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Abstract: Thanks to the increasing popularity of location-based social networks, a large amount of
user-generated geo-referenced check-in data is now available, and such check-in data is becoming a
new data source in the study of mobility and travel. Conventionally, spatial interactions between
places were measured based on the trips made between them. This paper empirically investigates
the use of social media data (i.e., Foursquare data) to study the “locality” of such intra-urban spatial
interactions in New York City, and specifically: (i) the level of “locality” of spatial interactions;
(ii) the impacts of personal characteristics on “locality” of spatial interaction and finally; (iii) the
heterogeneity in spatial distribution of “local” interactions. The results of this study indicate that:
(1) spatial interactions show a high degree of locality; (2) gender does not have a considerable impact
on the locality of spatial interactions and finally; (3) “local” interactions likely cluster in some places
within the research city.
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1. Introduction

Location-based social network (LBSN) products such as Foursquare, Gowalla, Google Latitude,
and Facebook Places are becoming an important source of volunteered geographic information (VGI).
As the most popular LBSN, Foursquare has nine venue categories, including food, travel, and transport,
and these cover hundreds of sub-categories, including cafes, bus stations, and train stations [1].
Foursquare has over 50 million users worldwide, and over 6 billion check-ins had been made using the
website by May 2014, with millions of new check-ins taking place every day [2]. Although check-in
data has some limitations in terms of how it represents human mobility—for example, it shows age
group and place category bias—such data has the ability to identify human mobility patterns in
accordance with certain mechanisms [3,4]. When compared to some other data sources (e.g., survey
data and mobile phone data), LBSN check-in data has some advantages as an indicator of human
activity categories such as dining, working, and shopping, as it provides a fine-grained resolution, and
is readily available. Therefore, user-generated geo-referenced check-in data has excellent potential
when wishing to study human mobility, as some researchers have already demonstrated [3,5–11].
Since spatial interactions are measured through the use of human mobility patterns, so check-in data
has significant potential within the study of spatial interaction. Therefore, in this study we will use
LBSN check-in data to study intra-urban spatial interactions. Before introducing how the paper is
structured, we will review the previous research on intra-urban mobility and spatial interactions.

1.1. Brief Overview of the Previous Research on Intra-Urban Mobility and Spatial Interactions

Over the last two decades, intra-urban mobility has become a popular research topic across
the research community, including among geographers, urban planners, computer scientists,
and physicists.
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Geographers are interested in spatial distribution of intra-urban mobility, and urban planners
want to improve transport efficiency by investigating spatial and temporal variations of travel time
and travel flows [12–15]. To quantitatively understand mobility, computer scientists and physicists are
involved in modelling distribution of travel distance in a mathematical way [16–18]. A few studies
have been able to identify human mobility patterns using mobile phone data, automobile GPS traces,
and social media data [3,5,15–20]. One of the most common findings among such studies is that
the distribution of trip distances tends to follow a power law [12,16] or an exponential law [4,21,22].
Another common finding is that humans follow simple, reproducible patterns of mobility [15,16].
Some other studies have attempted to interpret intra-urban mobility distributions using models [12,23]
such as the gravity model [23] and its modified forms—mainly based on the distance-decay effect [12],
and the population distribution model—which is the most popular simulation model used [12,22].

Some researchers [17,18] have used empirical studies to demonstrate high potential predictability
levels with respect to user mobility [17], while others have attempted to uncover how urban form
characteristics (e.g., land area, land use mix, road and population densities) and personal or household
characteristics (e.g., age, gender, education levels, employment, income, and car ownership levels)
impact upon intra-urban human mobility [11,15,20,24–27]. Furthermore, from a network perspective,
some studies have focused on intra-urban travel networks [28,29], revealing that, like some typical
connection networks such as the World Wide Web, the internet, friendship networks, and scientific
collaboration networks, intra-urban travel networks are “small world” networks [30]. Finally, some
studies have revealed underlying patterns of intra-urban mobility to understand urban structure
and functions of sub regions [31,32], and to better measure popularity of places (e.g., retails) for site
selections [33,34].

1.2. Motivation for This Study

In some studies [35,36], trips between geographic units such as cities and neighborhoods, are
used to measure the interaction between two geographic units. Similarly, trips between locations
such as restaurants, apartments, and bus stops, have been used to measure the interactions between
locations in a city. The number and length of such trips can be used to represent the strength and
length of interactions between locations. Spatial interactions have also been analyzed by researchers to
better understand human mobility patterns and human-mediated dynamic phenomena, such as the
spread of infectious disease, the results of which may be beneficial to urban planners and decision
makers [28,37,38]. As one sub-field of urban planning, transportation planning will be improved by a
better understanding of the spatial distribution of human mobility in cities. Besides, “Human behaviour
plays an important role in the spread of infectious diseases, and understanding the influence of
behaviour on the spread of diseases can be key to improving control efforts.” [39]. Obviously, decision
makers are concerned about how to improve control over the spread of infectious diseases. On the
one hand, investigating spatial interaction patterns may be beneficial to businesses, e.g., by helping to
identify a good location based on personalized user preferences, or selecting a good site for a new shop.
The former has been explored by studies through the use of social media data [4,6], while the latter is a
new field within mobility studies using social media data. Investigating spatial interaction distances
may help when selecting the site of a new shop, restaurant, or other service facility. For instance, if
a new restaurant is established to serve customers of fitness and sports centers, it should be located
in close proximity to them. However, it may not always be the most profitable decision to open a
restaurant extremely close to a gym, so when selecting a site, one needs to examine to what extent a
restaurant close to a gym is able to attract a large number of gym users. In addition to business location
decisions, management of the spread of infectious diseases can also benefit from spatial interaction or
human mobility analysis [37,40,41]. For instance, if a healthy person visits a venue over the same time
period as a sick person, such as over the course of a day, he or she is more likely to become infected
than those who do not visit the venue. Therefore, mobility trajectories may be closely associated
with the spread of a disease; with a strong interaction implying a higher possibility of disease spread
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and with long-distance interactions implying a greater potential for a larger spatial range of spread.
The strength and length of interactions between venues can be taken into account within disease
spread simulations.

This study was explicitly motivated by the following. The distance decay effect [42] seemingly
implies that human mobility or spatial interactions have a large degree of “locality” associated with
them, so this study attempts to investigate the “locality” of spatial interactions in a quantitative way.
Moreover, since the existing literature reveals that intra-urban mobility is influenced by personal
characteristics, it will be interesting to examine if and how personal characteristics impact upon
the “locality” of interaction. Furthermore, since spatial heterogeneity of population and physical
activities likely result in spatial heterogeneity of human mobility, this study attempts to investigate
the heterogeneity in spatial distribution of “local” interactions by identifying clustering of “local”
interactions. Additionally, this study attempts to analyze noticeable clusters of “local” interactions to
understand travel behavior and activities of residents. Based on this, functions or land use patterns of
sub regions covered by the clusters will be somewhat discussed.

There is some research that leverages LBSN data or other mobility data to analyze intra-urban
mobility, spatial interactions, and activity transitions [4,6]. One the one hand, the majority of this
research has not accounted for the impacts of personal characteristics on spatial interactions. In contrast,
this study attempts to incorporate personal characteristics into the analysis of intra-urban spatial
interactions. On the other hand, some other research utilizes LBSN data or other mobility data to
divide a city or identify functions of regions by analyzing spatial patterns of human activities [43–45].
The majority of these researchers consider activities (points) separately, but ignore the relationships
between different activities undertaken by individual people. This study takes account of the
relationships between different activities in terms of trips (activity transitions). Accordingly, complex
network approaches are used to identify clusters of trips. Afterward, we will somewhat discuss
functions or land use patterns of sub regions covered by the noticeable clusters. This study doesn’t
aim to discuss the functions or land use patterns of all sub regions in a city.

The remainder of this paper is organized as follows. Section 2 introduces how we analyze the
“locality” of spatial interaction, while Section 3 presents the empirical analysis and the relevant results.
Lastly, we will present the conclusion and make suggestions for future research.

2. Methodology

In this section, we will introduce the methodology used for this study. First, the study will
investigate the level of “locality” of spatial interactions. Second, the study will explore if gender as a
personal characteristic has a considerable impact on the “locality” of spatial interactions. Finally, this
study will investigate the heterogeneity in spatial distribution of “local” interactions. Particularly, this
study will identify clustering of “local” interactions (links), i.e., area of strong intra-interactions.
Additionally, functions or land use patterns of sub-regions covered by the clusters will be somewhat
discussed. Land use data will be used to somewhat validate the discussions.

2.1. Depiction of Spatial Interactions

In this section we will introduce how to use check-in information to depict human mobility and
spatial interaction patterns. Within location-based social networks such as Foursquare, each venue
corresponds to a physical location (see Figure 1). Common types of venues include restaurants, offices,
apartments, hotels, bus stops, shops, and gyms. Imagine a user checks in at venue A (house) and
venue B (office) consecutively. In this situation, the “trip” is from venue A to venue B, irrespective of
the specific route taken by the user travelling between these two venues. In the context of this study, a
“trip” is a single journey represented by a line in geometrical terms. Sometimes, a user might travel
twice between two venues in opposite directions, e.g., going from an office to a restaurant for lunch
and then returning after lunch. If a user travels between two venues, these two venues are considered
to be “spatially interacted”, in other words, there is an “interaction” between these two venues.
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2.2. Length and Strength of Spatial Interactions

The length of an interaction is equal to the distance between the pairwise venues (i.e., the length of
trip), while the strength of an interaction is measured by the number of trips taken between interacted
pairwise venues. The more trips there are between pairwise venues, the stronger the interaction
between them.

2.3. “Locality” of Spatial Interactions

Since this study investigates the “locality” of spatial interactions, two “locality” indicators
are introduced. Two indicators are used to characterize locality of interaction at the venue scale.
To eliminate the effect of spatial heterogeneity among venues, relative distance is used instead of real
distance. Therefore, supposing venue j is the kth nearest neighbor (kth NN) of venue i, then k is used to
measure the relative distance between venue i and its neighboring venue j. The lower k is as a value,
the shorter the relative distance will be. K’s nearest neighbor (KNNs) is the venue set composed of ith
nearest neighbors (i = 1, 2, . . . , K). For instance, 200NNs refers to a set composed of the 200 nearest
neighbors. Two indicators are defined here to characterize the locality of interaction.

(1) The percentage of links a venue has with KNNs is used to measure the relative possibility of a
venue being linked (interacted) with its neighbors. This value is used to measure the “locality”
range of the interactions that take place. The higher the value is, the more the venue is likely to
be interacted with neighboring venues than with distant venues. This value can be defined as:

percentage o f links a venue has with KNNs pPiq “
link count o f a venue with KNNs pPiq

link count o f venue pPiq
(1)

where the link count o f venue with KNNs pPiq is the number of links venue Pi has with its KNNs, and
link count o f venue pPiq is the number of links venue Pi has.

(2) The kth NN linked with a venue value is used to represent that a venue is interacted with the
kth nearest venue among its KNNs. This value is used to measure the “locality” strength of
interactions between venues.

2.4. Interaction Network

In regards to investigating the heterogeneity in spatial distribution of “local” interactions, this
study will use a complex network analysis method to identify clustering of “local” interactions (links).
First, this sub-section introduces how to build a “local” interaction network on the basis of nodes and
edges. After that, this subsection presents how to identify clustering of “local” interactions in a “local”
interaction network.



ISPRS Int. J. Geo-Inf. 2016, 5, 43 5 of 13

2.4.1. Nodes and Edges

Trips within a city can be used to build an “interaction network”. In this network, a node
represents a venue and an edge represents an “interaction”. The weight of an edge is measured by the
number of trips taken between interacted pairwise nodes.

2.4.2. Network Structure and Community Analysis

In complex networks, links are not evenly distributed among nodes. The nodes of a network
can be divided into groups of nodes with dense connections internally and sparser connections
between groups [46]. Such a group is considered as a community, which is actually a sub-network.
The community based approach is widely used to analyze the structure of complex networks [46,47].

A good partition of a network into communities must comprise many intra-community links
and few inter-community links. Various community detection algorithms have been proposed and
used to divide complex networks [48–51], however, there are not many empirical studies revealing
what is the best algorithm. In this case, four widely used community detection algorithms—i.e.,
FastGreedy [48], Spinglass [49], Walktrap [50], and Infomap [51]—are all used to divide the network
in this study. Among the four partitions of the network, the partition with the smallest number
of communities detected is then selected as the best partition for analysis of clustering of “local”
interactions. A small number of communities detected means the network is divided into a small
number of parts. Accordingly, the communities detected likely have a relatively large number of nodes
and intra-community links (trips).

3. Empirical Analysis

The methods for spatial intersection described in Section 2 are applied for Foursquare Check-in
data in New York City. In this section, the test data set will be briefly described at first, then the
“locality” of spatial interactions will be empirically investigated.

3.1. Study Case and Empirical Data

This study uses New York City (NYC) in the United States as the research city. There are a large
number of active social media users in NYC. New York City is composed of five boroughs: Brooklyn,
Queens, Manhattan, the Bronx, and Staten Island.

In this paper, Foursquare check-in data is used to generate the empirical mobility data.
Since Foursquare has a strict privacy policy, the check-ins were collected from Twitter, with which
some Foursquare users share their check-ins. Within NYC’s municipal boundary, 148,169 check-ins
were acquired over the period 3 March 2014 to 27 April 2014 (12 continuous weeks). To make sure the
trip generation process is reasonable, any noise—i.e., where a check-in could not reasonably be used to
constitute a trip—found in the four situations detailed below, is filtered-out, as follows:

Situation (1): Among the consecutive daily check-ins, more than one check-in is generated in the
same position. In this situation, only the first generated check-in is retained; the others are discarded.

Situation (2): The time difference between consecutive check-ins for an identical user is greater
than 8 h.

Situation (3): The speed of travel between two consecutive daily check-ins for an identical user is
faster than extremely high (e.g., 250 km/h).

Situation (4): The distance between two consecutive daily check-ins for an identical user is short
(e.g., 100 m or less). This might suggest that when visiting a venue a user will probably check in, not
only at this venue, but at other venues nearby. Those check-ins made at other venues, but not actually
visited by the user, are considered fake. Therefore, with lengths of less than 100 m, such fake short
trips should be discarded. In this situation, the two consecutive check-ins do not constitute a trip.

Furthermore, active users who are likely local residents are selected. In this study, active local
users are regarded as users who: (1) are likely to check in at locations as much as possible whenever
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they actually visit these locations; who (2) are likely to have check-ins for a sufficient number of days
(at least 28 days); and who (3) have a certain number of trips (at least 21 trips) between different venues.

As a result, 50,758 travel flows (trips) covering 18,333 venues and 40,111 links (interactions) are
included. These trips are generated by 843 active sampled users (443 male users and 400 female users).

The land use data used in this empirical study were collected in 2010. The land use data were
open data and downloaded from the Department of City Planning (DCP), NYC [52]. Within the land
use dataset there are 11 urban land use categories: One & Two Family Buildings, Multi-Family Walk-Up
Buildings, Multi-Family Elevator Buildings, Mixed Residential & Commercial Buildings, Commercial & Office
Buildings, Industrial & Manufacturing Buildings, Transportation & Utility, Public Facilities & Institutions,
Open Space & Outdoor Recreation, Parking Facilities, and Vacant Land.

3.2. Locality of Spatial Interactions

This section presents an empirical investigation of the locality of spatial interactions, and
specifically, to what degree a venue is likely to be interacted with its neighbors. First of all, this
sub-section presents the empirical distribution of two locality characteristics: the percentage of links a
venue has with KNNs, and the kth NN linked with a venue. It should be noted that “K-nearest neighbors”
(KNNs) means the K-nearest neighbors of the relevant venue. In this empirical investigation, a specific
number has had to be set as the value of K. The value 200 is assigned to K, since 200NNs of a venue
represents a considerable number of neighbors for a venue. 23,390 trips (46% of the total trips) connect
the start venues to the end venues which are the 200NNs of the start venues. This indicates 200NN can
be used to represent an appropriate neighborhood range.

In this sub-section, we empirically investigate how venues interact with their 200NNs. First, the
distribution of percentage of links a venue has with KNNs is analyzed, with the results shown in Figure 2.
Approximately 50% of the venues interact with their 200NNs. Figure 2 also shows that when the
value is more than 0, the percentage of links a venue has with 200NNs values seems to exhibit a uniform
distribution. This suggests that the relative possibility of a location being linked (interacted) with its
neighbors seems to follow a uniform law.
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with KNNs.

Second, the distribution of the kth NN linked to each venue is analyzed. In Figure 3, using a
Kolmogorov-Smirnov (KS) test (for more detail see [53]), the distribution of the kth NN linked to each
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venue follows an exponential law. This suggests that the distribution of relative interaction lengths
follows an exponential law. In addition, among the venues’ links with their 200NNs, approximately
80% are connected to their 100NNs. Therefore, the analytical results reveal that spatial interactions
have a high degree of locality. Furthermore, although the relative possibility of a location being linked
(interacted) with its neighbors seems to follow a uniform law, locations are more likely to be interacted
with nearer neighbors than those further away.
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3.3. Impact of Gender on “Locality”

This section presents the empirical results of research into the impact of gender on “Locality”
characteristics (i.e., percentage of links a venue has with 200NNs, and the kth NN linked with a venue).
Specifically, this section presents the impact of gender on the two locality characteristics, with Table 1
giving the average values found. As an alternative to the T-test when it is not guaranteed that samples
are normally distributed, the Wilcoxon test is used to test if a sample set has a statistically significant
higher average value than the other.

In the results from the Wilcoxon test, the p-values corresponding to the two characteristics are
all much more than 0.05 (see Table 1). This means that the average percentage of links a venue has with
200NNs value for male users is not statistically different from that for female users, and the average
the kth NN linked with a venue value for male users is not statistically different from that for female
users at the 0.05 level. This indicates that gender does not have a considerable impact on the locality of
spatial interactions.

Table 1. Average values of the two locality characteristics for male and female users.

Locality Characteristics Male Female Wilcoxon Test p-Value

Percentage of links a venue has with 200NNs 0.36 0.36 >0.05
The kth NN linked with a venue 52 51 >0.05

3.4. Clustering of Local Interactions

This section presents the empirical results of research into identifying clustering of local
interactions. In this study, local links connect the start venues to the end venues which are the
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200NNs of the start venues. Accordingly, the local interaction network is composed of 13,112 nodes
(venues) and 15,944 edges (local links). The weight of an edge equals the number of trips connecting
the pairwise venues of the edge.

The four community detection algorithms were all used to identify clustering of local interactions
(area of high dense interactions). Among the four partitions of the network, the partition made by
using the Walktrap algorithm was selected as the best partition for this study since the number
of communities detected is the smallest. The spatial interaction network in NYC was divided
into 1515 communities by using the Walktrap algorithm. The majority of the communities have
a small number of intra-community trips and nodes. Among the 1515 communities detected, only
four communities have more than 500 intra-community trips and 100 nodes. In this case, typical
communities were further selected for analysis of clustering of local interactions. Typical communities
have a large number of intra-community trips (more than 500 trips), and a ratio of more than 20 for
the number of intra-community trips and number of inter-community trips. The four most typical
communities, which in total have 790 venues and 3778 intra-community trips, were selected since they
contained only 6% of the total venues but 16% of the total trips. This indicates the heterogeneity in
spatial distribution of “local” interactions.

Furthermore, we focused on the four typical communities to analyze significant clustering of
local interactions. Figure 4 displays the four most typical communities (significant clusters of local
interactions). In Figure 4, convex hulls of communities were used to measure the spatial sizes of
communities. Table 2 shows number of nodes and intra-community trips, and the most predominant
link categories in the typical communities selected. Table 3 shows the most predominant land
use categories within convex hulls of typical communities selected and percentages of the most
predominant land use categories.

Community 1 is located within Brooklyn. The most predominant link categories in Community
1 are Eating -> Eating, Shopping -> Eating, and Eating -> Shopping (see Table 2). This indicates that
there is clustering of links (trips) between Shopping venues and Eating venues within Community 1.
This implies that some residents cluster in this area where they live, and are more involved in eating
and shopping activities than working activities or entertainment activities. It seems that this area is
likely a residential area. One & Two Family Buildings and Multi-Family Elevator Buildings are the 1st
and 2nd most predominant land use categories within the convex hull of Community 1 (see Table 3),
indicating this area is a residential area.

Community 2 is located within Queens, and around the Queens College and St. John’s University.
The most predominant link category in Community 2 is University -> University (see Table 2).
This indicates that there is clustering of links (trips) from University venues to University venues
within Community 2. This further implies that some residents cluster in this area, and are likely
students in the Queens College. It seems that this area is likely an educational area. Public Facilities &
Institutions is one of the most predominant land use categories within the convex hull of Community 2
(see Table 3), indicating this area is an educational area.

Community 3 is located within Manhattan and covers SoHo, Little Italy, Chinatown, and the New
York University. There are no extremely predominant link categories in Community 3 (see Table 2).
This further implies that some residents cluster in this area for various activities with a high mixed
level. It seems that this area is a mixed area. Mixed Residential & Commercial Buildings and Public
Facilities & Institutions are the 1st and 2nd most predominant land use categories within the convex
hull of Community 3 (see Table 3), indicating this area is a mixed area.

Community 4 is located within Manhattan and around the Empire State Building. The most
predominant link categories in Community 4 are Office -> Office and Office -> Shopping (see Table 2).
This indicates that there is clustering of links (trips) between Office venues and Office venues or
Shopping venues within Community 4. This further implies that some residents cluster in this area for
participating in commercial work. It seems that this area is likely a commercial area. Commercial &
Office Buildings is the 1st most predominant land use category within the convex hull of Community 4
(see Table 3), indicating this area is a commercial area.
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Table 2. Number of nodes and intra-community trips, and the most predominant link categories in the
typical communities selected.

Community Node Count
Number of

Intra-com Trips Ratio *
Predominant Link Category

Start Category End Category Per (%) *

1 224 1900 633

Eating Eating 14

Shopping Eating 9

Eating Shopping 9

Shopping Shopping 8

Services Services 7

2 134 729 243

University University 16

University Office 8

Office University 7

University Eating 7

Eating University 5

3 309 581 22

Shopping University 6

Eating Eating 6

Nightlife Eating 6

Shopping Eating 6

Eating Nightlife 6

4 123 568 568

Office Office 19

Office Shopping 10

Eating Office 7

Public Transport Public Transport 5

Shopping Services 5

Note: Ratio * represents the ratio of number of intra-com trips and number of inter-com trips; Per (%) * represents
the percentages of link categories.
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Table 3. Names and percentages of the most predominant land use categories within convex hulls of
typical communities selected.

Community Predominant Land Use Category Percentage (%)

1

One & Two Family Buildings 34
Multi-Family Walk-Up Buildings 14
Multi-Family Elevator Buildings 8

Public Facilities & Institutions 8
Open Space & Outdoor Recreation 7

2

One & Two Family Buildings 49
Public Facilities & Institutions 15

Multi-Family Walk-Up Buildings 12
Multi-Family Elevator Buildings 9

Open Space & Outdoor Recreation 6

3

Mixed Residential & Commercial Buildings 28
Public Facilities & Institutions 20

Multi-Family Elevator Buildings 15
Commercial & Office Buildings 14

Multi-Family Walk-Up Buildings 11

4

Commercial & Office Buildings 74
Transportation & Utility 10

Mixed Residential & Commercial Buildings 6
Multi-Family Elevator Buildings 4

Public Facilities & Institutions 2

4. Conclusions and Future Work

In this study, the “locality” of intra-urban spatial interactions was empirically investigated using
LBSN data. The empirical results generated indicate that: (1) spatial interactions have a high degree of
locality; (2) as a kind of personal characteristic, gender does not have a considerable impact on the
locality of spatial interactions; and (3) “local” interactions likely cluster in some places within NYC.

Compared to other data sources, check-in data have both advantages and limitations. On the
positive side, when compared to census travel data, LBSN check-in data are low cost (they can be
downloaded for free) and have a large spatial scale. Geo-referenced check-in can also be at the street
level, whereas census travel data are usually publicly available at the census tract level only. However,
check-in data also have some limitations when used to study mobility. First, compared to some
other mobility data (e.g., mobile phone and taxi trace data), geo-referenced check-ins are relatively
sparse in spatial terms because of their relatively low record frequency. For instance, normally one
record per minute is taken in a taxi trace record set for an individual user, while there are less than
10 check-ins per day recorded in one historic record set for an individual user. The taxi trace is;
therefore, able to represent a trajectory between distinct locations in much more detail than check-in
records. Second, geo-referenced check-ins are heterogeneously distributed; for instance, user-generated
check-in data is abundant in urban areas, but sparse in rural regions. The result of this is that most
of the existing studies of mobility using check-in data only take place in large cities. Also, the more
effective application of information and communications technology (ICT) in urban areas is more
likely to result in a higher number of user-generated check-ins. Added to this, users tend to carry out
more check-ins at certain venues, such as airports, restaurants, shops, and railway stations [54] than at
home, partly because there are not so many home-based venues offered by Foursquare. Compared to
check-ins made at restaurants, shops, or in work, check-ins made at home are relatively rare, though
the majority of people travel to and from home several times a day. Despite having a fine-grained
resolution, check-in data is only used in a limited way to characterize home-to-work travel behavior,
and this is one of the most important research fields within transportation studies, since check-ins that
can indicate whether users are at home or not with much certainty are relatively rare. The third issue
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is data representativeness. The mobility of a young person is better represented by check-in data than
that of an elderly person, since most elderly people do not check-in frequently, or do not use social
media at all [54]. This is a potential shortcoming when wishing to use check-in data to represent the
human mobility of all users in a city. Finally, traveler profiles are not available or incomplete when
using check-in data; therefore, some mobility patterns at the individual level (e.g., age, profession, and
so forth) cannot easily be extracted from check-in data sets. The availability of user profiles issue is
also an obstacle to any improvement of data representativeness.

In the future, some further aspects should be taken into account when carrying out an analysis of
intra-urban spatial interactions. First, within the social media, social relationships are a vital aspect,
and so need to be considered. However, the use of such data raises a question: To what extent can
social relationships affect spatial interactions? Second, it will be interesting to examine in the future if
and how urban form characteristics, or socio-economic characteristics, impact upon the “locality” of
interactions. Finally, a combination of check-in data and other data (e.g., mobile phone data) seemingly
has potential in the study of spatial interactions. When undertaking an empirical study, however, some
obstacles such as the inconsistency of positional accuracy and recording frequency will need to be
removed or reduced.
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