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Abstract: There is an increasing need for building models that permit interior navigation, e.g.,
for escape route analysis. This paper presents a non-manifold Computer-Aided Design (CAD)
data structure, the dual half-edge based on the Poincaré duality that expresses both the geometric
representations of individual rooms and their topological relationships. Volumes and faces are
expressed as vertices and edges respectively in the dual space, permitting a model just based on
the storage of primal and dual vertices and edges. Attributes may be attached to all of these
entities permitting, for example, shortest path queries between specified rooms, or to the exterior.
Storage costs are shown to be comparable to other non-manifold models, and construction with
local Euler-type operators is demonstrated with two large university buildings. This is intended
to enhance current developments in 3D Geographic Information Systems for interior and exterior
city modelling.
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1. GIS History

This paper presents a detailed technical description and properties of the dual half-edge (DHE)
topological data structure and its application in the Geographic Information Sciences (GIS), particularly
in building interior modelling. It includes associated navigation and construction operators necessary
for a convenient usage of DHE. Previous papers describing DHE [1–3] reported on the importance of
the primal/dual approach, some applications, model representation and preliminary development,
but with only a brief discussion of technical details and properties. DHE is compared with some other
similar data structures.

Early 2D GIS data structures were designed for polygon (choropleth) maps, where the objective
was to combine the sets of individual digitized polygon boundaries to form a network. Various
approaches were attempted, but finally an arc-based structure predominated, where an “arc” consisted
of an intermediate set of digitized points between the “nodes” at boundary junctions. This was closely
related to the winged-edge structure [4], with pointers to the four adjacent arcs and the two bounding
polygons. The winged-edge structure was developed by Baumgart [4] and provided a way to connect
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the various edges of a two-manifold together by using a pointer-following structure. It was possible to
navigate in this manner around the edges and faces of a b-rep (boundary representation) of a CAD
model. From this, Mäntylä [5] developed the half-edge structure and used this to develop “Euler
operators”, a set of local operations for model construction that guaranteed to preserve the topological
connectivity of the model, if the input parameters were valid.

With the advent of triangulation-based terrain modelling (TINs) various methods were used to
express the relationships between triangles, edges and nodes in 2D. Currently, the most commonly
used are triangle-based structures and edge-based ones (winged-edges and half-edges). The Delaunay
triangulation (DT) is usually used, as it has several valuable properties—in particular that it may be
updated locally in expected constant time once the enclosing triangle has been found.

Its dual is the Voronoi diagram (VD), which is frequently valuable in itself as an analytic tool.
If both structures are needed then a combined structure, the quad-edge [6] is frequently used. This
allows navigation in the plane in either the primal or dual space, requiring only pointer references in
order to follow any path in the combined graph.

More recently, GIS has gone beyond the planar view to include city models with extruded
buildings, sometimes with more elaborate external structures [7]. However, these do not usually
contain interior structures and, if they do model rooms and corridors, these are not topologically
connected to permit indoor navigation—to provide, for example, escape route planning. For full 3D
modelling with multiple volumes (e.g., building interiors, rooms), a different (new) data structure
was needed. Three-dimensional cell complexes were adopted as mathematical (topological) models
for 3D non-manifold objects in Computational Geometry [8,9] and Computer-Aided Design [10,11].
A two-manifold is a topological space, where each point has a neighbourhood which is topologically
equivalent to an open two-dimensional disk; models which do not satisfy this are non-manifold [11].
Simple two-manifold and non-manifold objects are shown in Figure 1.
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penetrating each face. The same is true for the 3D Delaunay cell complex (Figure 2). Thus, each edge-

face has a pointer to an edge-face in the dual structure—so an n-edged face has n penetrating edges 

in the dual, each one of these being part of the dual cell surrounding each of the n vertices of the face. 

Figure 1. Two-manifolds and non-manifolds: the surface of (a) a sphere; (b) a cube; (c) a torus is
a two-manifold; two cubes joined by (d) a vertex; (e) an edge; (f) a face form a non-manifold object.

Our research objective was to extend the primal/dual concept of the quad-edge to 3D cell
structures. Consideration of the Poincaré duality for the 3D VD showed that the dual of a face is
a penetrating edge and the dual of a volume is a vertex—both in the primal (DT) and dual (VD)
space. (In 2D, the dual of a polygon is a vertex and the dual of an edge is a “penetrating” edge.)
Each 3D Voronoi cell may be constructed as a simple b-rep shell, and a pointer added to the dual
edge penetrating each face. The same is true for the 3D Delaunay cell complex (Figure 2). Thus,
each edge-face has a pointer to an edge-face in the dual structure—so an n-edged face has n penetrating
edges in the dual, each one of these being part of the dual cell surrounding each of the n vertices of
the face.



ISPRS Int. J. Geo-Inf. 2016, 5, 19 3 of 20ISPRS Int. J. Geo-Inf. 2016, 5, 19 3 of 20 

 

 

Figure 2. Poincaré duality. 

This gives the “augmented quad-edge” (AQE) structure [12,13], which uses the quad-edge (QE) 

data structure [6] to individually represent each polyhedron. Navigation from one Delaunay cell to 

the next involves going to the penetrating edge, switching to the reverse direction on that edge, and 

going back to the Voronoi face of the adjacent cell. Both the primal and dual cell complexes are of the 

same structure. Ledoux and Gold [12] showed that this structure provides navigation and 

construction procedures for 3D Voronoi/Delaunay structures; however, the construction is limited to 

adding a new vertex and associated triangular faces to the tessellation, and arbitrary 3D models and 

non-manifold cases are not supported. 

2. The Dual Half-Edge 

Although procedures allowed for the construction of the 3D VD using the AQE, it was 

impractical for the construction of arbitrary cell complexes such as building interiors. AQE was 

designed to construct tetrahedral meshes. No Euler operators or other operators were developed to 

manage construction of irregular shapes. 

A considerable effort was invested in searching for a structure that permitted the addition or 

deletion of individual edges to the 3D model under construction, as well as maintaining the dual 

structure automatically. In addition, the structure needed to handle non-manifold cases—not only at 

the interior junctions of rooms, but during the construction process itself. Finally, it was realised that 

the problem lay with the basic structure of the quad-edge itself: the four half edges forming it needed 

to be separated in order to provide the atomic elements needed for construction purposes. However, 

separating them completely would destroy the critical primal/dual linkage, as would reverting to 

two matched pairs of half-edges—one in the primal and one in the dual. 

The answer was to preserve pairs consisting of one primal and one (permanently linked) dual 

half-edge. These could be snapped together as required with other half-edge pairs to form geometric 

(primal) cell complexes. In this situation, all interior half-edges, in both primal and dual space, 

became linked to form matched pairs. However, dual edges penetrating to the exterior of the model 

remained unpaired. The full boundary condition could be maintained, both for the absolute 

boundary and for the interiors of partially or fully enclosed rooms, by adding an “exterior” set of 

half-edges to each new atomic element, thus giving the 3D equivalent to the 2D “make-edge” 

operator. The final atomic element (with complete navigation properties) consisted of four pairs of 

half-edges, two primal pairs connecting a pair of vertices of the model (one representing the exterior 

shell, and the other the interior one), and two dual pairs connecting the “interior” and “exterior” dual 

nodes (the first being some volume element of the model and the other either another volume element 

or the exterior world). 

Figure 2. 3D Poincaré duality: (a) primal vertex corresponds to a dual cell (volume); (b) primal edge
corresponds to a dual face; (c) primal face corresponds to a dual edge; (d) primal cell corresponds to
a dual vertex.

This gives the “augmented quad-edge” (AQE) structure [12,13], which uses the quad-edge (QE)
data structure [6] to individually represent each polyhedron. Navigation from one Delaunay cell to the
next involves going to the penetrating edge, switching to the reverse direction on that edge, and going
back to the Voronoi face of the adjacent cell. Both the primal and dual cell complexes are of the same
structure. Ledoux and Gold [12] showed that this structure provides navigation and construction
procedures for 3D Voronoi/Delaunay structures; however, the construction is limited to adding a new
vertex and associated triangular faces to the tessellation, and arbitrary 3D models and non-manifold
cases are not supported.

2. The Dual Half-Edge

Although procedures allowed for the construction of the 3D VD using the AQE, it was impractical
for the construction of arbitrary cell complexes such as building interiors. AQE was designed to
construct tetrahedral meshes. No Euler operators or other operators were developed to manage
construction of irregular shapes.

A considerable effort was invested in searching for a structure that permitted the addition or
deletion of individual edges to the 3D model under construction, as well as maintaining the dual
structure automatically. In addition, the structure needed to handle non-manifold cases—not only at
the interior junctions of rooms, but during the construction process itself. Finally, it was realised that
the problem lay with the basic structure of the quad-edge itself: the four half edges forming it needed
to be separated in order to provide the atomic elements needed for construction purposes. However,
separating them completely would destroy the critical primal/dual linkage, as would reverting to two
matched pairs of half-edges—one in the primal and one in the dual.

The answer was to preserve pairs consisting of one primal and one (permanently linked) dual
half-edge. These could be snapped together as required with other half-edge pairs to form geometric
(primal) cell complexes. In this situation, all interior half-edges, in both primal and dual space, became
linked to form matched pairs. However, dual edges penetrating to the exterior of the model remained
unpaired. The full boundary condition could be maintained, both for the absolute boundary and for
the interiors of partially or fully enclosed rooms, by adding an “exterior” set of half-edges to each
new atomic element, thus giving the 3D equivalent to the 2D “make-edge” operator. The final atomic
element (with complete navigation properties) consisted of four pairs of half-edges, two primal pairs
connecting a pair of vertices of the model (one representing the exterior shell, and the other the interior
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one), and two dual pairs connecting the “interior” and “exterior” dual nodes (the first being some
volume element of the model and the other either another volume element or the exterior world).

The DHE data structure is a modification of the AQE [12] to support the construction of arbitrary
cell complexes. It is related to the facet-edge [9], radial-edge [14] and half-edge [5] structures.
In order to provide intuitive methods of model construction and its traversal, a set of operators
was developed including navigation operators, Euler operators and extended Euler operators to
construct complex-based non-manifold geometric models. The technical details are fully described
in [15].

The entities present in the model are: cells, faces, edges, and vertices. The cell is a 3D b-rep shell
with a zero or positive volume. Note that the volume can be zero if, for example, a cell consists of
two identical faces joined together by the same set of edges. A cell is bounded by faces that form
a closed shell. Faces are convex or concave polygons—there is no restriction to triangle faces often
utilised in GIS applications. It is assumed that the faces are planar, although non-planar faces appear
at intermediate steps in the construction process. A face is bounded by edges forming a loop cycle,
and edges are bounded by vertices. An edge is represented by two connected DHEs. Vertices contain
unique coordinate information but no topological links.

All cells of the model are enclosed by the external cell of infinite volume. The model represents
a tessellation of space, thus the external cell representing the “rest of the world” is an integral part of
the model. Some of the navigation operators, developed in this research, require an adjacent cell to be
present, thus the external cell needs to be present at the boundary of the model.

A similar idea of the external cell was utilized before by other researchers. Lee and Lee [10]
introduced one infinite open region (equivalent of the external cell) enclosing other finite closed
regions. Two-dimensional tessellation models implemented with QE [6] have the same property:
internal cells are enclosed by one external cell, which is infinite; however, if the model is drawn on
a 3D sphere, the external cell is a finite polygon representing the rest of the sphere surface (internal
cells + external cell = sphere surface).The DHE representation has a dual nature, with complete
symmetry between the two structures—the primal and dual graphs—and conforms to the 3D Poincaré
duality: in either space a cell is represented by a vertex in its dual space, and a face is represented by
an edge in its dual space. This reduces the construction entity types to two: vertices and edges.

Adjacent cells of a complex are connected by a shared face, which is represented by a dual edge
(Figure 3a). This edge links two dual vertices representing the adjacent cells. Technically, each face is
penetrated by a bundle of dual edges—the number of dual edges is the same as the number of edges
forming a face. For example, each face of a single cube cell is represented as a loop of four half-edges;
each half-edge has an associate half-edge in the dual; thus, each square face is penetrated by a bundle
of four half-edges in the dual (Figure 3b). Each one of these dual half-edges belongs to the dual cell
surrounding one of the four vertices of the face (Figure 3c). Navigation around a bundle (radial cycle)
is possible—the first step is to navigate to the dual space, then go around a face loop, and then go back
to the original space. A face in terms of the Poincaré duality is represented in our model as a bundle of
edges that belongs to several dual cells sharing that bundle.
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Figure 3. Connections between cells: (a) adjacent cells, that share a face (grey), are connected by a dual
edge (dashed line); (b) a dual edge is represented as a bundle of edges penetrating a face; (c) each one
of the edges from the bundle belongs to a cell surrounding one of the face vertices.
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Another important property of the model is that holes and cavities are allowed: a “bridge edge” [5]
(eb in Figure 4a) is used to connect internal rings (holes) to the outside ring (the face) (fINT and fOUT
respectively in Figure 4a); and a “bridge face” (fb in Figure 4b) to connect an internal cell (a cavity) with
the outside cell (cINT and cOUT , respectively, in Figure 4b). Bridge edges and bridge faces are added to
a model in the same way as any others but have a special attribute that is taken into consideration by
the navigation operators. This edge can be omitted during the navigation process if required. Bridge
faces have the attributes assigned to their dual edges: a bridge edge in the primal graph represents
a bridge face in the dual, and vice versa.

1 
 

 

 Figure 4. Holes and cavities: (a) hole in a face-bridge edge eb connects internal face loop fINT with
the outside loop fOUT ; (b) cavity in a cell-bridge face fb connects internal cell cINT with the outside
cell cOUT .

The DHE conforms to the definition of a complex-based non-manifold geometric model [11]—it
allows for representation of solids where a dual node represents a volume and all primal edges and
nodes connected with this node define the volume boundary; dangling faces, edges and combination
of them are also possible.

2.1. Semantic Information

An important aspect of a data model in GIS is the ability to assign attributes (semantic information)
to individual elements. The only construction entities kept in the DHE model are half-edges and
vertices: faces and volumes are represented in the dual structure. (This holds true in either the original
primal or the original dual graph.) Thus, attributes may be attached to any of these elements.

For example, in the model shown in Figure 5 there are three connected boxes representing three
adjacent rooms. Rooms are represented by dual vertices, thus an attribute describing a primal cell
(e.g., a room name) can be assigned to a dual vertex; two other attributes “Dijkstra distance” and “next
escape connection” are used by the dual graph traversal algorithm for escape route seeking. The same
idea is applied for walls and connections between rooms—a primal entity attribute can be assigned to
its dual counterpart: information about wall colour or door existence can be assigned to a dual edge
representing the primal wall. Because all walls are double-sided, different attributes can be assigned to
each side of a wall, as they very often have different finishing. A property of a connection between
rooms (e.g., “connection weight” used by a path-finding algorithm representing the cost of navigation
through the connection) is a dual entity attribute, and is assigned directly to an edge connecting these
rooms. Any attribute, like an ID number, can be assigned to primal and dual edges and vertices.
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half-edge in the primal and five for the dual half-edge): V, S, NV, NF, and D. A reference to a vertex is 

Figure 5. Attributes can be assigned to primal nodes and edges as well as to dual elements.

Because a connection between two adjacent cells is represented as a bundle of edges, an attribute
can be assigned to one of the edges in the bundle and be considered as an attribute of this bundle, or
a reference to the attribute can be assigned to all edges in the bundle. Bundles are directed, so different
navigation weights may be assigned to each direction.

2.2. Navigation Operators

An edge is the basic construction element: half-edges are used to split an edge into two directed
halves that are represented with the symbol shown in Figure 6a: a half of an edge (straight line)
is associated with a face (a square in the middle) and a vertex (a dot at the end). Such an element
grouping a vertex, an edge, and a face that are mutually incident is called a flag [16]. The direction is
indicated by an arrow at the end associated with the vertex (Figure 6b).
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Figure 6. A half-edge symbol: (a) a flag representation; (b) the direction emphasised with an arrow.

All half-edges in a model are topologically connected using pointers. Two connected halves form
an edge (half-edges a and b in Figure 7a). An edge divides two adjacent faces of a cell; however, an edge
can be incident to one face if a face is not planar, for example a side face of a cylinder. All half-edges
in a cell sharing the same vertex are connected and form a star (half-edges a, b and c in Figure 7b).
However half-edges with the same vertex from different cells are not connected directly, but they share
the same vertex. Half-edges bounding a face are also connected and form a loop (half-edges a, b, c and
d in Figure 7c). Each half-edge in one space is permanently linked with the half-edge in the dual—this
connection made in the construction process is never modified. Half-edges in the dual are connected
in the same way as in the primal.
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Figure 7. Half-edges in a cell are topologically connected and form: (a) an edge; (b) a star; (c) a loop.

The data structure used for the DHE representation consists of ten pointers (five to represent
a half-edge in the primal and five for the dual half-edge): V, S, NV , NF, and D. A reference to a vertex
is assigned to V. Two half-edges are joined by S. NV and NF are used to store information about a next
half-edge in a star (around a shared vertex) and in a loop (around a face) respectively. “Next” is
considered as “next” in an anticlockwise direction looking from the outside of a cell. Half-edges from
the primal and dual spaces are connected by the D pointer and are set during the construction process.

Four navigation operators use pointers directly: Sym, NextV , NextF, and Dual. Sym (Figure 8a)
uses S to navigate from one half of the edge to the other. NextV (Figure 8b) uses NV to navigate around
a shared vertex and NextF (Figure 8c) uses NF to navigate around a shared face (in both cases in the
anticlockwise direction looking from the outside of a cell). Dual uses D to navigate from a half-edge in
one space to the associated half-edge in the dual space.
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Figure 8. Navigational operators: (a) Sym; (b) NextV ; (c) NextF; (d) NextE (compound operator).

Compound navigation operators based on the basic set are also defined: PrevV , PrevF, NextE,
PrevE, and Adjacent. PrevV and PrevF allow for navigation in the same way as their counterparts NextV
and NextF but in the opposite direction. NextE (see Figure 8d) and PrevE allow for navigation around
a bundle of edges. Adjacent is used to navigate to the adjacent cell—the result of the operator is an edge
in the adjacent cell that has the same coordinates and is associated with the opposite side of the shared
face. Figure 9a shows two adjacent cells (c1 and c2) that share a face. This face is double-sided—one
side for each cell. The half-edge e in c1 shown in Figure 9b is one out of four edges forming the face
loop. e.Adjacent is an adjacent half-edge in c2.
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Figure 9. The Adjacent operator: (a) the grey face is shared by adjacent cells c1 and c2; (b) the Adjacent
operator allows for navigation between cells: from e in c1 to e.Adjacent in c2.

It should be noted that the aforementioned set of operators allows for navigation in both directions,
CW and CCW, in models including non-manifold structures, for example, when two cells are connected
by a shared node or edge. The number of pointers may be reduced in case of models, where all cells
are connected by a face or the dual is not required (see Section 3.3).

Pointer notation is used here: for example, the Adjacent operator is described by a sequence:
e.Adjacent = e.D.NF.D.S, where e is the source half-edge. This should be expanded as follows: go to the
dual half-edge of e, then go the next counter-clockwise half-edge around a face, then go back to the
original space, and go to the opposite side of the edge.

The full set of navigation operators is described by Equations (1)–(9).

e.Sym Ñ e.S (1)

e.NextV Ñ e.NV (2)

e.NextF Ñ e.NF (3)

e.Dual Ñ e.D (4)

e.PrevV Ñ e.Dual.NextV .Dual (5)

e.PrevF Ñ e.Dual.Sym.NextF.Dual.Sym (6)

e.Adjacent Ñ e.Dual.NextF.Dual.Sym (7)

e.NextE Ñ e.Dual.NextF.Dual (8)

e.PrevE Ñ e.Sym.Dual.NextF.Dual.Sym (9)

2.3. Construction—Euler Operators

The proposed construction of a 3D computer model represented as a cell complex allows arbitrary
cells (polyhedra) of different shapes. The process of cell construction is “atomized” to make incremental
construction (edge by edge) possible. This is possible with Euler operators, which are used for
modifying b-rep objects as they preserve topological integrity.

Construction of a single cell (without the dual) is a simple process using traditional Euler operators.
For non-manifold models it is required to be able to construct more complex structures: to create
non-manifold cell complexes the standard Euler operators should be extended to manage connections
between cells and to include operations like joining two cells by a shared face, edge or vertex. Extended
Euler operators for non-manifold modelling including cell complexes were proposed by Masuda [11]
and Masuda et al. [17].

Cells joined by a face is a normal situation in cell complex construction. Two cells can be also
joined by a shared edge or vertex. In these two cases, it is not possible to navigate directly from one cell
to another. However, the cells are connected via the external cell and navigation between the internal
cells is possible in the dual. It should be noted that some non-manifold models can be simulated
without the external cell by using the Cardboard and Tape method [1].
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The construction operators are grouped in layers (Figure 10). Operators are dependent on
operators from a lower level. Only operators from the lowest level are based on pointers and other
basic operations. Operators from higher levels are more complex and specialized.
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Table 1 includes the developed operators at the highest level (level 3): Euler operators and
extended Euler operators. Each pair of operators (base and reverse operators) is represented by a base
operator (no reverse operators are shown in Figure 10). The full set is not covered, but a spanning
set is implemented. However, there are no operators for hole and cavity construction—they are
implemented using bridge edges and faces created using operators from the proposed set.

Table 1. A set of Euler operators and extended Euler operators.

Abbreviation Operator Name

MEVVFS/KEVVFS Make/Kill Edge, Vertex, Vertex, Face and Shell
MEV/KEV Make/Kill Edge and Vertex
MVE/KVE Make/Kill Vertex and Edge

MZEV/KZEV Make/Kill Zero-length Edge and Vertex
MEF/KEF Make/Kill Edge and Face

Join/Separate by Face
Join/Separate by Edge

Join/Separate by Vertex
Merge/Split by Face
Merge/Split by Edge

Merge/Split by Vertex

Operators from level 2 allow for construction and connection of edges (Make Complex Edge and
Complex Splice) and faces (Make Face and Sew). This level may be used in applications for model
construction (“Cardboard & Tape” uses Make Face and Sew).

Operators in level 1 and 0 directly change the DHE structure: operators in level 1 work with edges
and call level 0 operators which work with dual half-edges: they change or assign the pointers and
do not call other operators from the set. Make Half Edge is the only operator that reserves computer
memory for the DHE.

Some properties of the proposed Euler operators are presented below. Lower level operators
are not described here but they were introduced in this paper to show the layered idea of
operator implementation.
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Make/Kill Edge, Vertex, Vertex, Face and Shell (MEVVFS) an operator that can be used to create
a new cell (shell): a new edge in empty space is created (Figure 11). This edge forms a cell that may
be further developed to obtain a polyhedron. The external cell and dual edges are also constructed.
There are four edges involved in this process —two in the primal (black solid lines), and two in the
dual (black dashed lines); and four vertices: two vertices in primal space (P1 and P2), and two in the
dual (I and E). Vertices P1 and P2 bound a new edge. Vertices I and E are dual nodes representing
the internal and external cells of a new complex—these cells are thus formed by dangling edges: the
edge built of the a and b half-edges forms an internal cell associated with the I vertex; the edge built of
the c and d half-edges forms an external cell associated with the E vertex. All connections set by the
operator are shown in Table 2: half-edges created in the process (labelled a–h) are shown in the first
column, and the value of pointers (S, NV , NF, D and V) in other columns.ISPRS Int. J. Geo-Inf. 2016, 5, 19 10 of 20 
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Figure 11. MEVVFS/KEVVFS Euler operator.

Table 2. Table of connections made by Make/kill edge, vertex, vertex, face and shell (MEVVFS).

S NV NF D V

a b a b e P1
b a b a g P2
c d c d f P1
d c d c h P2
e f e f a I
f e f e c E
g h g h b I
h g h g d E

MEVVFS is not a proper Euler operator because it introduces many elements into a model: one
edge, two vertices, one face and one shell (an edge is a minimal topological and valid element allowing
for navigation; an isolated vertex does not bring any topological information). A face is created
automatically and is a result of the DHE representation; the number of shells is determined by the
number of cell complexes mutually disconnected. MEVVFS combines two standard Euler operators
MFVS and MEV—see the first two construction steps in Figure 4.1 in [18].

Other implemented operators (i.e., Make Edge and Vertex (MEV), Make Vertex and Edge (MVE),
Make Zero-length Edge and Vertex (MZEV) and Make Edge and Face(MEF)) are considered to be
standard Euler operators (Figure 12). The dual is not shown in Figure 12, but it is updated by the
operators. It should be noted that some operators can be used only in the construction process of
a single cell before it is added to a complex (e.g., MZEV).

Euler operators do not check if input parameters are valid. For example, usually it is expected
that two half-edges from the same face loop are given as an input for MEF. The result is a new edge,
which divides one face into two parts. A “strange” structure, which may be an unexpected result,
is generated if two half-edges from different face loops are given as an input. For instance, if the
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half-edges are from different cells, the MEF operator may be used to implement additional operator
MEKFS (Make Edge and Kill Face and Shell). Additional tests may be performed before an Euler
operator is used in order to guarantee valid 3D cells.
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It should be noted that Euler operators can create non-cellular structures as they are defined by
Akleman et al. [19], for instance, a polygon with hole, with no edge between internal and outside loops.
This situation can be managed by an additional level of operators, which perform topological tests and
Euler operators in order to create valid cellular structures using “bridge edges”. An example which
requires such a representation is an architectural model, where a window is a hole in a wall: they do
not share boundaries and they may be connected by a “bridge edge”.

2.4. Extended Euler Operators

Join is a collection of three operators to connect two cells—it is possible to join cells by a common
face, edge or vertex (Figure 13). The relationships between cells are changed in this way so that direct
navigation between the cells is possible and the cells are part of the same complex even if they were
in two different complexes before the operation. “Join” changes primal edges of the external cell;
dual connections are changed automatically so that direct navigation between the cells is possible (in
Figure 13 dotted lines and grey faces represent the dual). “Join” has an inverse—“Separate”.
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Cell joining by a face is the most useful operator for cell complex construction. This connection is
possible only if the faces have the same number of edges. They do not have to have the same vertices.
However, visualization may give strange results if the faces to be connected do not fit geometrically.

In building interior modelling (the main objective in this research), escape routes and navigation
between rooms is an important issue. Rooms are represented by cells. Only navigation from cell to cell
through faces (doors, windows, walls, etc.) is permitted. Therefore, cells are not joined by a common
edge or vertex even if they geometrically fit and such a connection is possible. However, the full set of
Join operators may be important in other applications.

The same result (two connected cells) can be obtained in a different way (see Figure 14). This
method and the set of Euler operators used is based on [20]. It should be noted that in this process the
last of four KEFs before joining two cells by a face has a different meaning because with the last edge
removed, the original face is split into two; the same applies to the cell. Thus, the last operator could
be named KEMFS.
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Figure 15. Splitting a box into a complex of two cells using the Split by Face operator.

Merge, like “Join”, is a collection of three operators—it is possible to merge cells by a common
face, edge or vertex (Figure 16). In this case, two cells are merged into one cell. “Merge” changes the
primal edges of the internal cell. Cells to be connected have to be joined first—merging two cells that
are in separate complexes has two stages: first, cells are joined, then they can be merged. “Merge” has
an inverse—“Split”.
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3. Comparisons with the DHE

In this section, the DHE and simplified versions are compared with other data structures. The
simplified versions have a reduced number of pointers representing a half-edge. They use less storage
space, but they are not able to represent all non-manifold models (only cells joined by face are allowed).
In the most simplified version, the dual structure is not present, and connections between adjacent cells
and attributes originally attached to dual elements are stored in the primal. Therefore, the management
of semantic information may be complicated, for instance, an attribute originally attached to a dual
node would have to be somehow stored in a primal cell.

The authors tried to find similar structures that are well described, and that could be used in
similar applications. Three structures were selected: the coupling-entity [21,22], the radial-edge [14],
and the partial-entity [10]. There are also new data structures for non-manifold modelling developed
recently [23–26] but they are based on the older data structures [4,10,14,21,27,28] or else a direct
comparison is difficult: they introduce many construction entities stored explicitly, like regions, shells,
faces, edges, vertices, loops, disks, etc.—while there are only edges and vertices in the DHE models,
similar to the feather introduced in the coupling-entity data structure.

A new spatial model recently developed in the GIS field [29,30] based on conformal geometric
algebra focuses on computation of topological relations. A data structure proposed to represent the
model introduces additional entities, e.g., point pairs, circles, tetrahedrons, spheres, etc., which makes
the comparison with DHE even more difficult.

3.1. The Coupling-Entity—The Feather

Probably the closest CAD data structure to the proposed approach is that of Yamaguchi et al. [22]
and Yamaguchi and Kimura [21]. A detailed comparison with the DHE was presented by Boguslawski
and Gold [2].

A model using the feather as a basic element can be simulated with the DHE data structure.
It is also possible to show that a simplified version of the DHE exists, and this is an equivalent of
the feather [2]. Thus, the feather is a subset of the DHE. As a matter of fact, the simplified DHE has
similar limitations to the feather: joining two cells at a shared vertex produce a model that is not valid.
However, all edges sharing the same vertex can be joined in one cycle, but navigation is not valid—the
inability to navigate around a face occurs. This error is caused by defining the loop cycle using the
disc cycle. However, in a cell complex decomposing 3D space, where all the cells are joined by shared
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faces, other methods can be used to navigate between edges sharing the same vertex. A single cell in
a complex is a 2-manifold, and only one disc cycle is necessary to navigate around a shared vertex.
Disc cycles in other cells are not joined together, but navigation through shared faces is possible,
and access to these cycles is possible.

Another difference and a big advantage in GIS over the coupling-entity is that the DHE (the full
version) is able to represent a cell/volume with a single dual vertex, and a face entity with a bundle
(of edges). Thus, for example, attributes may be assigned to any node, edge, face, or volume entity in
either the primal or dual space.

3.2. The Radial-Edge and Partial-Entity Structure

The partial-entity structure introduced by Lee and Lee [10] is a compact data structure which is
derived from the radial-edge [14]. Data storage is reduced significantly (by about 50%) without the
loss of time efficiency.

In the comparison presented below, the case of a cell complex consisted of 1000 cubes (10ˆ 10ˆ 10)
is used as in [10].

The total size taken by the model constructed using the radial-edge is 1,457,303 bytes, and for the
partial-entity—644,192 bytes [10]; these are included in Table 3. The same restrictions are used in the
calculation: the size of the field storing pointers is four bytes; fields for attributes or geometric data are
not taken into consideration (only storage for topology is calculated).

Table 3. Storage requirements for a cell complex of 1000 cubes (10 ˆ 10 ˆ 10).

Data Structure (x) Total Size Ratio (x/RE) Ratio (x/PE)

Radial-edge (RE) [10] 1,457,303B 100% 226%
Partial-entity (PE) [10] 644,192B 44% 100%

Full DHE 1,056,000B 72% 163%
Simplified DHE (no NF pointer) (version a) 844,800B 57% 131%

Simplified DHE (no dual) (version b) 422,400B 28% 65%

The analysis is carried out for three cases: the full DHE version, and two simplified DHE versions:
a) no face loops—the NF pointer is removed; b) no dual structure—the D pointer is used to join
adjacent cells.

There is one cell complex in the model: there are 1000 cubes in the complex; each cube consists
of 12 edges. In the DHE, each edge is represented by two dual half-edges; each DHE contains five
pointers in each space—the primal and dual (that gives ten pointers for each DHE). There is also
one external cell present in the model—one big cube enclosing all internal cubes. Each face of the
external cube is split into 10 ˆ 10 grid of squares corresponding to the external faces of the internal
complex—that gives 1200 edges in the external cell. Flags or lists are not used in the DHE.

For the DHE, storage space of the internal complex equals: 1000 cubes ˆ 12 edges ˆ 2 DHE ˆ
10 pointers ˆ 4 bytes = 960,000 bytes; and for the external cell: 1200 edges ˆ 2 DHE ˆ 10 pointers
ˆ 4 bytes = 96,000; in total 1,056,000 bytes. This score locates the full DHE structure between the
radial-edge and partial-entity structures in Table 3.

3.3. Simplified DHE

It should be noted that, in the full version, the situation where two cells are joined by a vertex, and
volumes (dual nodes) are stored explicitly, can be managed. However, if all cells in the analysed model
are joined by faces, the simplified version without the face loop pointer NF might be more suitable
(simplified version a). The number of pointers in the DHE is decreased from ten to eight. Thus the
storage space required for the model is recalculated as follows: 1000 cubes ˆ 12 edges ˆ 2 DHE ˆ
8 pointers ˆ 4 bytes = 768,000 bytes; and for the external cell: 1200 edges ˆ 2 DHE ˆ 8 pointers ˆ
4 bytes = 76,800; in total 844,800 bytes. This gives a 20% space saving.
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Further simplification is even less space consuming if one does not need to use volume entities.
The dual structure is removed (simplified version b) and all connections between cells in the model are
stored in the primal. Thus only four pointers are sufficient to store topology information. The storage
space required for this case is: 1000 cubes ˆ 12 edges ˆ 2 DHE ˆ 4 pointers ˆ 4 bytes = 384,000 bytes;
and for the external cell: 1200 edges ˆ 2 DHE ˆ 4 pointers ˆ 4 bytes = 38,400—in total 422,400 bytes.
The DHE data structure requires about 30% of the storage size of the radial-edge and 65% of the
partial-entity for the cell complex representation.

Table 3 compares radial-edge, partial-entity and the three versions of the DHE. The full version
with the dual graph included is useful when information needs to be stored for volumes and an explicit
representation of connections between cells is important: a cell complex traversal using the dual graph
is easier and the implementation of some algorithms, e.g., the Dijkstra algorithm [31], is straightforward.
To save storage space, the simplified version can be used for preliminary model construction, and then
this can be expanded to the full version when more advanced analysis of the model is required.

4. Building Model Construction

The resulting structure has been successfully used to reconstruct two joined buildings at the
University of Glamorgan (now University of South Wales) campus. In keeping with its design
objectives, it was constructed edge by edge from the original plans—faces and volumes were completed
automatically when all the relevant edges were added. Euler and extended Euler operators were used
which updated the dual structure in parallel. As a result, all navigation was viable at any construction
stage, which simplifies the searching for the relevant portions to be attached. Finally, navigation
from room to room in the dual space is readily performed by pointer-based navigation, permitting
the efficient implementation of standard graph traversal algorithms, such as Dijkstra’s. The only
entities preserved are the primal and dual nodes/volumes, and the primal and dual edges/faces.
Any desired attributes may be attached to these, permitting a variety of intelligent searches of the
overall building complex.

Rooms are not the only objects in a building that are important. Walls, doors, windows,
installations. etc. are essential in many types of navigation and escape route planning and can
be represented as cells with geometry and volume, and attributes can be assigned to them.

The reconstructed model—two buildings from the University of Glamorgan campus (see
Figure 17a) connected by an above-ground passage (see Figure 17b)—assumes that walls have zero
thickness, and may be connected by zero-thickness doors (that still have a dual node) (see Figure 18).

In total, there are over 1,300 cells. Cells may be rooms, doors or corridors. The model and its use
for escape route planning was reconstructed from scanned paper plans. These plans were used as
a raster background in AutoCAD—subsequent floors were put into layers at different heights (the
distance between layers was set at an arbitrary room height) (see Figure 19). This produced a set
of individual cells, one for each room but not connected together (see Figure 20). The model was
imported to Autodesk 3DS Max, where labels (i.e., room number and name) were attached to each cell.
The final model (still represented as a set of separate polyhedra) was exported to the OBJ exchange
format, which is a geometry definition file format. All connections between adjacent rooms were set
during the construction process using DHE and Euler operators, with both the primal and the dual
graph being updated simultaneously. Weights were assigned to connections between rooms; they
described how difficult was to move to the next room: an infinite value meant no access, any other
(positive) value was calculated from the geometric distance between the dual nodes representing
adjacent cells. Weights were assigned only if a door was present. Escape routes to the exterior were
modelled by adding thin cells (perhaps concrete paving) to the model, allowing navigation outside
the building.
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Figure 17. Two buildings from the University of Glamorgan campus connected by an above-ground
passage modelled using the DHE data structure: (a) light-grey cells represent terrain, grey
cells represent rooms, dark-grey cells represent the above-ground passage between buildings;
(b) an above-ground passage between two buildings—dark cells.
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Figure 19. Building plans organized as raster background layer for all floors.
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Figure 20. Full model represented as a set of unconnected cells.

Dijkstra's algorithm was used directly on the dual graph to find the shortest path between two
specified rooms (Figure 21a,b)—no additional structure was needed: a navigable network in the
building is represented by the dual graph with assigned weights. The same algorithm was used to
find a route from a room to the nearest exit from a building (Figure 21c)—there is one source room
and multiple exits. An exit can be any cell in a complex, but usually this is a cell representing a door
connecting the building with the exterior.
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Figure 21. The shortest paths (dark-grey, external terrain represented by light-grey cells) between two
rooms (black): (a) the path entirely inside the building; (b) the path calculated considering an external
terrain; (c) the shortest path between a room and the closest exit.
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5. Conclusions

The novel DHE data structure shown in this paper was designed to achieve our ultimate goal.
It provided a simple computer data structure to permit navigation within a cell complex, to preserve
attribute information about any primal or dual entity, to permit Euler-type incremental construction
and to provide straightforward tools for escape route planning.

DHE and construction operators were sufficient to build a 3D b-rep model, represented as
a complex of irregular cells, using two construction entities, half-edges and nodes, while representation
of volumes, faces, edges and vertices was provided by a full implementation of 3D Poincaré duality.
Model construction, based on Euler operators, includes automatic updates of the dual representing
the logical structure of the model. The only element used for topological connections was a half-edge,
while a node was used only to store the coordinates of a vertex. Attributes could be attached either
to half-edges or nodes. These properties meet the requirements for GIS models where integration of
geometry, topology and semantics is crucial.

It should be noted that Euler and extended Euler operators do not guarantee that provided input
parameters will result in a correct shell. For example, if two half-edges from different face loops are
given as an input for MEF, the result will be different than a face split into two parts, which is the
anticipated result. Some operators, e.g., JoinByEdge, may produce non-orientable two-manifolds, such
as the Möbius strip, which may not be an expected result in a cell complex construction. A higher level
of operators may be developed in order to check the correctness of input parameters and to call the
right operator. In addition, new specialized operators might be required for specific applications, such
as architectural modelling.

It was shown that storage efficiency of DHE is comparable with other non-manifold CAD
structures, and several simplified versions have been proposed where full navigation of all possible
topological adjacency types (e.g., vertex to vertex only) are not required. In this research, the focus
was put on storage requirements, because topological data structures are usually memory consuming.
In return, topological queries are faster due to the topological connections being included in the data
structure. Comparative performance analysis will be considered in future work.

The presented DHE data structure is suited for full 3D models. However, its potential is much
bigger, and it has already triggered new research. It was shown that 2D/3D integration between
the 3D building interior and 2D external terrain is viable [32]. A new concept of a modified DHE,
dual half-arc, was introduced by Anton et al. [33].

A simple method for escape route finding presented in this paper is to show applicability of the
model for indoor navigation. The method is based on a network representing a logical structure of
a building. In a general scenario working for any building, it may be necessary to partition corridors
and calculate a detailed navigable network in order to get more accurate results. Such an attempt was
made in [34].

Within the GIS world, there is considerable interest in the automatic generalisation of building
models for representation at different scales. This has not been attempted here but is being considered
for future work. Finally, no validation tools, to check the reasonableness of the geometry, have been
attempted—again discussion is underway for future work. However, an attempt to validate building
information models using DHE was done by Kraft and Huhnt [35].
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