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Abstract: Differential Morphological Profiles (DMPs) and their generalized Differential Attribute
Profiles (DAPs) are spatial signatures used in the classification of earth observation data. The
Characteristic-Salience-Leveling (CSL) is a model allowing the compression and storage of the
multi-scale information contained in the DMPs and DAPs into raster data layers, used for further
analytic purposes. Computing DMPs or DAPs is often constrained by the size of the input data
and scene complexity. Addressing very high resolution remote sensing gigascale images, this paper
presents a new concurrent algorithm based on the Max-Tree structure that allows the efficient
computation of CSL. The algorithm extends the “one-pass” method for computation of DAPs, and
delivers an attribute zone segmentation of the underlying trees. The DAP vector field and the set of
multi-scale characteristics are computed separately and in a similar fashion to concurrent attribute
filters. Experiments on test images of 3.48 to 3.96 Gpixel showed an average computational speed of
59.85 Mpixel per second, or 3.59 Gpixel per minute on a single 2U rack server with 64 opteron cores.
The new algorithms could be extended to morphological keypoint detectors capable of handling
gigascale images.

Keywords: differential attribute profile; connected filters; spatial signature; CSL model; image
decomposition; giga-pixel images

1. Introduction

Multi-scale analysis is pivotal in both human and computer vision [1–6]. This is in part due to
the fact that features of importance might be present at a range of scales, depending on distance to
the observer or camera. Conceptually, multi-scale analysis maps the image onto a higher-dimensional
space or stack of images. The problem then is to identify the most important or salient features in this
scale space [5,7,8].

Multi-scale methods based on connected morphological filters [1,2,9–11] of various types have
been useful in remote sensing applications, both in multi-band processing and in gray-scale (typically
panchromatic) images. In the former case, alpha-trees [12] or other partition hierarchies are used
most [13,14], whereas in the latter methods being based on either reconstruction or attribute filters is
most common. The most popular of these gray-scale methods are Differential Morphological Profiles
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(DMPs) [7,8], Differential Area Profiles [15,16], and their generalization Differential Attribute Profiles
(DAPs) [17,18].

In this paper, we will focus on these latter gray-scale methods and review recent developments in
this field, in particular, adaptation of algorithms for parallel computation of multiscale representations.
In addition, we will introduce a number of improvements to existing algorithms, and compare the
computational performance and memory load of these methods. A common factor limiting the
usability of both DMPs and DAPs is the lack of efficient means for handling the massive input-data
size. The memory load and computation-time of standard iterative methods increase linearly with
respect to both input image size and the number of scales used [8,16].

DMPs [7,8] are sets of top-hat scale-spaces based on openings by reconstruction. Traditionally,
they can be computed by first performing a series of erosions with an increasing set of structuring
elements (SEs), computing a geodesic reconstruction from each of these marker images, and finally
taking the differences between successive reconstructions, where the reconstruction of the smallest
SE is subtracted from the original. Thus, a stack of images is obtained, representing a top-hat scale
space, each of which stores bright details of a certain width range, dictated by the widths of the SEs
used. To obtain the dark details, a similar process is performed after first inverting the input image.
The DMPs have a large spectrum of applications in the field of Earth and planetary science, computer
science, engineering, physics and astronomy, and mathematics. In the field of remote sensing, they
are mostly applied for the image feature extraction phase and filtering or knowledge-driven image
information selection purposes. The output of DMPs is typically used as input of supervised or
unsupervised classification processes. The computation of DMPs in the classical way involves multiple
reconstruction operations, which is costly. In [8], it was shown that the process could be sped up by
(i) using a single Max-Tree [19] to compute all reconstructions in a single pass, and (ii) using parallel
processing based on the algorithm in [20].

Differential attribute profiles [15,17,21] are generalizations of DMPs based on connected attribute
filters [22]. Instead of a series of openings-by-reconstruction, a series of attribute filters are used which
form either a size or shape granulometry [23,24]. Again, differences between consecutive filtered
images are taken to create a stack of images containing different size or shape classes of details, and
again, this stack of images is usually summarized in a single multi-band image. An example of sets of
DAPs in the cross-section of an area opening top hat scale space and an area closing bottom hat scale
space is shown in Figure 1.

Applications of DAPs vary and typical examples are scene classification [18,25], image
segmentation [26,27], urban pattern characterization [28–32] and human settlement visualization [33].
Note that both the DAP and DMP can be considered alternatively as a set of images at different scales,
or as a vector image, in which each pixel is represented by a vector of values corresponding to the
response in each morphological filter band.

The CSL is a general model suitable for compact representation of multi-scale image
decomposition schema, including DMPs and DAPs. It consists of three raster layers derived from the
image multi-scale decomposition; the Characteristic scale (C), the Saliency (S) and the Leveling (L). The
basic components of the CSL (C, S) were firstly introduced in [34] supporting a classification schema
made with a neural supervised classifier of image connected components (also called regions or objects)
and their attributes. Subsequently, they were presented in [7,35] for general image segmentation
purposes. In [36], the DMP concept was reintroduced with the name of “ultimate opening” and the
same C, S elements of the DMP were presented with the name of parameters of maximal residue v and
the size q of the opening leading to this residue. With the latter naming, they have been applied for
segmentation of text regions in digital images in [37] and shape recognition tasks in [38]. In [33,39], the
CSL schema was completed with the explicit introduction of the leveling (L) descriptor and applied
for reduction of the dimensionality and the memory storage/allocation cost of the image multi-scale
decomposition. In particular, the need of performing massive unsupervised image processing tasks in
a statistical-model-free approach, i.e., avoiding clustering based on the statistical distribution of the
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DMP/DAP features, was addressed. The image data scale-decomposed and described by the CSL
schema can be used for knowledge-driven image information mining and selection [39,40], supervised
and unsupervised classification [41–44] and visualization purposes [39,45].

Figure 1. Response vectors from the cross-sections of a DAP vector field. The cross-section facing
the direction of the arrow corresponds to positive, and the other to negative response vectors, i.e.,
describing bright and dark information, respectively.

In the case of DAPs as with DMPs the problems with memory load and compute time can be
addressed using Max-Trees, and their dual Min-Trees [19]. One key problem is the need to store the
entire scale space, or vector field, consisting of as many images as there are scales. In the DMP case,
this is unavoidable, because the marker images are needed for each scale. These markers can be reused
to store the DMP vector field itself, as in [8]. In the case of the DAP, this can be avoided if all we need
is a summary such as the CSL representation. Extending the work on fast computation of connected
granulometries and pattern spectra in [24], in [16], a scheme was proposed that is referred to as the
attribute zone decomposition. Tree nodes are assigned a unique zone label depending on the attribute
value of the image component they associate with. Organizing the tree nodes into zones requires a
single pass through the tree structure and has a minimal dependency on the length of the signature.
This scheme is called the one-pass method. A performance comparison against other iterative methods
is given in [16].

Apart from zone labeling, the one-pass method can be applied to compute the set of features
that constitute the CSL model [33]. The DAP vector field, i.e., the set of DAPs accounting for the
entire input image, is extracted by mapping each image component to the respective DAP plane.
There are twice as many planes as the number of attribute thresholds defining the decomposition. The
model is computed directly from the two tree-based data structures and with no need of exporting the
DMP/DAP vector fields.

Building upon a parallel method for computing the Max-Tree structure on shared memory
platforms, in this paper, a new concurrent version of the one-pass method is presented. The algorithm
is based on the concurrent algorithm for Differential Morphological Profiles [8], which, in turn, was
based on the shared-memory parallel algorithm for component trees from [20]. We adapt the existing
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algorithm for DMP to the DAP, and develop this further to produce an algorithm which does not
compute the entire vector field, but just the data needed for the CSL model computation. The latter is
both faster and much more memory-efficient. The code can handle images up to 4 Gpixel, the limit
imposed by GeoTIFF, and processing on a 64-core machine shows speeds of over 3.5 Gpixel per minute.
Extension to larger volumes requires only using 64-bit rather than 32-bit indexing of the arrays used,
and, of course, a different input format.

The structure of this paper is as follows. Section 2 gives a brief overview of connected attribute
filters, differential attribute profiles and the CSL model. In Section 3, the Max-Tree structure is revisited
followed by a brief description of the one-pass method. The proposed concurrent algorithm for
computing the DAPs and the CSL bands is presented in Section 4. A set of timing experiments on very
high resolution satellite images follows in Section 5. A discussion and analysis of the experimental
results is given in Section 6, and a summary of the work presented together with conclusions, in
Section 7.

2. Background

2.1. Attribute Filters

Attribute filters [22] are morphological filters designed to preserve or remove connected image
structures based on their properties or attributes. These attributes can be anything, ranging from
simple size measures such as area [46], through shape numbers [23,24] to feature vectors. In the binary
case, they simply remove all connected foreground or background components based on a selection
criterion, based on the attribute values, and some decision boundary.

Let E be the definition domain of a gray-scale image f : E→ R, and let the information content of
f be organized into a set of flat zones [11], the union of which, equals E. A flat zone F is a connected set
of maximal extent. It consists of isotone pixels that are path-wise connected. Given a point x ∈ E, F is
formally defined as:

Fx( f ) = {x} ∪ {y ∈ E | ∃π(x y) ∧ f (y) = f (x)} (1)

in which π(x y) denotes a path from x to y. The set of image flat zones constitutes a partition of E.
To introduce a notion of order with respect to image intensity a more general type of component is
defined. A peak component marked by a point x ∈ E at level h is given by:

Ph
x ( f ) = {x} ∪ {y ∈ E | ∃π(x y) ∧ f (y) ≥ f (x)} (2)

A peak component that coincides with a single flat-zone is called a regional maximum.
Connected filters consider connected operators that access peak components instead of individual

pixels. In particular, gray-scale attribute filters [22] are image transforms that reduce the information
content by removing peak components that fail an attribute criterion. Attribute filters are idempotent,
i.e, re-iterating the operator does not modify the result further. Attribute filters are edge preserving
operators and can be categorized based on the intensity order they are configured with, and the
properties of the attribute they employ. A filter that treats bright components as foreground information
against a dark background is denoted as γA

λ and is called an attribute opening if the criterion is
increasing, or thinning otherwise. By contrast, a filter that treats dark components as foreground
information against a bright background is denoted as ϕA

λ and is called an attribute closing if the
criterion is increasing, or thickening otherwise. The term A specifies the attribute type, and λ the
attribute threshold.
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2.2. Differential Attribute Profiles and the CSL Model

Consider a dual pair of attribute filters (γA
λ , ϕA

λ ) and an attribute threshold vector~λ = [λi] with
i ∈ [0, 1, 2, ..., I − 1] and λ0 = 0. For each filter, let ∆Π be a differential profile that is given a point x ∈ E
defined as follows:

∆Π(γA
λ ( f ))(x) =

(
(γA

λi−1
( f )− γA

λi
( f ))(x) | λi > λi−1, ∀ i ∈ [1, ..., I − 1]

)
(3)

for the filter γA
λ , and

∆Π(ϕA
λ ( f ))(x) =

(
− (ϕA

λi−1
( f )− ϕA

λi
( f ))(x) | λi > λi−1, ∀ i ∈ [1, ..., I − 1]

)
(4)

for ϕA
λ . Each profile is a response vector associated to x. ∆Π(γA

λ ) is called the positive, and ∆Π(ϕA
λ ) the

negative response vector respectively. The concatenation of the two, denoted with t, is a 2× (I − 1)
long vector, called the differential attribute profile [17] of x:

DAP(x) = (∆Π(γA
λ ( f )) t ∆Π(ϕA

λ ( f )))(x) (5)

The set of DAPs computed from the full extent of image definition domain is called the DAP
vector field. An instance i of a DAP vector field is a different image with respect to the given operator
and is called a DAP plane. Figure 2 shows an example. Image (a) shows a residential section of the
city of Sana’a, Yemen. It is a 2009, Quickbird panchromatic image c©DigitalGlobe, Inc., at 0.6m spatial
resolution in colormap projection. Image (b) shows the DAP vector field computed from (a). The
visualization in (b) employs 3D connected component color labels. The top volume set in (b) shows
the area opening top-hat scale-space and the lower volume set shows the area closing bottom-hat
scale space.

(a) (b) (c)

Figure 2. Examples of two instances of a DAP vector field. The original image in (a) the DAP vector
field with the first and last attribute zone at the bottom and top of each instance in (b), respectively. The
top volume in each image corresponds to the opening and the bottom to the closing instance. (c)the
blended CSL triplet.

The extreme values of an entry in any of the two response vectors are 0 and hmax with the latter
being the maximal image intensity value. Consider a point x ∈ E and let ďhγΛ

λ
be the highest value in

the positive response vector of DAP(x), i.e.,:

ďhγΛ
λ
(x) = ∨∆Π(γΛ

λ ( f ))(x) (6)
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which is given at a scale i. Note that i may not be necessarily unique, i.e., the same response can be
observed at other scales too. However, since the most relevant information of the decomposition are
contained within planes associated with smaller scales, the parameter:

îγΛ
λ
(x) = ∧i : (γΛ

λi−1
− γΛ

λi
)(x) = ďhγΛ

λ
(x) (7)

is identified. That is, îγΛ
λ

is the smallest scale at which the positive response vector of the DAP(x)
registers the maximal response. The equivalent scale parameter for the negative response vector is
defined analogously:

îϕΛ
λ
(x) = ∧i : (ϕΛ

λi
− ϕΛ

λi−1
)(x) = ďhϕΛ

λ
(x) (8)

They are referred to as the multi-scale opening and closing characteristic, respectively; MOC and MCC.
Consider the following labeling scheme based on the maxima of the two response vectors:

1. convex, if ďhγΛ
λ
(x) > ďhϕΛ

λ
(x),

2. concave, if ďhγΛ
λ
(x) < ďhϕΛ

λ
(x),

3. flat, if ďhγΛ
λ
(x) = ďhϕΛ

λ
(x).

This is the equivalent taxonomy to the ones proposed based on the differential morphological
and area profile decompositions in [7] and [16] respectively. The set of labels is referred to as the
local curvature of the gray level function surface, where the attribute value determines the local
spatial domain.

An intuitive multi-band segmentation scheme is then:

i(x) =


îγΛ

λ
(x) if convex, (9a)

îϕΛ
λ
(x) if concave, (9b)

0 if flat. (9c)

This multi-level segmentation scheme can be further simplified to a three-band segmentation by
replacing the scale parameter with a fixed gray-level.

The winning scale from the comparison in Equation (9) is referred to as the characteristic scale
or simply characteristic C. The response associated with the winning scale is called the saliency S
and is denoted by dh. The two, complemented by the level L of the pixel x after the iteration of the
respective attribute filter at the reference scale i, denoted as h̄, constitute the three bands of the CSL
model [33]. The latter is a non-linear mixture model used for compact representation of multi-scale
image information to be used for classification and other analytic purpose. An example of CSL used
for visualization purposes is shown in Figure 2c; computed from a.

2.3. Attribute Zone Decomposition

Attribute filters acting on a gray-scale image produce a dichotomy, i.e., they separate the
image contents in two sets of components—those that satisfy the attribute criterion and those that
fail it. Extending this for multiple attribute thresholds gives rise to the concept of attribute zone
decomposition. Each zone is a grouping of peak components with attribute values being within some
prespecified range.

Let ΓA
λ and ΦA

λ be the binary counterparts of γA
λ and ϕA

λ respectively, and consider a threshold

decomposition of f [47]. Each threshold set Th( f ), with h ∈ {hmin, ..., hmax}, contains k ∈ K f
h peak

components Ph
k , and for each pixel x ∈ E the characteristic function χ of Th( f ) is given by:

(χ(Th( f )))(x) =

{
1 if x ∈ Th( f ),
0 otherwise.

(10)
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Definition 1. The attribute zone ζA
λa ,λb

of a mapping f : E→ Z, bounded by two attribute thresholds λa and
λb such that λa < λb, is given by:

ζA
λa ,λb

( f ) =
hmax

∑
h=hmin+1

(
∑

k∈K f
h

χ
(

ΓA
λa
(Ph

k ) \ ΓA
λb
(Ph

k )
))

(11)

In brief, the intensity of any point x of the image domain, that marks a component in a zone
ζA

λa ,λb
can be obtained by initializing it to zero and updating it by adding the value of 1 for each level

at which, x ∈ Ph
k is non-zero in the difference between the two attribute filters ΓA

λa
, ΓA

λb
. The same

decomposition is defined for the operator ΦA
λ . The attribute zone operator is a connected operator and

it generates an attribute-based decomposition as described in [16], i.e., any two zones do not overlap
and the decomposition is unique.

2.4. The DMP vs. the DAP

The DMP is a special case of a DAP, just as reconstruction filters are a special case of attribute
filters. By replacing the general attribute filters in the DAP by reconstructions from a set of markers,
we obtain the DMP. The set of markers replaces the set of attribute thresholds, and this is where there
is an important difference in terms of computation, as will be discussed in the following sections.
The key point is that the markers themselves need to be stored in memory as a stack of images. As
has been shown [8], we can reuse this space to store first the stack of reconstructed images, and
finally, the output DMP. The latter can then be processed into an MOC or MCC. Though the algorithm
in [8] is highly efficient, we will explore a one-pass method and further economies to increase the
performance further.

3. The Max-Tree Algorithm and the One-Pass Method

An efficient method for computing the DAP vector field and the CSL model has been presented
in [16]. It relies on a combination of the Max-Tree and Min-Tree image representation structures [19]
for computing the attribute zone decomposition discussed in the previous section.

The Max-Tree of an image f is a tree for which the node hierarchy corresponds to the nesting of
the peak components of f . Each node Nh

k is addressed by its level h and its index k, and corresponds to
a set of flat-zones [11] for which there exists a unique mapping to a single peak component:

Nh
k = {x ∈ Ph

k | f (x) = h} (12)

The “leaves” of the tree correspond to the regional maxima of f and its root is defined at the
lowest gray level of the structure, representing the set of background pixels.

In the current implementation, as in [20], each pixel is represented by a Max-Tree node, stored in
an array of the same size as the image. All nodes contain a parent reference, represented as a 32-bit
unsigned integer. A boolean field valid indicates whether a node has been processed or not. In the
general case of attribute filters, each node contains a pointer to a set of auxiliary attribute variables
that are updated from its member pixels during the construction of the tree [48]. In the case of area
filters, memory is saved by using an area field, also represented as a 32-bit unsigned integer instead.
A peak component’s area is computed by summing the area of its descendants with the total area of its
flat-zones. Within each peak component, a single pixel is chosen as the representative, or canonical
element. We call this pixel the level root. All pixels of a peak component, except the level root point to
the level root. The level root itself points to a pixel in the parent peak component. The root of the tree
points to a global root ⊥.

The Max-Tree is computed using a hierarchical, depth-first, flood-filling algorithm introduced by
Salembier et al. [19]. Alternative methods were presented in [49–52]. The recursive method discussed
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in [19] separates the construction of the tree from the computation of attributes and the actual filtering.
This architecture is particularly appreciated in applications requiring interactive filtering or multiple
filtering instances. Note that the Min-Tree is an equivalent representation to the Max-Tree of the
inverted input image.

The one-pass method for computing the attribute zones on each of the two trees was presented
in [16]. A pseudo-code listing can be found in the same article. The methods follows a similar approach
to the filtering functions described in [19,48]. Attribute zones are independent of the various root-paths
and they are identified by a unique integer corresponding to the zone’s λb address in the~λ vector:

ZoneID(Ph
k ) = ∧

{
i ∈ {1, ..., I − 1} | Attr(Ph

k ) < λi

}
(13)

In words, the zone ID member of each node is set to the address of the lowest attribute threshold
from ~λ for which the peak component under study fails the attribute criterion. Once the image
is decomposed into its attribute zones, the two instances of the DAP field each of which is an
(I − 1)× ImageSize volume set, can be extracted by visiting each pixel I − 1 times, i.e., once for
each area zone.

4. A Concurrent One-Pass Method

In this section, we study how the above approach can be adapted for the concurrent computation
of the Differential Attribute Profile. We first focus on the case of increasing attributes, and, in particular,
the case that the attribute is the area of each component. Two cases can be separated: (i) explicit
computation of the DAP vector field, and (ii) direct computation of the MOC, and, by duality, the MCC.

4.1. Parallel DAP Computation

Unlike the DMP, we do not have to compute any marker images. We simply need a Max-Tree
with suitable attributes computed for all nodes. We do need an array out of numscales images to
store the output. An array lambda containing the scale-class boundaries is required as input. Rather
than filtering the image at each level explicitly, and computing the difference at consecutive scales, we
approach the problem in a similar way to that in [8]. A single filtering stage computes the entire DAP.
The algorithm is shown in Algorithm 1.

Each process or thread p scans the section Vp assigned to it. Any pixel for which the corresponding
node has not yet been marked as valid is processed. Starting at the smallest scale, the algorithm follows
the root path until it either finds the global root, or a valid node, or it finds a node with an area larger
than the current scale. It does this for all scales, storing the node location in an array ws, and the
corresponding gray level in an array val . After all scales are processed, a second pass along the root
path is made, setting all values in the DAP array out to the correct values for all pixels in its section Vp .

After this pass, each slice of the array out contains the area opening for the appropriate scale λi
represented in the pseudo code by lambda [i]. What remains is to compute the differences between
successive slices to obtain the final DAP.

The disadvantage of this approach is that both memory use and computational time scale linearly
with the number of scales. This becomes prohibitive for large numbers of scales.

4.2. Direct MOC Computation

Like the previous algorithm, we assume that the Max-Tree has been computed with all attribute
information in place. Computing the MOC directly can be done without the need for storing a DAP
vector field. Instead, we only compute the supremum of the DAP vector for each scale, stored in image
outDH , along with a relevant scale, stored in image outScale , and the orginal gray level at that scale
for each pixel in the image, stored in image outOrig . To compute this, we equip each Max-Tree node
with fields maxDH and scale both of gray-level type (unsigned char in our case). As before, array
lambda stores the scale class boundaries.
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Algorithm 1 The filtering stage of the parallel Differential Attribute Profiles (DAP) algorithm

procedure MaxTreeMakeDAP (Vp : Section ;
var node : Max-Tree ; var out : DAP ;
lambda : integer [numscales ])

for all v ∈ Vp do
if not node [v].valid then

w := v;
for all scales i increasing order do

while Par(w) 6= ⊥ ∧ not node [w].valid ∧ node [w].area < lambda [i] do
w := Par(w);

end;
ws[i] := w; (∗ temporary storage of for each scale ∗)
if node [w].valid then

for all scales j ≥ i do (∗ filtered node found ∗)
val [j] := out [j][w];

end;
else if node [w].area ≥ lambda [i] then (∗ w is filtered ∗)

val[i] := out[i][w];
else (∗lambda [i] too large ∗)

val[j] := 0;
end;

end;
end;

end;
u := v;
for all scales i increasing order do

repeat
if u ∈ Vp then

for all scales j < i do out[j][u] := f [u]; end;
for all scales j ≥ i do out[j][u] := val[j]; end;
node[u].valid := true;

end;
u := node[u].parent;

until u = ws[i];
end;
if u ∈ Vp then (∗ Process ws[numscales− 1] ∗)

for all scales j < i do out[j][u] := f [u]; end;
node[u].valid := true;

end;
end;

end.

In a first version of the algorithm, we reused the area field to store the scale class (as an integer).
This algorithm worked in two stages (after building the tree). In the first stage, we simply compute the
scale class for each level root in the tree. This can be done completely in parallel, because the decision
is local. After this, the tree was traversed in much the same way as the original one-pass method.

Some initial experiments showed that the first phase of this two pass approach was surprisingly
inefficient in terms of speed-up, achieving only 16–18 times faster computation on 64 nodes. The
reason for this is most likely that it is a very short phase with barriers on either side. This means that
load imbalance and synchronization costs have a large impact. We therefore implemented a one-pass
version. Here, we do need to introduce a scale field in the tree, and though this is of course more costly
in terms of memory, it has an important advantage, in that the area data is not overwritten. This means
that we can recompute MOCs with different parameter settings from the same tree, should we need to.

The one-pass algorithm for the MOC computation is given in Algorithm 2, and Algorithm 3. The
latter simply scans the section of the image assigned to the process, and calls procedure NodeSetMOC
from Algorithm 2 for each node that is not yet valid. This checks if the current node is a level root,
and if so, computes the scale and gray level contrast with its parent. Next, it checks whether the
scale is maximal, indicating that the current node has area outside the range of interest, and its MOC
parameters are set to “out-of-bounds” conditions. No further ascent is needed as all ancestors must
have larger areas.
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Algorithm 2 The filtering stages of the parallel multi-scale opening characteristic (MOC)

procedure NodeSetMOC (Vp : Section ; var node : Max-Tree ; current : integer ;
var maxDH , curScale : grayval ; var outDH , outScale ,
outOrig : array [0, ..., N − 1]of pixel , lambda : integer [numscales ] );

var scale , DH : grayval ;
if IsLevelRoot(node [current ]) then (∗ compute scale and DH for current nodes ∗)

scale := FindScale(node [current ], lambda); DH := getDH(node [current ]);
end;
if IsLevelRoot(node [current ]) and scale = numscales then (∗ Initialize to out of scale range ∗)

maxScale := numscales ; maxDH := 0; curDH := 0;
maxOrig := 0; curScale := numscales ;

else
parent = node [current ].parent ;
if not node [parent ].valid then (∗ go into recursion to set parent values correctly ∗)

NodeSetMOC (Vp , node , parent , maxDH ,
curScale , outDH , outScale , outOrig , lambda);

else (∗ if the parent is valid, copy relevant values ∗)
maxScale := outScale [parent ]; maxDH := outDH [parent ]; maxOrig := outOrig [parent ];
curScale := node [parent ].scale ; curDH := node [parent ].curDH ;

end;
if IsLevelRoot(node [current ]) then (∗ if I have a level root, some things might change ∗)

if scale = curScale then (∗ same scale class: add current pixel’s curDH ∗)
curDH = curDH + curDH ;

else (∗ scale class change, update current scale and DH ∗)
curDH = DH ; curScale = scale ;

end;
if curDH ≥ maxDH then (∗ If updated curDH is higher than or equal to the maximum

DH found update maxDH, maxScale, and outOrig ∗)
maxDH := curDH ; maxScale := scale ;
outOrig = gval [current ];

end
end;

end;
if current ∈ Vp then (∗ Store the information ∗)

outScale [current ] := maxScale ; outDH [current ] := maxDH ;
outOrig [current ] := maxOrig ; node [current ].scale := curScale ;
node [current ].curDH := curDH ; node [current ].valid := true;

end;
end.

Algorithm 3 The final filtering stage of the parallel MOC

procedure MaxTreeComputeMOC (Vp : Section ;
var outDH , outScale ,
outOrig : array [0, ..., N − 1]of pixel ,
lambda : integer [numscales ] );

var curScale , maxScale , maxDH , curDH , maxOrig : grayval;

for all v ∈ Vp do
if not node [v].valid then

NodeSetMOC (Vp , v,
curDH, maxDH,
maxScale, maxOrig,
curScale, outDH,
outScale, outOrig, lambda);

end;
end;

end.;

Otherwise, we look up the parent, and check if it is valid or not. If not, NodeSetMOC is called
recursively for the parent. Otherwise, the parent data are copied (as they are valid). We now have the
correct MOC values of the root path up to the parent of the current node. If the current node is a level
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root, we check whether its scale is the same as the parent’s value stored in curScale . If so, the contrast
value curDH must be incremented with the contrast of the current node, stored in DH . If the scales
are not the same, the current scale and contrast are updated to those of the current node.

After this, we check whether the current contrast curDH is larger than or equal to the maximum
contrast maxDHm, and if so, maxDH , maxScale , and outOrig are updated (corresponding to the C, S,
and L parts of the MOC, respectively).

Finally, if the current node is in the processor private section Vp of the image, the parameters are
written to the fields in the node, and to the output MOC. This approach does mean scale values may be
computed multiple times by different threads, but this is outweighed by the fact that we lose a barrier.

5. Experiments

The algorithm was implemented in C, and tested on a Dell R815 compute server with 4 Opteron
processors with 16 cores each. A total of 512 GB RAM was installed. The source code is available at
http://www.cs.rug.nl/~michael/ParMaxTree/. The data sets consisted of a panchromatic Quickbird
image of Sana’a, Yemen, courtesy of DigitalGlobe, Inc., two panchromatic post-earthquake images
of Haiti, courtesy of Google, and one panchromatic satellite image of an airport. All images were
duplicated and tiled to achieve a total image size of between 3.4 and 3.9 Gpixel. For the image
properties, see Table 1.

Table 1. Images used, with size and mean and standard deviation of the gray levels.

Name Size (×106 Pixels) Mean Std. Dev.

Sana’a 3482 121.78 75.57
Airport 3600 96.58 47.55
Haiti1 3888 107.71 62.99
Haiti2 3963 81.34 52.39

5.1. Concurrent CSL Computation

In all cases, timings were performed at 1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 128 and 256 threads.
In previous work, we had observed that the Max-Tree building phase could actually speed up further
if more threads than cores were used, due to reduced cache thrashing [20]. As the CSL computation
was expected to be dominated by the tree-building phase, we wanted to know the impact of this effect.

In the CSL case the final program has the following structure:

(1) Read image, and create inverted copy of image
(2) Build Max-Tree from original image
(3) Compute MOC
(4) Build Min-Tree from inverted image
(5) Build MCC
(6) Combine MOC and MCC to final CSL
(7) Write output

The parallel CSL-model segmentation program was run 24 times per timing, and the shortest time
was considered indicative of the performance of the algorithm in the absence of interference by other
programs. In the timing results, we added the Min-Tree and Max-Tree times into one tree-building
timing, and likewise for the MOC and MCC times.

Experiments were run in three parameter settings used in practical cases. Two settings with a
maximum scale of 16.7× 106 m2 were used, with 12 and 32 scales respectively. The last setting had 64
scales and a maximum area scale of 16, 384 m2. It turned out that these settings have no significant
impact on the performance of the algorithms. In the following, we discuss the latter timings, with the
maximum number of scales.

http://www.cs.rug.nl/~michael/ParMaxTree/
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Figure 3 shows the performance of the algorithm in terms of wall-clock time, speed in millions of
pixels per second, and speed up. Total computing times varied from an average of 2609 s at 1 thread,
down to 70.8 s at 64 threads, and a further reduction to 64.4 s at 256. The latter is due to reduced cache
thrashing during the Max-Tree construction phase [20]. The mean speed up for the complete process is
36.85 at 64 threads, and 40.51 at 256 threads.
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Figure 3. Performance of the algorithm for four images ranging from 3.48 to 3.96 Gpixel, on a 64 core
machine, using a 64-scale CSL-model segmentation, as a function of number of threads: (a) wall-clock
times; (b) speed in 106 pixels/s; (c) speed-up. The continued rise of speed and speed up for more
threads than cores (64) is due to reduced cache thrashing during the Max-Tree building phase [20].

Figure 3b shows the computational speed in millions of pixels per second. This calibrates for the
differences in processing time due to differences in image size. Despite this correction, quite significant
differences are seen. At maximum performance, the processing speed varies from 46.96 Mpixel/s to
78.58 Mpixel/s, with an average of 59.85 Mpixels/s, whereas speed-up varies from 34.74 to 52.36.
These differences stem mainly from different complexities of the image. Haiti1 contains only built-up
areas, which means that the Max-Tree contains many more nodes. Haiti2 contains large sections
of rural area, and some extensive black regions where no data were available. This simplifies the
Max-Tree. The Sana’a and Airport images are more mixed.

Construction of the Max-Tree took the most time, using the algorithm from [20], from a mean
of 1912 s at a single thread, down to 46.4 s at 64 threads, and further down to 38.8 s at 256 threads.
The MOC-MCC phase took 576.75 s on a single thread on average, down to 18.7 s at 64 threads,
rising to 21.0 s at 256 threads. Combining the MOC and MCC information into the final CSL-model
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segmentation is the cheapest by far, costing 105.7 s on one core on average, dropping to 2.25 s on
average for 64 cores, with no significant changes beyond.

There are striking differences in speedup between the phases, as seen in Figure 4. The building
phase has the highest speed-up on average, but also the largest variation, ranging from 33.05 for Haiti1,
to 53.67 for Haiti2 at 64 threads, with an average of 42.22. Beyond 64 threads, there is a further increase
in speed up, and 256 threads the speed-up varies from 38.80 for Haiti1 to 64.49 for Haiti2, with an
average of 50.67.
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Figure 4. Breakdown of the speed-up: (a) tree building; (b) MOC + MCC computation; (c) combining
results into CSL model.

The mean speed-up of the MOC-MCC phase is a lot lower, achieving 30.92 on average at 64 threads,
with no significant increase beyond that. The final phase has a very good speed up, averaging 47.07 at
64 threads.

By comparison, running the parallel algorithm for differential morphological profiles on the
3.8 Gpixel Sana’a image, using just seven scales, on the same machine, and on a single core, the wall
clock time was 5 h 9 min 6.7 s, dropping to 8 min 33.7 s, or a speed up of 36.1, on 64 cores. About half
of the wall-clock time is taken up by computation of markers, which is done by computing erosions by
exact Euclidean discs by the algorithm of [53]. When using square SE with the same algorithm, the
memory use goes down dramatically, and the wall clock time for 7 scales drops to 4 h 10 min 46.8 s
and 6 min 19.5 s for 64 cores, or a speed up of 39.6.

The CSL-model segmentation algorithm has a memory complexity of O(N + Ns), with N the
number of pixels, and Ns the number of scales. Because Ns << N this becomes O(N) in practice.
What we observe is that maximum memory allocation is 24 times the size of the image data, at least for
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the area attribute. Other attributes would require more memory, as would the use of 64-bit integers for
area computation and pixel addressing, as required when going beyond 4 Gpixel images. In that case,
we would require 32 times the data size.

By contrast, computing the CSL-model segmentation from the DAP explicitly has a memory
complexity of O(NNs), which becomes prohibitive for large Ns. In the 64 scale case above, the memory
usage would rise to 164 times the size of the image (because two arrays of the size of 64N need to be
stored). We ran a few experiments on small images, which indicated that computation of the DAP
vector field at 64 scales is more than 10 times slower than CSL-model segmentation. On the 870 Mpixel
original Sana’a image, the DAP computation took 177.25 s on 64 threads, as opposed to 15.42 s using
direct CSL-model segmentation. Even for 12 scales, the difference is factor of two to three. In the case of
the 870 Mpixel Sana’a image, the DAP computation took 39.61 s, whereas the CSL-model segmentation
took 15.43 s.

For the DMP, the situation is similar to that of explicit DAP computation in terms of memory
use. A stack of Ns images is first used to store the markers. These markers are then transformed
into reconstructed images, after which pixel-wise differencing is used to obtain the DMP vector
field (stored in the same location). This DMP field must then be transformed into a final CSL
segmentation. The computational load is typically higher, due to the need for Ns erosions, each
of at least O(N) yielding O(NNs) time complexity. If rotation invariance is needed, this readily
increases to O(NNsRmax) time complexity, with Rmax the maximum radius of the SEs used. This initial
phase is much more costly than using area as attribute in the DAP, which has constant time complexity
per pixel. For more complicated attributes than area, memory load does increase. When using higher
order moments the storage per maxtree node goes up roughly as O(M2), with M the order of the
moment used, and the compute time increases similarly. As the number of nodes can equal the number
of pixels the worst-case memory complexity of the explicit DAP computation becomes O(N(Ns + M2)).
For direct CSL computation, it becomes O(NM2), so again, the dependency on the number of scales
is removed.

To indicate the severity of the problem, it should be noted that even though our server was
fitted with the maximum of 512 GB of RAM, the large data sets could not be run at 64 scales due to
memory limitations.

6. Discussion

The results show that parallel computation of CSL-model segmentation can be done very
efficiently using the proposed algorithm. We obtain an overall average speed of nearly 60 Mpixel per
second, or 3.59 Gpixel per minute, even for 64 scales in the CSL-model segmentation. This means that
routine processing of these very large images becomes possible on fairly standard computing servers
as well as high-end workstations. Furthermore, if the Max-Tree is built once, it could be stored, and
different CSL-model segmentations could be made with different scale parameters. For images of
the sizes used here, this would take between 14.09 and 26.62 s. Whilst this is not exactly a real-time
response, it is tolerably fast. These later phases of the algorithm have linear time complexity, and for
the original Sana’a image (870 Mpixel) the MOC-MCC and CSL-model segmentation phases can take
as little as 3.90 s (out of a total compute time of 15.49 s).

It is curious that the MOC-MCC phase of the algorithm has the least speed up, and seems to be
limited to about 32. We considered whether this might be due to the fact that some floating point
math was used in this phase. The R815 server may have 64 cores, but these share only 32 floating
point units between them. We replaced the floating point code with integer math but obtained only a
slight speed increase. Therefore, we surmised that the fact that area scales of a given node might be
computed multiple times is the problem. However, an earlier version computed the area scale for each
node in parallel, and then used the results in a slightly simpler MOC-MCC phase. In this case, the
MOC-MCC-phase was no faster: 20.37 s for the 3.48 Gpixel Sana’a image, vs. 20.22 s, when area scales
are included in the MOC-MCC phase. This difference is not significant, suggesting that this is not the



ISPRS Int. J. Geo-Inf. 2016, 5, 22 15 of 19

solution. By putting the scale computation inside the MOC-MCC phase, a barrier was removed, and
the overall performance increased a great deal. For the 3.48 Gpixel Sana’a image, the wall-clock time at
256 threads dropped from 73.11 s to 61.37 s.

(a) (b)

(c)

Figure 5. (a) Brest, France; a WorldView 2 RGB image of the city and its surroundings at 1.6 m
spatial resolution. Approximate image coverage is 313 km2. (b) the CSL-segmentation (a) following
radiometric refinement. The~λ vector was configured to fine-tune the CSL-model for detecting built-up
in the input scene. (c) a zoom-in view of the city’s center.

It therefore seems reasonable that the main cost lies in having to traverse the Max-Tree in parallel,
with multiple threads traversing the same root-paths several times. Adding extra computations per
node visited has only a very minor impact on either wall-clock time or speed-up. Thus, we find that
the fairly complex MOC-MCC phase costs only little more than a single filtering stage of an area
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opening. This has large implications for the speed gained by the proposed algorithm, quite apart from
the parallelism gained.

By comparison, performing a single area filter step on a precomputed Max-Tree of these large
images takes roughly 3–5 s, depending mainly on image content. For 64 scales, this would mean
128 filter steps, which comes to a value between 384 and 640 s, assuming no slow-down due to
synchronization issues. With the new algorithm, this range is roughly 14 to 27 s (some 25 times faster)
regardless of the number of scales.

A variant of this parallelization strategy for the Max-Tree algorithm and the CSL computation
is hosted in DigitalGlobe’s Geo Spatial Big Data platform (GBDX) (http://www.digitalglobe.com/)
for computing the raw CSL layers of each queued image prior to radiometric classification. This is
a building foot-print extraction service operated in the cloud which can be optimized to process all
of DigitalGlobe’s WorldView two and three multispectral imagery in near real time. The respective
workflow computes the CSL triplet that is configured to contain the most relevant/descriptive image
structures compared to the full DAP vector field. These in turn, can be classified efficiently using
radiometric features at a meta-process stage and have possible noise elements removed. Efficiency
in this case comes as a consequence of reduced number of test samples (dominant CSL structures).
An example is shown in Figure 5. Image (a) shows an RGB view of an eight-band multi-spectral
data-set covering the city of Brest, France and its surroundings. This is a WorldView 2 image
c© DigitalGlobe, Inc (Westminster, CO, USA), at 1.6 m. spatial resolution following ortho-rectification

and atmospheric compensation (14 bpp data-depth). The image was acquired on 15 October 2014 and
covers a total area of 313 km2. Image (b) shows the respective CSL-segmentation following natural
element refinement procedures. The segmentation targets all built-up structures independent of size,
structural or radiometric characteristics. Image (c) shows a zoom-in view of the city’s center north of
its port. This workflow makes use of MOCs only (i.e., a Max-Tree structure alone) thanks to a novel
band blending method reducing WorldView 2 or 3, 8-band atmospherically compensated data-sets to
gray-scale layers that show a strong response to building materials exclusively.

7. Conclusions

In this paper, we have presented a new algorithm for efficient, shared memory, parallel
computation of the CSL-model segmentation and CSL profile of images in the gigapixel range,
besides several improvements on existing DMP, Multi-Scale Leveling Segmentation (MSLS), and
DAP algorithms. The CSL algorithm can be adapted to any increasing attribute, by incorporating the
auxiliary data handling described in [20]. One such extension to 2D pattern spectra has already been
provided, using area and non-compactness as attributes [54]. More complicated attributes will impact
on Max-Tree building times and memory use but not on the MOC-MCC and CSL-model segmentation
times. Non-increasing attributes require several changes, which we intend to address in future work.
For pattern spectra, non-increasing attributes do not pose problems.

In comparison to both the DMP and the DAP, the CSL-model segmentation approach has a clear
speed advantage, especially at a large number of scales. Besides, the memory use of the new method is
a great deal lower than the DMP method, allowing much larger images to be processed in the same
memory. Most importantly, the memory requirement is independent of the number of scales used.

The current algorithm is limited to 4 Gpixel only by the fact that 32-bit integers are used. Changing
a single declaration to 64-bit integers makes it suitable for any image size that will fit into memory.
We are currently extending our code to distributed memory, and aim at processing terapixel images in
the near future. A further limitation is that of gray-level resolution. The current algorithm is suitable
up to roughly 16 bits per pixel. Beyond that, the parallel algorithm of [20] on which this is based no
longer works efficiently, due to the fact that the computational cost of the connect algorithm scales
linearly with the number of gray levels. Work is in progress on parallel algorithms to handle any
number of gray levels efficiently. Finally, the current algorithm is a shared memory algorithm, which

(http://www.digitalglobe.com/)
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poses upper bounds to the maximum image size, as memory sizes on shared memory machines are
typically limited. Work on distributed memory algorithms is in progress.

The results of this paper already allow fast processing of vast data sets under tight time constraints,
such as might be required in applications providing support to crisis management, to disaster
preparedness and relief efforts, or when rapid changes are occurring on the ground. Our single
rack server could already process about 5 terapixel of data in a single day, provided care is taken that
input/output does not form a bottleneck. This can be achieved by careful set-up of the processing
pipeline. The new algorithm also allows seamless processing of areas on the scales of entire cities.
Moving to distributed computation will allow us do seamless processing at the scale of countries, or
even the world.
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