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Abstract: A reverse k nearest neighbor (RkNN) query retrieves all the data points that have q as one
of their k closest points. In recent years, considerable research has been conducted into monitoring
reverse k nearest neighbor queries. In this paper, we study the problem of continuous reverse nearest
neighbor queries where both the query object q and data objects are moving. Existing state-of-the-art
techniques are sensitive towards the movement of data objects, e.g., a candidate object must be verified
whenever it changes its location. Further, insufficient attention has been given to the monitoring
of RNN queries in dynamic road networks where the network weight changes depending on the
traffic conditions. In this paper, we address these problems by proposing a new safe exit-based
algorithm called CORE-X for efficiently computing the safe exit points of both query and data objects.
The safe exit point of an object indicates the point at which its safe region and non-safe region meet,
thus a set of safe exit points represents the border of the safe region. Within the safe region, the query
result remains unchanged provided the query and data objects remain inside their respective safe
regions. The results of extensive experiments conducted using real road maps indicate that the
proposed algorithm significantly reduces communication and computation costs compared to the
state-of-the-art algorithm.

Keywords: continuous monitoring; location-based applications; reverse nearest neighbor query;
safe exit algorithm; mobile computing; road network

1. Introduction

The rapid technological advances in wireless networks and development of handheld devices
equipped with location sensing technology (e.g., smart phones and tablets) have popularized
location-based services in the past decades. These systems enable real-world applications such as mixed
reality games, army strategy planning, object surveillance in wireless sensor networks, and enhanced
emergency services [1,2]. The continuous movement of data objects demands new query processing
techniques permitting frequent location updates. Although considerable effort has been devoted to
moving-query processing [3–7], these studies have focused on range queries and nearest neighbor
(NN) queries; there continues to be a deficiency of research addressing continuous reverse nearest
neighbor (RNN) queries. Further, the majority of the research has been conducted in the Euclidean
space, not on a road network.

Consider a query object q and a set of data objects O (e.g., places of accommodation, restaurants,
and gas stations). We use dist(o, q) and dist(o, o′) to represent the shortest distance from object o to
query q and another data object o′, respectively. A reverse k nearest neighbor (RkNN) query retrieves
all of the data objects o ∈ O for which q is one of their k closest objects.
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RkNN queries are generally categorized into two types: monochromatic reverse kNN (MRkNN)
queries and bichromatic reverse kNN (BRkNN) queries. In MRkNN, all moving data and query objects
are of the same type. Applications of the continuous MRkNN include mixed reality games where the
goal of each player is to shoot the nearest player. Each player must continuously monitor their own
RNN to avoid being shot by other players. Given an object set O and a query q, the MRkNN query is
formally defined as MRkNN(q) = {o ∈ O|q ∈ kNN(o)}, where kNN(o) is the kNN set of o.

Unlike, MRkNN queries, in BRkNN, query objects and data objects belong to two different
types of objects. Applications of the continuous BRkNN query include decision support system.
For example, consider an application where the goal is to determine the best location for opening
a Chinese restaurant. The main deciding factor can be “How many users consider this potential
location to be the nearest Chinese food restaurant?” Each candidate location for the Chinese food
restaurant generates an RNN query; the results can then be compared to choose the best location.
The above example employs BRkNN queries because restaurants and users belong to different types
of objects. Given two different object sets O and S and a query q ∈ S, a BRkNN query is formally
defined as BRkNN(q) = {o ∈ O|q ∈ kNN(o, S)}, where kNN(o, S) denotes the kNN of o among all
objects in dataset S.

Many real-life applications exist to illustrate the usefulness of moving RkNN queries, particularly
in applications which require continuous monitoring of reverse nearest moving objects. For example,
for enhanced 911 service, whenever a service center receives any emergency call, the team that is
closest to the emergency call location is notified. Other examples could be taxi company dispatching
taxis to the passengers, or army backup units interested in monitoring their closest units which may
require any assistance.

The main challenge for continuous monitoring algorithms is maintaining the freshness of the
query results when the query and data objects move freely and arbitrarily. A simple approach is to
increase the frequency of updates; query q periodically sends requests to reevaluate the query results.
However, this approach does not guarantee that results are fresh because the query results may become
stale between each call to the server. Moreover, an excessive computational burden may be imposed
on the server side as a high communication frequency increases the communication cost.

The existing state-of-the-art algorithm known as SAC [8] attempts to address the abovementioned
problem and monitors the RkNN queries in two major steps, i.e., filtering and verification. In the
filtering phase, using pruning rules, the part of the network that cannot contain any RkNN of q is
pruned. The objects that are in the unpruned network are called the candidate objects cand. In the
verification phase, the server monitors whether the object cand ∈ candidate object list is the RkNN of q.
More specifically, a cand is reported as an RkNN if and only if q is the closest object of cand. However,
at each timestamp, the algorithm must verify the candidate object whenever it updates its location.
The verification is considerably expensive because (a) verifying a cand requires checking whether q is
one of the k closest objects of cand and (b) verification is required whenever a cand changes its location.

To address the aforementioned limitation, we present a safe exit-based approach for continuous
monitoring of reverse k nearest queries in a road network where both query objects and data objects
move arbitrarily. The proposed algorithm computes safe exit points for both query and data objects.
The query result remains unchanged providing query and data objects reside within their respective
safe regions. The safe exit technique reduces the two-way communication between client and server
resulting in a reduction of the communication and computation cost. We first consider the continuous
monitoring of reverse k nearest queries in static road networks where the network distance does not
change over time. Then, we extend the proposed approach to dynamic road networks where the
network weight such as the travel time changes depending on traffic conditions including traffic
congestion or reversible lanes. Our key contributions are summarized as follows:

• We present a framework for continuous monitoring of RkNN queries where both query and data
objects are moving on a road network.

• Our algorithm processes both MRkNN and BRkNN queries for arbitrary values of k.
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• We present novel pruning rules that optimize the computation of safe exit points by minimizing
the size of the unpruned network and number of objects.

• We demonstrate the extension of the proposed algorithm to a directed road network where each
road segment has a particular orientation and to a dynamic road network where the network
weight changes depending on the traffic conditions.

• We confirm through an extensive experimental evaluation that the proposed algorithm
outperforms the state-of-the-art algorithm in terms of both communication and computation costs
for the majority of the settings.

The remainder of this paper is structured as follows. Section 2 reviews the existing work on the
continuous monitoring of RkNN queries in Euclidean space and road networks. Section 3 provides
terminology definitions and describes the problem. Section 4 elaborates on the proposed safe exit
algorithm (CORE-X) for computing safe exit points of moving RkNN queries in road networks.
Section 5 presents a performance analysis of the proposed technique. Section 6 concludes this paper.

2. Related Work

An RNN query for moving objects searches for those objects that select object q as their
nearest neighbor. The processing of RNN queries has become a recent emerging area of research.
Many algorithms have been proposed for the monitoring of reverse nearest neighbors, especially in
Euclidean space. However, there remains a lack of efficient algorithms for road networks. Our related
work is divided into two sections: Section 2.1 addresses continuous RNN query processing in Euclidian
space and Section 2.2 reviews continuous RNN query processing in road networks.

2.1. Algorithms for Continuous Reverse Nearest Neighbor Query Processing in Euclidian Space

Korn et al. [9] were the first to introduce the concept of RNN queries. They used a precomputing
technique to search for RNNs. The main drawback of the preprocessing approach is that it is limited to
supporting RkNN queries for a fixed number of k; moreover, it is inefficient when processing object
movements. To address the shortcomings of the preprocessing technique, a new category of algorithms
has been introduced, known as snapshot RNN algorithms. These snapshot algorithms have two
main phases. The first phase is a filtering phase that focuses on the pruning of unnecessary objects;
the second phase is refining, which verifies whether the remaining objects are valid query results.
The two main filtering methods that have been developed for RkNN queries are 60-degree-pruning [10]
and TPL-pruning [11] by Stanoi et al. and Tao et al., respectively.

Another category is continuous RNN query algorithms, which can produce incremental RNN
results. A number of algorithms have also been proposed for efficient monitoring of NN queries,
continuous range queries, and RNNs [3,8,11–17]. The existing continuous query processing methods
focus on defining the monitoring region and updating the query results based on the moving object’s
location. Benetis et al. [18] were the first to study continuous RNN monitoring; however, their proposed
scheme assumes that the velocities of the objects are known. Xia et al. [19] introduced an incremental
and scalable algorithm for monochromatic RNN queries based on the 60-degree-pruning technique.
In their approach, the monitoring region of a continuous RNN query is defined by six pie regions
(determined by the query point and the six candidates) and six arc regions (determined by the
six candidates and their nearest neighbors). The efficiency of this algorithm is superior to that of
conventional methods because it identifies and processes the updates that fall into the monitoring
region. Kang et al. [20] proposed a novel algorithm for monitoring continuous RNNs called IGERN.
It is more efficient than 60-degree-pruning-based solutions because it monitors a small number of
candidates rather than the entire space. Further, this method is applicable to both MRkNN and BRkNN
queries. The tradeoff of this scheme is that it cannot be easily extended to continuous RkNN queries
for k > 1. Therefore, the defined monitoring region applies only to continuous RNNs for k = 1.
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Wu et al. [21] proposed a technique to monitor RkNNs that involves continuous filtering and
continuous refining. They proposed a new refining framework called CRange-k that verifies the
candidate objects by issuing kNN queries in each region rather than single nearest neighbor queries.
Users that are closer than the kth NN in each region are the candidate objects; these candidate objects
are verified if q is one of the k closest facilities. To monitor the results, for each candidate object,
the method continuously monitors the circular region around it that contains the k nearest facilities.
Cheema et al. [8,22] proposed several schemes for the monitoring of continuous RNNs. In [22],
they developed an algorithm for continuous BRkNN queries. They used the concept of the influence
zone where the query object is static and the data objects are moving. In [8], they proposed a new
framework based on safe regions for both Euclidean and road networks where both query and data
objects are moving. This scheme significantly improves the computation cost as it assigns each object
and query a safe region such that expensive recomputation is not required provided the query and
objects remain in their respective safe regions.

2.2. Algorithms for Continuous Reverse Nearest Neighbor Query Processing in Road Networks

In recent years, reverse neighbor query processing in road networks has received attention by the
spatial database systems research community. Yiu et al. [17] first addressed the issue of RNN in road
networks (they represented road networks as graphs) and proposed an algorithm for both MRkNN and
BRkNN queries. Safar et al. [23] presented a framework for RNN queries based on network Voronoi
diagrams (NVDs) to efficiently process RNN queries in road networks. However, their scheme is not
suitable for continuous RNN queries because NVDs change whenever a dataset changes its location,
resulting in high computation costs.

Sun et al. [16] studied the continuous monitoring of bichromatic RNN queries. They associated
a multiway tree with each query to define the monitoring region and only updates in the monitoring
region affect the results. However, this method is limited to bichromatic queries and does not apply
when k > 1. Moreover, their proposed scheme assumes that the query objects are static. Li et al. [24]
proposed a novel algorithm for continuous monitoring of RkNNs based on a dual layer multiway
tree (DLM tree) where they introduced several lemmas to reduce the monitoring region and filter the
candidate objects. Their continuous monitoring of RkNN method comprises two phases: the initial
result generation phase and the incremental maintenance phase. Cheema et al. [8] proposed a safe
region approach for the monitoring of continuous MRkNN and BRkNN queries in Euclidean and road
networks as mentioned in Section 2.1 and devised pruning rules that reduce the monitoring region.

Gotoh et al. [25] presented a simple routing method to process BRkNN queries. Wang et al. [26]
proposed an influence zone-based algorithm for monitoring continuous RkNN in a road network.
Attique et al. [27] proposed a safe exit-based scheme for continuous monitoring of RNN queries.
However, this approach is applied to BRkNN queries; moreover, it does not address the movement
of data objects. In this paper, we develop a scheme that is applicable to both MRkNN and BRkNN
queries; it can also address the movement of both query objects and data objects.

This paper is an extended version of our previous work on the monitoring of RkNN queries
for moving data objects and queries [28]. However, we present five relevant extensions that were
not investigated in our preliminary work [28]. The first extension monitors the pruned objects
(Section 4.2.2). The second extension studies adaptations of the proposed algorithm to address
a directed road network (Section 4.3.1). In the third extension, we extend CORE-X to a dynamic
road network where the network distance changes depending on the traffic conditions (Section 4.3.2).
The fourth extension studies bichromatic RkNN queries (Section 4.3.3). In the fifth section, we conduct
an extensive experimental study for both static and dynamic road networks (Section 5). In addition to
these major extensions, we also present a time complexity analysis of the proposed algorithm that was
not presented in our previous work (Section 4.4).
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3. Preliminaries

Section 3.1 defines the terms and notation used in this paper. Section 3.2 provides the problem
description based on an example.

3.1. Definition of Terms and Notations

Road Network: A road network is represented by a weighted undirected graph G = (N, E, W),
where N includes the set of nodes N = {n1, n2, · · · , n|N|}, E is a set of edges that connects two distinct
nodes E = {e1, e2, · · · , e|E|}, and W(e) denotes the weight of an edge e. An edge between two nodes
is denoted by e(ns, ne), where ns and ne are referred to as boundary nodes. A boundary node with
a smaller node id is referred to as the base node of the sequence. This study assumes that ns ≤ ne.
Therefore, ns is the base node. Each edge connecting two distinct nodes has a positive weight that
represents the cost of traveling the length of the edge, e.g., the time required to travel along the edge.

Segment: Segment s(p1,p2)
is a part of an edge between two points, p1 and p2, on the edge.

An edge consists of one or more segments. An edge is also considered to be a segment where the nodes
are the end points of the edge. The weight of a segment s(p1,p2)

is denoted by W(s).
Figure 1 presents an example of an undirected road network with seven nodes, n1 to n7. Several

edges and segments are illustrated with their respective weights. For example, the edge e(n1, n2)

consists of segments s(n1,o1)
and s(o1,n2)

, which have weights “1” and “2,” respectively. There are seven
data objects in this example {o1, o2, . . . , o7} ∈ O and a single query object q. Query q and the data
objects are indicated by triangles and rectangles, respectively. Given two points, p1 and p2, the shortest
path distance dist(p1, p2) is the minimum distance between p1 and p2. In Figure 1, the shortest path
from q to o3 is q→ n3 → n6 → o3 ; dist(q, o3) = 11. Table 1 presents the notations used in this paper.
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Figure 1. Example of a road network.

Table 1. Summary of notations used in this paper.

Notation Definition

G = (N, E,W) Graph model of road network
dist(ps, pe) Length of the shortest path from ps to pe, where ps and pe represent start and end points, respectively
ni Node in road network
e(ns, ne) Edge in edge set E, where ns and ne are start and end points of the edge
W(e) Weight of edge e(ns, ne)
q Query point in road network
k A number that represents q can be among k number of closest facilities to a data object o
O Set of objects O = {o1, o2, . . . , on}
O+ Set of answer objects O+ = {o+1 , o+2 , . . . , o+k }
O− Set of non-answer object O− = {o−k+1, o−k+2, . . . , o−|O|}
IR+ Influence region of answer objects
IR− Influence region of non-answer objects
o+f Farthest answer object to point p ∈ G, such that d(p, o+f ) = MIN(d(p, o+1 ), d(p, o+2 ), . . . , d(p, o+|o+ |)

o−n Nearest non-answer object to point p ∈ G, such that d(p, o−n ) = MIN(d(p, o−1 ), d(p, o−2 ), . . . , d(p, o−|o− |)
pa Anchor point that corresponds to start point of expansion
UO Set of useful objects required to compute safe region of q
Ω Safe exit point where the safe and non-safe region of q or o intersects
nβ Boundary node corresponding to start (ns) or end (ne) point of edge
Ap Set of kNNs at point p
Rp Set of RkNNs at point p
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3.2. Problem Description

In this paper, we primarily address the problem of continuous monitoring of RkNN queries on
moving queries and data objects in road networks. To provide a clear explanation, we use the road
network example illustrated in Figure 1, where there are seven objects, o1 to o7, and a query q in a road
network. For explanation, we consider MRkNN queries where both data objects and query objects
belong to the same data type. However, our method can also be extended to monitor continuous
BRkNNs queries. In the remainder of the paper, we use RkNN query to refer to an MRkNN query
unless mentioned otherwise. Let us assume that a moving query requests one RNN (k = 1) at a certain
point p1. To obtain one RNN, we traverse the road network from the active edge that contains point
q. For each data object o ∈ O. encountered, we issue a verification query verify(o, k, q) that checks if
it is an RNN. If there exists another object o’ such that dist(o, o′) < dist(o, q), then o is not an RNN.
Otherwise, o is inserted into the RNN result set denoted as Rp. The expansion in each path terminates
once k objects have been found in that direction. For obtaining an RNN at point p2, the simple method
is to repeat the procedure executed at p1. However, the use of recomputation whenever query q or any
data object changes its location significantly degrades the performance of the algorithm. To address
this issue, we introduce the safe exit approach.

In the proposed framework, the server computes the safe exit points for each moving object and
query object. Because we are addressing a complex problem where both query objects and data objects
are moving, it is necessary to compute the safe exit points for each moving data object. The server
maintains a set of moving queries and a set of moving objects. The query results will be the same until
all the objects lie inside their respective safe exit points. Whenever a query or data object leaves its
safe exit points, the server recomputes the RkNN and safe exit points for the query and data objects.
However, the computation of safe exit points for all of the data objects degrades the performance of
the algorithm. To address this issue, we devised pruning rules that allow us to compute the safe exit
points for only the unpruned objects.

As mentioned previously, we are addressing the problem of continuously monitoring RNN queries
where both query and data objects are moving freely in a road network. Therefore, the following
events can change the query result.

Event 1: The query object q moves outside of its respective safe exit points.
Event 2: An object o ∈ UO moves outside of its respective safe exit points.
Event 3: The movement of pruned objects changes the RkNN set.
Figure 2 illustrates the request flow for processing RkNN queries. Initially, the query object q

(client) issues an RkNN query to server along with the current location (Step 1). Upon receiving
a request, the server computes RkNN result set Rk and safe exit points for query and unpruned data
objects (Step 2 and 3). The query results remain valid, until any of the abovementioned three events
occurs. To monitor Event 1, the query object checks its location against the received safe exit points
(Step 5). If query object travels beyond any safe exit, client re-issues an RkNN query to the server for
an updated result and its safe exit points. A server monitors the movement of data objects to verify
Events 2 and 3 (Step 6). If either Event 2 or 3 occurs, the server recomputes the query results and
notifies the client.
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4. Safe Exit Algorithm for Moving RkNN Queries and Moving Objects

In this section, we develop techniques to monitor moving RkNN queries and moving objects in
a road network. In Section 4.1, we present an algorithm for computing the safe region for moving
object q. The monitoring of data objects is described in Section 4.2. We present the extensions of the
proposed approach to other variants of RkNN queries in Section 4.3. Finally, Section 4.4 analyzes the
time and space complexities of CORE-X.

4.1. Safe Region for Moving q

In this section, we present a new safe exit algorithm that addresses the issue for moving RkNN
queries and moving objects in a road network. Algorithm 1 depicts the skeleton of the proposed
safe exit algorithm for computing safe regions. It consists of three phases: (1) determining the useful
objects that can contribute to the safe region; (2) computing the influence region of the useful objects;
(3) computing the safe exit points for the query objects.

Algorithm 1: Computation of Safe Regions (skeleton)

Input: O: data objects, q: query object, k: integer number
Output: SR: Safe Region
1: Object set O′ ← roadnetwork(O, q, k)
2: Object set O+ ← {o+ ∈ O′|dist(o, q) < dist(o, ok+1)}
3: Object set O− ← {o− ∈ O′|dist(o, q) >dist(o, ok)}
4: While O+ or O− is non-empty do
5: Object o = pickobject(O+, O−)
6: If o ∈ O+then
7: IR+ ← computeIR(O+, O−, k)
8: SR← SR ∩ IR+

9: Else
10: IR− ← computeIR(O+, O−, k)
11: SR← SR− ∪IR−

12: End while
13: Return SR

Algorithm 1 presents the skeleton of the proposed idea. The algorithm begins by determining
the answer and non-answer objects. The details of the methodology are explained in Section 4.1.1.
Then, in Phase 2, the algorithm computes the influence region of the answer objects and non-answer
objects (Section 4.1.2). Finally, it computes the safe region by performing intersection and set difference
operations on the road segments (Section 4.1.3).
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4.1.1. Determining Useful Objects

This phase aims at determining potential objects that could contribute to the computation of the
safe region. The goal is to retrieve a small set of data objects to reduce the computation overhead.
In our study, the data objects are divided into two categories: answer objects (denoted by O+) and
non-answer objects (denoted by O−).

Definition 1. An object o is called an answer object if dist(o, q) ≤ dist(o, o′) where o′ is any other object in
the road network. Similarly, we can generalize this definition for RkNN: an object o is called an answer object if
dist(o, q) ≤ dist(o, ok+1), where ok+1 is the (k+1)th NN object of o. That is, we can say that all answer objects
are RkNNs of query q, therefore, o+ ∈ Rk.

Definition 2. An object o is called a non-answer object if dist(o, q) > dist(o, o′), where o′ is any other object
in the road network.

Similarly, we can generalize this definition for RkNN: an object o is called a non-answer object
if dist(o, q) > dist(o, ok), where ok is the kth NN object of o. That is, we can say that all non-answer
objects are not RkNN of query q, therefore, o− /∈ Rk.

A simple method for retrieving the Rk set is to traverse the network from q, and for each data
object o ∈ O encountered, issue a nearest-neighbor query. If q ∈ NN(o), q is the closest object to o.
Consequently, o+ ∈ Rk. However, this approach must evaluate all the data objects because the size
of Rk is not fixed and the road network may contain points that are far from q. To avoid unnecessary
road network exploration, we present the pruning lemma.

Before presenting the lemma, it is necessary to define closed nodes. A node n is called a closed
node if there exists an object o such that dist(n, o) < dist(n, q). The object o is called a blocking
object because it causes node n to be a closed node. In Figure 1, node n2 is a closed node because
dist(n2, o1) < dist(n2, q), which makes o1 a blocking object.

Lemma 1. An object o cannot be the RNN of q if the shortest path between q and o contains a closed node with
a blocking object o′, where o′ 6= o.

Proof. Let us assume that there exists a closed node n on the shortest path between o and q.
The shortest distance between o and q is dist(o, q) = dist(n, o) + dist(n, q). Let o′ be the blocking
object and dist(o, o′) = dist(n, o) + dist(n, o′). As we know dist(n, o′) < dist(n, q), therefore,
dist(o, o′) < dist(o, q). Therefore, o cannot be an RNN of q.

In Figure 1, the data object o2 cannot be an RNN of q because the shortest distance between o2 and
q passes through n2. Because dist(n2, o1) = 2 and dist(n2, q) = 3, data object o1 is closer to o2 than q.
The above lemma can be easily extended to RkNN. An object o cannot be the RkNN of q if the shortest
path between q and o contains a node n and there exist k data objects o′ such that for every object o′,
dist(n, o′) < dist(n, q), where o′ 6= o.

Algorithm 2 presents the pseudo code for determining the answer objects. CORE-X traverses
the network around q in a similar fashion to Dijkstra’s algorithm; using Lemma 1, it eliminates the
nodes that may not lead to RNNs. The algorithm begins by exploring the active edge where query
object q is located and expands the network in an increasing order of distance from the query object
q. Each entry in the queue has the form 〈pa, edge〉, where pa indicates the anchor point on the edge.
For an active edge, q becomes the anchor point. Otherwise, neither of the boundary nodes of the
edge, i.e., ns or ne, becomes the anchor point. If the desired number of answer objects is not found
on an active edge, the edges adjacent to the boundary nodes are enqueued. The edges are popped
in an increasing order of distance from q. The traversal of the edges is terminated when the queue
is exhausted. Line 4 initializes a queue by inserting the active edge. If an edge contains a data object



ISPRS Int. J. Geo-Inf. 2016, 5, 247 9 of 26

o, we must verify whether o ∈ RkNN(q). Thus, the algorithm issues a verify(o, k, q) query (Line 10).
The verification query checks if q is among the kNNs of data object o by applying a range-NN query
around object o with the range set to dist(o, q). If q = kNN(o), o is the RkNN of q. Therefore, o is added
to the result set Rk (Line 12). If the edge does not contain any data object o, the algorithm continues its
expansion and enqueues the adjacent edges of the boundary node.

Algorithm 2: Answer object(q, k)

Input: q: query location, k: integer number
Output: Rk: query result (answer objects)
1: queue← ∅ /* queue is a priority queue with edges ordered by distance to q*/
2: Ak ← ∅ /* set of answer objects*/
3: visited← ∅ /*stores information of visited edges */
4: queue.push(q,edgeactive) /* edgeactive indicates active edge */
5: While queue is not empty do
6: 〈pa, edge〉 ← queue.pop()
7: If 〈pa, edge〉 /∈ visited then
8: visited← visited ∪ {edge}
9: If edge contains a data object o
10: kNN(o): verify(o, k, q)
11: If q discovered by verification
12: Rk ← Rk ∪ o
13: Else
14: queue.push

〈
nβ, edge

〉
15: End while
16: Return Rk

Let us consider the example presented in Figure 1, where query q requested one RNN (k = 1).
We will consider this example throughout this section. The algorithm starts expansion from the active
edge, which is e(n2, n3). Because no data object is discovered on that edge, edges adjacent to the
boundary nodes will be added to the queue. The edges adjacent to the closest boundary node are
enqueued first. Therefore, edges e{(n3, n4), (n3, n6)} are enqueued. Data object o6 is first discovered
on (n3, n4), which triggers the verification query verify(o6, 1, q). Because q = NN(o6), o6 is added to
the result set Rk. Recall that by Lemma 1, node n4 is a closed node with object o6 as the blocking
object. Therefore, all the other objects for which the shortest distance passes through n4 except o6 are
automatically pruned. Then, data object o4 is discovered on e(n3, n6), by verification of o4, q 6= NN(o4);
therefore, the search also terminates in this direction. Next, the edges adjacent to n2 are added to the
queue, e{(n1, n2), (n2, n5), (n2, n7)} and data object o1 is retrieved on e(n1, n2). The data object o1 is
verified and added to the result set because q = NN(o1). The search terminates as no further expansion
is required in this direction because node n2 is a closed node.

Next, we determine the non-answer objects that can contribute to the safe region. Useful
non-answer objects UO− ∈ O− are objects for which any o+ = NN(o−). In other words, UO−

are RNNs of answer objects. RNNs of Useful Objects (UO) can be determined by the same algorithm
making these modifications: (1) the anchor point is o+ instead of q and (2) verification query verify(o, k, q)
is modified to verify(o, k, o+). The algorithm reuses the results of the range-NN queries issued at the data
objects to avoid multiple verification of the same data objects. When the computation is completed,
the cached query results are removed to reduce the memory consumptions.

Finally, we can conclude that useful objects are: (1) all answer objects and (2) RNNs of answer
objects. Now, let us determine the UO objects for k = 2 in the given example in Figure 1. For explanation,
Table 2 displays the kNNs of each data object.

From Table 2 it is clear that o1 and o6 are both answer objects because q is one of the 2NNs. Now,
from the non-answer objects, we can see that o2 is the RNN of o1 because o1 = 2NN(o2). Similarly, o7 is
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the RNN of o6. Hence, the set of useful objects is UO = {o1, o2, o6, o7}. Data objects o3, o4, and o5 have
been pruned.

Table 2. Summary of 2NNs for o ∈ O.

Data Object 2NNs Distance

o1 (q, o2) (5, 6)
o2 (o3, o1) (6, 6)
o3 (o4, o5) (4, 5)
o4 (o5, o3) (3, 4)
o5 (o4, o3) (3, 5)
o6 (q, o7) (4, 5)
o7 (o6, o5) (5, 7)

.

4.1.2. Computing Influence Region for Useful Objects

After we retrieve the set of useful objects, the next step is to compute the influence region of the
answer and non-answer objects.

Influence Region of Answer Objects
The influence region of the answer objects is defined as:

IR+ =
{

p
∣∣dist

(
o+, p

)
≤ dist

(
o+, ok+1

)}
(1)

Here, ok+1 denotes the (k+1)th nearest neighbor of o. By definition, the influence region of the answer
objects contains all the points for which q = NN(o+). That is, it contains all of the points where object
o remains o+.

The influence region of answer objects can be computed by exploring the network around the
answer object in a manner similar to that explained in Section 4.1.1. The exploration terminates with the
discovery of the (k+1)th nearest neighbor of the answer object. The influence region will be indicated
by range(o, d), where d is the dist(o, ok+1).

Figure 3 indicates the influence region of object o1 for the example scenario discussed above.
The expansion of the road network starts from o1 until it finds ok+1, which is 3NN in this example.
Object o7 is 3NN of o1 and dist(o1, o7) = 8. The algorithm will issue a range(o1, 8) query that marks all
of the points as the influence region of o1 as shown in Figure 3. Similarly, the influence region of o6 is
indicated in Figure 3. The data object o4 is the 3NN of o6 and dist(o6, o4) = 7. Therefore, the range(o6, 7)
query marks all the points within the distance of “7” from o6. The bold lines in Figures 3 and 4 indicate
the influence region of o1 and o6, respectively.

Influence Region of Non-Answer Objects
The influence region of non-answer objects is defined as:

IR− =
{

p
∣∣dist

(
o−, p

)
≤ dist

(
o−, ok

)}
(2)

The influence region of non-answer objects can be computed from the distance between the
non-answer object and kth object. Here ok denotes the kth nearest neighbor of o. In other words,
the influence region of non-answer objects contains all the points where object o remains o−.
The influence region of non-answer objects is computed in the same manner as the influence region
of answer objects, the only difference is that the algorithm explores and computes the distance to the
kNN object instead of (k + 1)NN.

Consider object o7 in Figure 1: 2NNs of o7 = (o6, o5) with weights (5, 7). In this example, o5 is the
second NN of o7 and dist(o7, o5) = 7. Therefore, the influence region of object o7 is “7” units from o7

in every connected direction. Similarly, we can compute the influence region of o2. The bold lines in
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Figures 5 and 6 indicate the influence region of o2 and o7, respectively. The NNs for answer objects
change when the query object moves outside the influence region, whereas in the case of non-answer
objects, the result changes when the query object moves inside an influence region. That is, the NNs
of the answer object remain the same until the query object lies inside the influence region and for
non-answer objects, the NNs remain the same until query object lies outside the influence region.
Note that once an influence region is computed, it remains valid as long as q and UO lie within their
respective safe regions. Hence, recomputation of the influence region is only required when either q or
UO leave their respective safe regions.
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Algorithm 3 computes the influence region of answer objects and non-answer objects.

Algorithm 3: Computation of Influence Region (O+, O−, k)

Input: O+: answer objects set, O−: non-answer objects set, k: integer number
Output: IR+ influence region of answer objects, IR− influence region of non-answer objects
1: IR+ ← ∅ , IR− ← ∅

/* Influence Region of answer objects */
2: For each O+ do
3: Expand the road network until ok+1;
4: d← dist(o, ok+1)

5: Mark range(o, d);
6: IR+ ← IR+ ∪ IR+ ;
7: End for

/* Influence Region of non-answer objects */
8: For each O− do
9: Expand the road network until ok;
10: d← dist(o, ok) ;
11: Mark range(o, d);
12: IR− ← IR− ∪ IR− ;
13: End for
14: Return IR+ and IR−

4.1.3. Computation of Safe Exit Points

The safe region SR of a query q is defined as follows:

SR =
{
∩IR+ − ∪IR−

}
(3)

where IR+ denotes the influence region of answer objects and IR− denotes the influence region of
non-answer objects. From the definition, we can see that any point that lies in the intersection of the
influence region of answer object O+ is regarded as a safe region and that any point p that lies in the
influence region of non-answer object O− should be excluded.

In a road network, the safe region is expressed by a set of segments. In Figure 1, recall that o1 and
o6 are answer objects and o2 and o7 are useful non-answer objects. By applying the above formula,
the safe region can be expressed as:

SR = {(IR(o1) ∩ IR(o6))− (IR(o2) ∪ IR(o7))} (4)

Table 3 summarizes the computation of the safe exit points for the query object q in Figure 1. In the
previous section, we computed the influence region IR of all useful objects, which was described by set
of segments. To obtain the safe region, we must perform intersection and set difference operations
on the road segments. We obtain segments e(n2, n3), s{(n3, s2), (n3, s3)} from the intersection of IR(o1)
and IR(o6). As o2 and o7 are non-answer objects, the safe region must exclude the IR(o2) and IR(o7).
Thus, the safe region would be the segments s{(s5, n3), (n3, s2)}. The set of boundary points s2 and s5

becomes the set of safe exit points. Figure 7 presents the safe exit points of q.
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Table 3. Computation of safe region of q.

O Influence Region IR(o1) ∩ IR(o4) {IR(o1) ∩ IR(o4)} − {IR(o2) ∪ IR(o5)}
o1 e{(n1, n2), (n2, n3), (n2, n7)}s{(n2, s1), (n3, s2), (n3, s3), (n7, o7)}
o6 e(n2, n3), (n3, s4), (n4, n7)s{(n3, s4), (n3, o4), (n4, s6)} e(n2, n3)s{(n3, s2), (n3, s3)}
o2 e(n2, n5)s{(o1, n2), (n2, s5), (n2, s6), (n5, o3)} e(n2, n3)s{(n3, s2), (n3, s3)} s{(s5, n3), (n3, s2), (n3, s3)}
o5 e(n2, n7), (n4, n7), (n3, n4)s{(n4, o5), (n2, s7), (n2, s8)} e(n2, n3)s{(n3, s2), (n3, s3)} s{(s5, n3), (n3, s2)}
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4.2. Monitoring of Data Objects

As mentioned previously, we are studying a special case where both data objects and query objects
can move randomly in a road network. The RkNN for a query q can be changed by the motion of data
objects. In this section, we present techniques to continuously monitor the data objects. As discussed
in Section 4.1.1, the data objects are divided into types: (1) UO objects and (2) pruned objects. Since the
movement of UO is critical and a slight movement can change the results, we compute the safe exit
points of all the UO, whereas for pruned objects, we use the monitored network based on the influence
region computed in Section 4.1.2. The computation of safe exit points of all the pruned objects will also
increase the computation cost.

4.2.1. Computation of Safe Exit Points of Useful Objects (UO)

Recall that answer objects are those objects whose query object q is one of its kNN objects.
This means that an answer object lies within the safe exit points as long as its kNN objects remain
the same. Similarly, non-answer useful objects are those objects for which any of the answer objects
are among its kNN. This means that all useful objects lie inside the safe exit points as long as their
respective kNNs are the same. Therefore, we must monitor the nearest neighbors of moving objects in
a road network. We use the approach of Cho et al. [3], Safe Exit Algorithm (SEA), which can efficiently
compute the safe exit points of a moving nearest neighbor query on a road network.

First, we formally define a set of safe exit points for a moving NN query in the road network.
Let Ω be the set of safe exit points for a kNN query point q and O =

{
o1, o2, . . . , o|O|

}
be the

set of objects of interest to q. Assume that the answer set (i.e., O+ ) of q and its non-answer set
(i.e., O−) are O+ =

{
o+1 , o+2 , . . . , o+k

}
and O− =

{
o−k+1, o−k+2, . . . , o−|O|

}
, respectively. Then, it holds that

d(q, o+) ≤ d(q, o−) for an answer object o+ ∈ O+ and a non-answer object o− ∈ O−. Finally, Ω is
defined as follows:

Ω =
{

ω ∈ G
∣∣∣MAX

(
d
(
ω, o+1

)
, d
(
ω, o+2

)
, . . . , d

(
ω, o+k

))
= MIN(d

(
ω, o−k+1

)
, d
(

ω, o−k+2

)
, . . . d

(
ω, o−|o|

)
)
}

(5)

where MIN() and MAX() return the minimum and maximum values of the input array,
respectively. That is, a safe exit point ω is the center point, i.e., AX(d

(
ω, o+1

)
, . . . , d

(
ω, o+k

)
) =

MIN(d
(

ω, o−k+1

)
, . . . , d

(
ω, o−|o|

)
), between the farthest answer object and the nearest non-answer object.

The following two main lemmas are presented to determine whether a safe exit point exists in
the segment.

Lemma 2. If Anβ
∪O(nβ ,pa) 6= Apa , there is a safe exit point ω in the segment.

Proof. Please refer to [3]. This lemma indicates that a safe exit point in a segment exists if the set of
answer objects at nβ is not equal to the set of answer objects at pa.

Lemma 3. If Anβ
∪O(nβ ,pa) = Apa , there is no safe exit point in the segment.

Proof: Please refer to [3]. This lemma indicates that a safe exit point in a segment does not exist if the
set of answer objects at nβ is equal to the set of answer objects at pa.

For this purpose, we introduce o−n and o+f . For simplicity, let us assume that Anβ
∪O(nβ ,pa) − Apa

corresponds to O− = {o−1 , o−2 , . . . , o−|O− |} and Apa corresponds to O+ = {o+1 , o+2 , . . . , o+|O+ |}. Then,

at a point p ∈
[
nβ, pa

]
, o−n is referred to as the nearest non-answer object to p such that

d(p, o−n ) = MIN(d(p, o−1 ), d(p, o−2 ), . . . , d(p, o−|o− |)). Similarly, at a point p ∈
[
nβ, pa

]
, o+f is referred

to as the farthest answer object from p such that d(p, o+f ) = MAX(d(p, o+1 ), d(p, o+2 ), . . . , d(p, o+|o+ |)).

The midpoint between o−n and o+f becomes a safe exit point ω. That is, d(ω, o−n ) = d(ω, o+f ).
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We now discuss the computation of the safe exit points for the answer object o1 in the example
road network given in Figure 1. Table 4 summarizes the computation of the safe exit points for data
object o1 for the example scenario in Figure 1. Recall that we are considering k = 2. The answer objects
of data object o1 are Ao1 = {q, o2}.

Table 4. Computation of safe exit points for o1.

Segment/Edge pa Apa
Anfi O(nfi,pa)

Safe exit point

s(n1, o1) in e(n1, n2) o1 Ao1 = {q, o2} An1 = {q, o2} {∅} none
s(o1, n2) in e(n1, n2) o1 Ao1 = {q, o2} An2 = {q, o2} {∅} none

e(n2, n3) n2 An2 = {q, o2} An3 = {q, o6} {q} ω1
e(n2, n5) n2 An2 = {q, o2} An5 = {o2, o3} {o2} ω2
e(n2, n7) n2 An2 = {q, o2} An7 = {q, o7} {q} ω3

SEA starts exploration from the active edge containing object o1. Because e(n1, n2) is the active
sequence, the location of o1 is the anchor point. Each of the two segments s(n1, o1) and s(o1, n2)

within e(n1, n2) is explored individually. As shown in Table 4, for s(n1, o1), pa = o1, Ao1 = {q, o2},
An1 = {q, o2}, and O(n1,o1)

= {∅}. By Lemma 3, An1 ∪O(n1,o1)
= Ao1 ; therefore, there is no safe exit

point within s(n1, o1). Similarly, for segment s(o1, n2) there is no safe exit point based on Lemma 3.
Therefore, the edges adjacent to n2 are explored with n2 = pa. The edge e(n2, n3) will be

explored next. As indicated in Table 4, for e(n2, n3), pa = n2, An2 = {q, o2}, An3 = {q, o6}, and
O(n2,n3)

= {q}. By Lemma 2, i.e., An3 ∪O(n2,n3)
6= An2 , a safe exit point exists at the edge. For each

point p ∈ e(n2, n3),o+f will be selected from the answer objects in An2 = {q, o2}, whereas o−n will be
selected from the non-answer objects in An3 ∪O(n2,n3)

− An2 = {o6, o4}. As illustrated in Figure 8,
o+f = o2 because for every point ∈ e(n2, n3), dist(p, o2) > dist(p, q), whereas o−n = o6 because for every
point p ∈ e(n2, n3), dist(p, o6) < dist(p, o4). The safe exit point ω1 is the midpoint between o2 and o6.
That is, dist(ω1, o2) = dist(ω1, o6), where dist(ω1, o2) = x + 4 and dist(ω1, o4) = −x + 7 for 0 < x < 5.
Consequently, x = 1.5, which means that the distance from n2 to ω1 is 1.5.
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Figure 8. Determination of safe exit point ω1.

Next, we determine a safe exit point in the edge e(n2, n5). As shown in Table 4, for e(n2, n5),
pa = n2, An2 = {q, o2}, An5 = {o2, o3}, and O(n2,n5)

= {o2}. By Lemma 2, i.e., An6 ∪O(n2,n6)
6= An2 ,

a safe exit point exists in the edge. For each point p ∈ e(n2, n6), o+f will be selected from the
answer objects in An2 = {q, o2}, whereas o−n will be selected from the non-answer objects in
An6 ∪O(n2,n6)

− An2 = {o3}. As indicated in Figure 9, o+f = q because for every point ∈ e(n2, n6),
dist(p, q) > dist(p, o2), because there is only one non-answer object for e(n2, n6), therefore, o−n = o3.
The safe exit point ω2 is the midpoint between q and o3. That is, dist(ω2, q) = dist(ω2, o3), where
dist(ω2, q) = x + 3 and dist(ω2, o3) = −x + 10 for 0 < x < 7. Consequently, x = 3.5, which means
that the distance from n2 to ω2 is “3.5.”
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Figure 9. Determination of safe exit point ω2.

Similarly, we compute a safe exit point in the edge e(n2, n7). Figure 10 displays safe exit
point ω3 in the edge e(n2, n7). Safe exit point ω3 is the midpoint between o2 and o7. That is,
dist(ω3, o2) = dist(ω3, o7), where dist(ω3, o2) = x + 4 and dist(ω3, o7) = −x + 6 for 0 < x.
Consequently, x = 1, which means that the distance from n2 to ω3 is “1.”.
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Figure 10. Determination of safe exit point ω3.

4.2.2. Monitoring of Pruned Objects

Recall that there are three different events that can affect the RkNN results. Sections 4.1 and 4.2.1
present the continuous monitoring of query and UO, respectively. In this section, we discuss the
monitoring of pruned objects. To avoid any additional computation, we are using the precomputed
influence region of UO as the monitoring region for pruned objects. By definition, the influence region
of an answer object is valid until q is a kNN of the answer object, whereas in the case of a non-answer
object, the influence region remains valid until q is not a kNN of the non-answer object. Therefore,
it is necessary to monitor the objects that are entering or leaving the influence region because the
movement of objects in and out the influence region can change the results. Therefore, we only start
monitoring the movement of a pruned object once it enters or leaves the influence region.

Let o be a pruned object located outside the influence region of any UO. The monitoring of object
o will not trigger unless it enters the influence region of any UO. Once it enters the influence region,
the monitoring will start and the results set will only change when the NN of any UO changes. If the
movement of a pruned object does not change the NN set of any UO, then the result set remains valid
and it is not necessary to call the determining UO phase again. The determining UO phase will only
be called when the NN set changes.

4.3. Extensions

4.3.1. RkNN Queries in Directed Road Networks

Previous sections discussed the monitoring of RkNN queries in a road network that are
represented by bidirectional graphs. In this section, we identify the modifications required to extend the
proposed technique to a directed road network where each road segment has a particular orientation.

First, we discuss the modifications required for the computation of the safe exit points of q.
The majority of the changes are required to be implemented in Phase 1 (i.e., determining useful
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objects) and are automatically addressed by redefining dist(p1, p2). Given two points p1 and p2,
the shortest path distance dist(p1, p2) is the minimum distance from p1 to p2. By applying this modified
definition, the categorizing of answer and non-answer objects remains unchanged. The definition
of the closed node will be same. Consequently, Lemma 1 remains valid. Algorithm 2, can be used
in a similar manner. The only difference is that to determine the UO, we explore the network in the
reverse direction, i.e., an edge e(n1, n2) is considered the adjacent edge of n1 if and only if the edge is
bidirectional or the direction of the edge is from n2 to n1.

Phase 2 is the same, except to determine ok+1 or ok we expand the road network in the direction
of the edges. Further, the computation of the influence region of o+ is the same, except the distance
dist(o+, ok+1) is the shortest path from o+ to ok+1 instead of the shortest path from o+ to ok+1. Similarly,
the computation of the influence region of o− is the same, except the distance dist(o−, ok) is the shortest
path from o− to ok instead of the shortest path between o− and ok. Phase 3 is the same as for a directed
road network. Finally, we discuss the modifications in the computation of the safe exit points of
the UO. SEA functions in a similar fashion except it only explores the network in the direction of
the edges. The remainder of the methodology, i.e., Lemma 2, Lemma 3, and the definition of Ω,
remains unchanged.

4.3.2. RkNN Queries in Dynamic Road Networks

In this section, we extend CORE-X to dynamic road networks where the network distance changes
depending on the traffic conditions. The query result or safe region of query or data object may
frequently be nullified by updating the weights of some edges, even though the query object q or data
object o remains within their respective safe region. Thus, we introduce a compressed safe region to
reduce the frequency of evaluations of the safe region in a dynamic road network. In this section,
the safe region in a static road network is denoted as the original safe region, SRor, whereas the safe
region in a dynamic road network is denoted as the compressed safe region, SRco, which is clearly
a subset of SRor. To simplify the explanation, we study the impact of a dynamic road network with
respect to q only.

Unlike the original safe region, the compressed safe region is determined within only the active
sequence. Figure 11 illustrates the difference between SRor and SRco, where n2n3 is the active edge.
The bold line in Figure 11a indicates that for SRor, s1, s2, and s3 are the safe exit points. In dynamic road
networks, the safe region is compressed to active edge n2n5 as indicated in bold lines in Figure 11b.
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Figure 11. Difference between original safe region and compressed safe region SRor and compressed
safe region SRco. (a) Original safe region SRor; (b) Compressed safe region SRco.

Next, we introduce a critical region to monitor the validity of the safe region effectively when the
weight of an edge is changed. The critical region CR is defined as CR = IR+ ∪ IR−, where IR+ and
IR− are the influence region of answer and non-answer objects, respectively. By definition, the critical
region contains all the points pcr such that pcr ∈ {IR+, IR− }. As illustrated in Figure 12a, there are
two data objects o1 and o2 and a query object q. For k = 1, it is obvious that o1 is an answer object
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because q = NN(o1) and o2 is a non-answer object because o1 = NN(o2). Thus, the critical region
contains all the points pcr ∈ {IR(o1), IR(o2)}, denoted as the bold line in Figure 12b with c1 and c2 as
boundary points. The safe region of q may be affected when the weight of an edge associated with the
critical region changes. Therefore, the critical regions of q are stored and indexed to promptly verify
whether a change affects the safe region. If the influence region of any UO is updated, the critical
region of q is also updated accordingly. Clearly, changes to edges that are not associated with the
critical region can be safely ignored.
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Figure 12. Difference between original safe region SRor and compressed safe region SRco. (a) Road
Network Example; (b) Critical Region of q.

Figure 13a indicates the critical region by bold lines at time ti. Suppose, because of heavy traffic
conditions, the weights of two edges n1n2 and n2n5 are changed at time tj from “3” to “6” as displayed
in Figure 13b. The update to edge n2n5, which is associated with a critical region, may affect the safe
region. However, the update to edge n1n2, which is not part of a critical region, does not affect the safe
region and thus can be safely ignored.
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Figure 13. Updating the weights of two edges n1n2 and n2n3 where ti < tj. (a) Critical Region of q at
ti; (b) Updates to n1n2 and n2n3 at tj.

4.3.3. Bichromatic RkNN Queries

Unlike the monochromatic case where all objects are of the same type, in bichromatic RNN,
we distinguish between two types of objects O and S. For a query object of type S, the objective is to
determine data objects of type O for which the query point is their closest object in the set S. With this
fundamental difference between MRkNN and BRkNN, CORE-X maintains the same methodology to
manage both types of query. This section presents the changes required in the proposed technique to
process BRkNN queries.

1. In determining the UO phase, only objects of type S are considered as blocking objects to prune
the network. Therefore, a closed node can be redefined as a node n for which there exists an object
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s ∈ S such that dist(n, s) < dist(n, q). The remainder of Lemma 1 remains unchanged. The objects
of type O that lie in the unpruned network are considered as UO objects, whereas the objects of
type S in the unpruned network are called active objects.

2. Similar to MRkNN, UO objects are categorized into answer and non-answer objects. Answer
objects for BRkNN queries can be defined as an object o for which dist(o, q) < dist(o, sk+1) where
sk+1 is the (k +1)th NN object of o in dataset S. Similarly, a non-answer object is defined as an object
o such that dist(o, q) > dist(o, sk), where sk is the kth NN object of o in dataset S.

3. The influence region of an answer object is defined as IR+ = {p|dist(o+, p) ≤ dist(o+, sk+1)},
where dist(o+, sk+1) is the distance between the answer object and (k+1)th NN in set S. Similarly,
the influence region of a non-answer object is defined as IR− = {p|dist(o−, p) ≤ dist(o−, sk)},
where dist(o−, sk) is the distance between the non-answer object and kth nearest object in set S.
Phase 3 remains unchanged for BRkNN.

4. The computation of safe exit points for the UO remains the same. The only difference is for
BRkNN, the farthest answer object and nearest non-answer object belong to set S. Therefore,
the safe exit point is the center point between s+f and s−n .

5. The safe region of an active object can be computed in a similar fashion as q because both belong
to same data type.

4.4. Analysis of Time and Space Complexities

In this section, we analyze both time and space complexities of the CORE-X algorithm. Recall
that we are studying RkNN queries in an undirected road network that is represented as G = (N, E, W).
Let Np

k and Ep
k be the sets of nodes and edges of point p within the kNN objects, respectively.

First, we analyze the time complexity of CORE-X. CORE-X retrieves a set of UO objects
by traversing the road network from query location q, which has a time complexity of
T
(

2
∣∣∣Eq

k

∣∣∣+ ∣∣∣Nq
k

∣∣∣logNq
k

)
because an edge is visited at most twice, first to determine the answer objects

and then to determine the useful non-answer objects. Here, time complexity of T
(∣∣∣Nq

k

∣∣∣logNq
k

)
refers

to the time complexity of the shortest path algorithm from a query point to kRNN objects [29].
Next, CORE-X computes the safe exit points using the retrieved UO objects. For each data
object o ∈ UO, the influence region of data object o is searched to discover safe exit points,
which has a time complexity of T
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. Thus, the time complexity of CORE-X is
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. The overall time complexity of CORE-X can be

improved to T
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∣∣∣)) using the preprocessed ordering of nodes in
static road networks. However, in the case of dynamic road networks, the preprocessing technique is
naturally insignificant because updating the weight of some edges often invalidates the preprocessed
information. The search space of CORE-X becomes a region within a distance of k RNNs of q and
(k+1)NNs of the data objects because it is necessary to explore the (k+1)th NN to compute the influence
region of an answer object. Finally, the space complexity of CORE-X is

∣∣∣Oq
k

∣∣∣+ ∣∣∣OUO
k+1

∣∣∣.
5. Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm (CORE-X) through
simulation experiments. We describe our experimental settings in Section 5.1 and present our
experimental results for static and dynamic road networks in Sections 5.2 and 5.3, respectively.

5.1. Experimental Settings

Our experiments were performed using a real road network [30] for San Joaquin County,
California, USA, which contains 18,263 nodes and 23,874 edges. The road network contains a set
of queries and a set of data objects that can move randomly in the network. We simulate moving
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objects (both query and data objects) using the network-based moving-object generator [31]. In each
experiment, we evaluated the performance by varying a single parameter within the range indicated;
all other parameters were set to the default values indicated in bold. All queries were monitored
continuously for 600 timestamps. Table 5 lists the default parameters used in our experiments.

Table 5. Experimental parameter settings.

Parameter Range

Number of data objects (NData) 10, 50, 100, 150, 200, 250 (×1000)
Number of queries (Nqry) 400, 800, 1200, 1600, 2000
Number of requested RNNs (k) 5, 10, 15, 20, 25
Speed of objects (Vobj) 20, 40, 60, 80, 100 (km/h)
Percentage of moving objects (Robj) 20, 40, 60, 80, 100
Percentage of updated edges (Rupd) 0, 5, 10, 25, 30

We evaluated the performance of CORE-X using the following measures: (1) total amount of server
CPU time per timestamp, which indicates the query processing time and (2) total communication cost
as the total number of points (i.e., the location updates sent by data and query objects, and the query
results and safe exit points returned by the server) transferred between clients and the server. The total
query processing time is dominated by the computations (i.e., determining UO, computation influence
region and safe exit points) performed at the server end, therefore we only measure the CPU time on
the server. The battery power and wireless bandwidth consumption typically increase with the amount
of data transferred between objects(clients) and servers, thus we use the amount of transferred data as
a metric to evaluate the communication cost. For static road networks, we compared CORE-X with
the state-of-the-art algorithm SAC [8] and a baseline algorithm. SAC continuously monitors RkNN
queries by assigning a safe region to query and data objects, whereas baseline algorithm recomputes
the results at each timestamp. For dynamic road networks, we compared the proposed algorithm
with only the baseline because SAC does not address dynamic road networks. All algorithms were
implemented in Java and executed on a desktop PC, 2.80 GHz, Intel Core i5 with 4 GB memory.

5.2. Experimental Results for Static Road Networks

Figure 14a presents the performance of baseline, SAC, and CORE-X with respect to the number
of objects. Observe that all the three algorithms are sensitive to the increase in the number of objects
because the algorithm must address updates from a large number of objects. The performance of
SAC degrades with a large number of data objects because filtering and verification of more data
objects are required. The query processing time of CORE-X increases with the increase in data objects
mainly because the influence region and ω for a large number of objects must be calculated. However,
CORE-X scales better than baseline and SAC.

Figure 14b displays the comparison of computation cost of CORE-X, SAC, and baseline with
different values of Nqry. Experimental results reveal that the computation time of all algorithms
increases as the number of queries increases. However, CORE-X and SAC consumed considerably
less CPU time than baseline because the query results are valid as long as the query and data objects
remain in their respective safe region. Figure 14c, studies the effect of the proportion of query and data
objects that are moving. Performance of all algorithms degrades as the percentage of moving objects
increases. The computation time of CORE-X increases mainly because with data mobility, the safe
region expires more frequently and the algorithm must recompute the results frequently.

Figure 14d demonstrates the influence of the speed of data objects and query on the performance
of CORE-X, SAC, and baseline algorithms. The experimental results reveal that the baseline and
SAC algorithms incur constant computation costs. The performance of SAC is not significantly
affected by the speed because candidate objects must be verified at each timestamp, regardless of
their speed. Conversely, the performance of CORE-X gradually decreases as the speed of the objects
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increases because objects leave their respective safe regions more frequently. Figure 14e shows the
query processing time of CORE-X, SAC, and baseline as a function of k number of requested RNNs.
Experimental results indicate that the computation time of all algorithms increases with an increase
of the k value. This is expected because with an increase in k, more data objects are required to be
explored and verified. However, CORE-X outperforms SAC and baseline.

ISPRS Int. J. Geo-Inf. 2016, 5, 247  20 of 26 

 

Table 5. Experimental parameter settings. 

Parameter Range
Number of data objects (NData) 10, 50, 100, 150, 200, 250 (×1000) 
Number of queries (Nqry) 400, 800, 1200, 1600, 2000 
Number of requested RNNs (k) 5, 10, 15, 20, 25 
Speed of objects (Vobj) 20, 40, 60, 80, 100 (km/h) 
Percentage of moving objects (Robj) 20, 40, 60, 80, 100  
Percentage of updated edges (Rupd) 0, 5, 10, 25, 30 

We evaluated the performance of CORE-X using the following measures: (1) total amount of 
server CPU time per timestamp, which indicates the query processing time and (2) total 
communication cost as the total number of points (i.e., the location updates sent by data and query 
objects, and the query results and safe exit points returned by the server) transferred between 
clients and the server. The total query processing time is dominated by the computations (i.e., 
determining UO, computation influence region and safe exit points) performed at the server end, 
therefore we only measure the CPU time on the server. The battery power and wireless bandwidth 
consumption typically increase with the amount of data transferred between objects(clients) and 
servers, thus we use the amount of transferred data as a metric to evaluate the communication cost. 
For static road networks, we compared CORE-X with the state-of-the-art algorithm SAC [8] and a 
baseline algorithm. SAC continuously monitors RkNN queries by assigning a safe region to query 
and data objects, whereas baseline algorithm recomputes the results at each timestamp. For 
dynamic road networks, we compared the proposed algorithm with only the baseline because SAC 
does not address dynamic road networks. All algorithms were implemented in Java and executed 
on a desktop PC, 2.80 GHz, Intel Core i5 with 4 GB memory. 

5.2. Experimental Results for Static Road Networks 

Figure 14a presents the performance of baseline, SAC, and CORE-X with respect to the number 
of objects. Observe that all the three algorithms are sensitive to the increase in the number of objects 
because the algorithm must address updates from a large number of objects. The performance of 
SAC degrades with a large number of data objects because filtering and verification of more data 
objects are required. The query processing time of CORE-X increases with the increase in data 
objects mainly because the influence region and ω for a large number of objects must be calculated. 
However, CORE-X scales better than baseline and SAC. 

Figure 14b displays the comparison of computation cost of CORE-X, SAC, and baseline with 
different values of Nqry. Experimental results reveal that the computation time of all algorithms 
increases as the number of queries increases. However, CORE-X and SAC consumed considerably 
less CPU time than baseline because the query results are valid as long as the query and data objects 
remain in their respective safe region. Figure 14c, studies the effect of the proportion of query and 
data objects that are moving. Performance of all algorithms degrades as the percentage of moving 
objects increases. The computation time of CORE-X increases mainly because with data mobility, the 
safe region expires more frequently and the algorithm must recompute the results frequently. 

 
(a) Effect of Ndata (b) Effect of Nqry 

Ndata Nqry 

ISPRS Int. J. Geo-Inf. 2016, 5, 247  21 of 26 

 

 
(c) Effect of Robj (d) Effect of Vobj 

 
(e) Effect of k  

Figure 14. Comparison of computational cost. (a) Effect of Ndata; (b) Effect of Nqry; (c) Effect of Robj; (d) 
Effect of Vobj; (e) Effect of k. 

Figure 14d demonstrates the influence of the speed of data objects and query on the 
performance of CORE-X, SAC, and baseline algorithms. The experimental results reveal that the 
baseline and SAC algorithms incur constant computation costs. The performance of SAC is not 
significantly affected by the speed because candidate objects must be verified at each timestamp, 
regardless of their speed. Conversely, the performance of CORE-X gradually decreases as the speed 
of the objects increases because objects leave their respective safe regions more frequently. Figure 
14e shows the query processing time of CORE-X, SAC, and baseline as a function of k number of 
requested RNNs. Experimental results indicate that the computation time of all algorithms increases 
with an increase of the k value. This is expected because with an increase in k, more data objects are 
required to be explored and verified. However, CORE-X outperforms SAC and baseline. 

In Figure 15a, we study the effect of the number of objects on the communication cost. This 
figure illustrates that the number of messages sent by all algorithms tended to increase as the 
number of objects increased. It is clear, however, that the safe region-based algorithms SAC and 
CORE-X significantly outperformed baseline. The proposed algorithm demonstrates superior 
performance compared to SAC because the client-server communication is not required when the 
query and data objects remain within the safe exit points, whereas in SAC, candidate objects are 
required to report their location to the server for verification whenever they change their location.  

Figure 15b illustrates the effect of the number of queries on the communication cost. Baseline 
incurs constant communication cost, regardless of different values of Nqry. Conversely, the 
communication cost of CORE-X and SAC increases with an increase in the number of queries. The 
communication cost of SAC increases mainly because more data objects are required to be verified at 
each timestamp, which increases the number of server-initiated updates. CORE-X only verifies the 
useful object when it leaves its safe region, which significantly reduces the communication cost.  

Figure 15c presents the performance trends of CORE-X, SAC, and baseline as a function of 
query and data object mobility. As expected, baseline performs most poorly because it must update 
each data object at every timestamp. The communication cost of SAC is higher than CORE-X because 
of its expensive verification method. Figure 15d shows the total communication cost of CORE-X, 
SAC, and baseline with respect to speed of data and query objects. This figure indicates similar 
trends to Figure 14d. SAC incurs constant communication cost because the server-initiated request 
to verify the candidate objects does not depend on the speed. For CORE-X, the objects reach a safe 
exit point earlier when the speed is increased, which increases the communication cost. As indicated 
in Figure 15e, the communication costs of CORE-X, SAC, and the baseline algorithm increase with k. 

Robj Vobj 

k 

Figure 14. Comparison of computational cost. (a) Effect of Ndata; (b) Effect of Nqry; (c) Effect of Robj;
(d) Effect of Vobj; (e) Effect of k.

In Figure 15a, we study the effect of the number of objects on the communication cost. This figure
illustrates that the number of messages sent by all algorithms tended to increase as the number
of objects increased. It is clear, however, that the safe region-based algorithms SAC and CORE-X
significantly outperformed baseline. The proposed algorithm demonstrates superior performance
compared to SAC because the client-server communication is not required when the query and data
objects remain within the safe exit points, whereas in SAC, candidate objects are required to report
their location to the server for verification whenever they change their location.

Figure 15b illustrates the effect of the number of queries on the communication cost.
Baseline incurs constant communication cost, regardless of different values of Nqry. Conversely,
the communication cost of CORE-X and SAC increases with an increase in the number of queries.
The communication cost of SAC increases mainly because more data objects are required to be verified
at each timestamp, which increases the number of server-initiated updates. CORE-X only verifies the
useful object when it leaves its safe region, which significantly reduces the communication cost.

Figure 15c presents the performance trends of CORE-X, SAC, and baseline as a function of query
and data object mobility. As expected, baseline performs most poorly because it must update each
data object at every timestamp. The communication cost of SAC is higher than CORE-X because of
its expensive verification method. Figure 15d shows the total communication cost of CORE-X, SAC,
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and baseline with respect to speed of data and query objects. This figure indicates similar trends to
Figure 14d. SAC incurs constant communication cost because the server-initiated request to verify the
candidate objects does not depend on the speed. For CORE-X, the objects reach a safe exit point earlier
when the speed is increased, which increases the communication cost. As indicated in Figure 15e,
the communication costs of CORE-X, SAC, and the baseline algorithm increase with k. Both CORE-X
and SAC perform better than the baseline method. However, CORE-X significantly outperforms SAC
for all cases because of low verification cost.
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5.3. Experimental Results for Dynamic Road Networks

Figure 16 demonstrates a comparison of the query processing time for a dynamic road network
where the Rupd (%) values of all edges change their weight at each timestamp. The updated edges are
selected randomly, irrespective of the locations of data and query objects. The length of an updated
edge is selected randomly from 0.1 to 10 times the original length.

Figure 16a presents the query processing time as a function of the percentage of updated edges
(Rupd) per timestamp. Here, Rupd = 0 indicates a static road network. Naturally, the query processing
time of baseline is almost constant regardless of the value of Rupd because query objects in baseline
issue RkNN queries at each timestamp. The query processing time of CORE-X increases with Rupd; this
is mainly because the safe region of a query and data object must be updated if an edge is associated
with the critical region of the data or query object. Observe that for Rupd ≤ 25, CORE-X performs
considerably better than baseline, whereas for Rupd = 50, the query processing time of CORE-X is
greater than baseline.
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Figure 16b illustrates the effect of the number of data objects on the query processing time.
The computation time for both algorithms typically increases with Ndata. In this case, CORE-X
significantly outperforms baseline. In Figure 16c, we study the effect of Nqry on the computation
cost. Experimental results reveal that both algorithms are sensitive to an increase in the number of
query objects. The query processing time of CORE-X increases mainly because the computation of
the critical region and safe region for more objects is required. Figure 16d indicates the trend that
computation cost of both algorithms increases with an increase in query and data object mobility.
However, CORE-X scales significantly better than baseline.

Figure 16e is the query processing time of CORE-X and baseline as a function of the speed of the
data and query objects. Baseline has a nearly stable query processing time. However, the computation
cost of CORE-X increases with Vobj because, as the objects move faster, they reach their respective safe
exit points earlier, resulting in more frequent updates of the query results. Figure 16f demonstrates the
influence of the k number of requested RNNs on the performance of both algorithms. As expected,
the computation of both algorithms increases with an increase of the k value. With CORE-X,
the critical region of more data objects needing to be computed increases the size of the critical
region. Consequently, the number of edges associated with the critical region also increases, which
elevates the query processing time.ISPRS Int. J. Geo-Inf. 2016, 5, 247  23 of 26 
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Figure 17 presents a comparison of communication cost of CORE-X and baseline using the same
conditions as those in Figure 16. Figure 17a illustrates the effect of Rupd on the communication cost
of both algorithms. The performance of baseline is not significantly affected by Rupd. However,
the communication cost of CORE-X increases with Rupd because the critical regions of data and query
objects are updated more frequently as Rupd increases. Consequently, the safe regions of the query and
data objects are reevaluated.
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In Figure 17b, we study the influence of the cardinality of the data objects on the communication
costs. Experimental results indicate that CORE-X performs better than baseline because in CORE-X,
server-client communication is only required when the query and data objects leave their safe
regions or when the critical regions of the data and query objects are updated. Figure 17c shows the
communication cost of CORE-X and baseline with respect to the number of query objects. Observe
that the communication cost of baseline does not depend on the number of query objects because each
data object reports its location whenever it changes its location. On the other hand, the communication
cost of CORE-X increases because for a large number of query objects, more data objects are required
to be verified.

Figure 17d exhibits the effect of query and data object mobility on the communication costs.
Clearly, the number of transferred points increases with an increase in Robj. However, CORE-X
consistently provides improved performance compared to baseline. Figure 17e illustrates the effect
of the speed of the data and query objects on communications costs. In CORE-X, the number of
transferred points increases with Vobj for the same reason as discussed earlier in the case of Figure 15d.
As indicated in Figure 17f, the communication costs of CORE-X and the baseline algorithm increases
with k. This is mainly because the number of data objects that require verification and monitoring
increases with k.ISPRS Int. J. Geo-Inf. 2016, 5, 247  24 of 26 
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6. Conclusions

We proposed a new algorithm called CORE-X for the efficient processing of continuous reverse
k nearest neigbor (RkNN) queries in road networks where both query and data objects are moving.
The proposed approach is based on safe exit points, which can significantly improve not only the
computation cost but also the communication cost between server and query object. Moreover,
we presented pruning techniques and influence region-based monitoring to avoid processing of
irrelevant data objects. CORE-X can effectively construct a safe region in a dynamic road network by
introducing a compressed safe region and critical region. The results of experiments conducted using
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real datasets confirm that the proposed algorithm significantly reduces the computation cost and the
communication cost compared to a baseline and state-of-the art algorithm (SAC).

There are several promising directions of future research. First, RNN queries can be studied
for privacy-aware systems to ensure the location privacy of a query object from an attacker. Further,
this study can be extended for uncertain data objects, which may not have exact locations. It is
important to determine their approximate locations and develop accuracy bounds on the query results.
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