the nearby impacts (n = 4,835).

Variable
Burglary Estimate Direct Impact 5 Indirect Impact Total Impact

Estimate S.E z-value Estimate S.E z-value Estimate S.E z-value Estimate S.E z-value

Intercept ´0.068 * 0.028 ´2.441 - - - - - - - - -
UNEMP 0.724 * 0.372 1.944 0.030 * 0.008 3.403 0.017 * 0.008 2.153 0.047* 0.025 1.910

NOAUTO 1.220 *** 0.163 7.498 1.042 0.861 1.210 0.598 0.385 1.555 1.640 1.603 1.023
NOHEAT 2.170 ** 0.485 4.472 2.395 *** 0.392 6.111 1.375 * 0.718 1.914 3.769 2.476 1.522
SOCHSE ´0.673 *** 0.097 ´6.964 ´0.914 * 0.396 ´2.309 ´0.524 0.436 ´1.203 ´1.438 0.764 ´1.883

MORTGAGE 0.012 0.017 0.887 0.014 0.106 0.132 0.008 0.005 1.667 0.023 0.018 1.282
HSEPRICE 0.015 0.014 1.071 0.041 * 0.021 1.924 0.023 * 0.008 3.012 0.064 * 0.029 2.227
LENDERS 0.041 * 0.010 4.230 0.023 ** 0.003 6.324 0.013 *** 0.002 6.573 0.036 * 0.011 3.192
INCOME ´0.023 0.029 ´0.792 ´0.047 0.032 ´1.447 ´0.027 0.022 ´1.208 ´0.074 0.069 ´1.066

HOMEOWN ´0.450 * 0.132 ´3.418 ´0.632 0.347 ´1.820 ´0.363 * 0.136 ´2.677 ´0.995 0.552 ´1.804
POPDENS 0.336 *** 0.016 20.624 0.321 * 0.121 2.655 0.184 0.100 1.840 0.505 * 0.250 2.020
DIST2CITY 7.647 *** 0.942 8.121 0.348 ** 0.085 4.108 0.200 * 0.054 3.701 0.547 * 0.156 3.512

BUILDDENS 0.106 *** 0.035 9.602 0.100 0.055 1.823 0.057 * 0.029 1.969 0.157 0.086 1.836

Notes: Significance: “*” p < 0.05; “**” p < 0.01; “***” p < 0.001. Significant values are displayed in bold; 5 Standard errors and significance values of direct, indirect and total impacts are
estimated after 99,999 randomization tests.
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HOMEOWN had a negative influence on risk, and increased homeownership in surrounding areas
had negative influence on the immediate area (indirect impact = ´0.363, p < 0.05). This observation
is consistent with the risk profile observed for safe areas (Figure 2J) and with the dense low-high
clusters that were found for burglary-homeownership, particularly in the peripheral areas (Figure 3I).
Nevertheless, the influence of homeownership on risk reduction in nearby areas was moderate, and its
direct and total impacts were generally insignificant.

Unexpectedly based on previous studies [5,15], the coefficient estimate was negative for the
variable SOCHSE, and the direct impact for this variable was also negative and significant (p < 0.05).
The variables DISTANCE and BUILDDENS were highly significant to increased risk, and the feedback
effects were also relatively high for these variables.

5. Discussion

This study has addressed the underexplored phenomenon of spatial interaction between the small
areas of an urban metropolis, and how this interaction affects burglary concentrations. The research
has examined effects of disadvantage (e.g., unemployment, absence of central heating systems, social
housing) and affluence (e.g., homeownership, house price) in the area-based burglary risk, while also
controlling for effects of these factors on burglary rates in the nearby surrounding areas. Prior research
has generally focused on the relationship between burglary and contributory effects within areas, and
the spread of burglary opportunities to nearby surrounding areas has been overlooked. Additionally,
this burglary investigation has considered both the socioeconomic configuration of community context
and the place-based structural aspects of the urban land use (e.g., the exposure to payday lenders,
building density). In these respects, the results from this systematic modeling contributes new evidence
for law enforcement practitioners and policymakers.

Initially, investigation of local spatial clusters was conducted to determine whether risk aspects in
an area had implications on the neighboring risk. Dense and widespread clusters were discovered
for all variables, confirming this hypothesis. The analysis also compared different regression models
of burglary, both spatial and non-spatial, and discovered that the most accurate risk model included
spatial dependence of both the burglary rates and the contributory factors. This is an important insight
for analysts seeking to model risk using geographically referenced observations across small areas.

Focusing on the target area attributes, four out of the five measures of area-based disadvantage
examined were significantly related with increased probability for burglary. Areas with high
unemployment, high population density, and/or which lacked a motor-vehicle and central heating
system had higher likelihood for burglary. This is consistent with previous studies that attributed high
burglary risk with populous areas [29,30] and high vulnerability of households with insufficient
controls [13,17,45]. It also agrees with the hypothesis related to increased risk within unstable
institutions [16,17]. Nevertheless, strong evidence was also found for low burglary risk being
experienced in areas with a large number of social housing units, and this did not confirm the above
hypothesis or past observations that have linked burglary with housing-related disadvantage [5,15].
Instead, the observation suggests a certain capability of communities to exercise collective efficacy
against burglary in spite of disadvantage. As such, the results here can inform policies that seek to
promote and develop risk mitigating factors in underprivileged areas. An alternative explanation
for the reduced risk among households under the social scheme is spatial, and relates to the reduced
attraction for burglars in these areas. Burglars are expected to look for profitable targets, and it is
unlikely that they will hunt for opportunities among houses that have clearly perceived disadvantage.
It was discovered in a previous study that deprived but close-knit areas of Florida, USA suffered a low
level of burglary risk [25]. This is also consistent with observations from (Figure 2D,H,J). The area that
suffered the lowest risk was one with reduced opportunity, since it is well known that burglars often
seek targets in affluent areas [30,35]. Additionally, the clear-cut estimate for social housing stems from
the structural configuration of this indicator. Unlike with certain broader census-based measures, such
as unemployment, clusters of place-based factors, such as social housing schemes are usually more
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prominently outlined within and between areas. An underexplored possibility has therefore been the
extant spatial interaction among the close-knit communities that have a mutual disadvantage.

Burglary rates were significantly lower in areas with high homeownership, in line with other past
findings [21,32,35,36]. This pattern supports the “collective efficacy” hypothesis relating affluent and
stable communities with increased control over crime. However, after controlling for the influence
of neighboring areas, the most crime-prone area was found in a relatively affluent area with high
homeownership. Additionally, areas with high homeownership did not significantly mitigate the
burglary risk in the nearby surrounding. This signified the capability of nearby influences to reduce
the mitigating effect of homeownership on risk.

With respect to the structural influence of the urban land use, the likelihood for burglary increased
with the increase in distance to the City, while clusters of low burglary probability were more prominent
in peripheral areas. This observation has several key implications. The first is the mitigating influence
of close-knit communities living in areas outside the city, as supported by existing research [13,14,25].
The second is that lower levels of disadvantage in the peripheral areas influenced a reduction in the
burglary motivation. In contrast, burglary was higher around areas with concentrated deprivation,
and central and northward clustering of high-high clusters. The UK indices of multiple deprivation
identified these areas as some of the most deprived areas in England [43]. The third relates to the target
environments that define activity spaces for burglars [19]. The proliferation of business establishments
City and its nearby surroundings corresponds to increased burglary risk due to the crime generators
and attractors, and the likelihood of quick disposal of stolen property [48,49,55].

It had been expected based on the previous hypothesis [15,17,35] that areas with high mortgage
lending and/or high income would have high likelihood of being targeted for burglary, but no evidence
of this link was found either within areas or through nearby influences. Nevertheless, exposure to
payday lenders was found to be significant and positive to risk. Given that the former two indicators
were extracted from census data and the latter variable was a weighted distance value of lenders’
actual locations, the arbitrary definition of mortgage lending and household income per census tract
may have played a part in the lack of influence observed. Indeed, studies have observed that specific
place-based measures are more accurate risk determinants than census tract-based indicators [5,10,39].
As such, the proliferation of place-specific factors such as drug markets and pawnbrokers can generate
risk clusters among areas with a homogenous census-based socioeconomic status [10].

Concurrently with the important observations reported in this analytical study, several limitations
exist that present avenues for future research. First, as a result of aggregating the burglary events
over census tracts, the analysis was biased by the modifiable areal unit problem (MAUP; [56]). Small
analysis units were employed (about 0.325 km2 per census tract) and we expect that this reduced the
MAUP effects on observed results, but this was not proven. Secondly, the study analysis is limited
to burglaries committed within the Greater London region and did not include risk effects in the
immediate vicinity of the region. The location of London’s downtown at the center of the study
region was partially mitigating to the border effects, but accounting for these effects was nevertheless
relevant for the risk estimation. Thirdly, this study did not exhaust the wide range of factors that
present an increased likelihood for burglary. For example, drug habits can potentially increase burglary
motivation [8,36–38] but they were not investigated here. In essence, it was not possible to model all
factors that contribute to the development of burglary risk.

Future crime analyses can take the above limitations into account by assessing other
wider-reaching burglary influences over census-unrelated areas such as street segments [39,57].
Subsequent work can also expand on the current findings to determine the spatio-temporal influence
on burglary variation, as well as the contextual effects of interconnected areas on burglary within less
urbanized settings.

Overall, the results suggest that crime analysts and other individuals and authorities that are
responsible for monitoring and reducing crime should not unilaterally consider the risk factors within
observation areas but also examine the influences from nearby surroundings [5,39].
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6. Conclusions

The findings of this study highlight the importance of detecting reliable risk factors and accounting
for the effects of these risk factors that are due to the spatial arrangement of observation areas.
The control for spatial interaction between areas in this study revealed significant variation in the
distribution of burglary. In sum, the contextual effects in an area are relevant risk determinants, but
the interaction context is equally important. Thus, overlooking the spatial connectivity of areas has
profound implications on the risk estimation results, especially for small areas.
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