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Abstract: In this study, the transitions of land use that occurred in the urban and peripheral areas of
Chihuahua City, Mexico, were determined for the period 1989–2014. Landsat TM and OLI scenes,
as well as the method of Markov Chains (MC) were used. Grasslands and Shrublands were the
land uses that experienced the highest pressures for land use. Grasslands occupied 23.5% of the
area in 1989, decreasing to 16.01% in 2014. Likewise, Shrublands were reduced from 54.53% to
48.06%. The areas occupied by Croplands, Oak forest, Water bodies and Riparian vegetation stayed
in general constant. In contrast, the urban area increased from 13.6% to 28.6% of the total area studied.
In addition, projections of land use for 2019 and 2024 were generated through the method of MC
and Cellular Automata (CA). According to the projections, validated with an agreement of 0.90,
the Human settlements would continue to expand, occupying 38.57% by 2019 and almost half of the
studied territory (47.33%) by 2024. The ecosystems with the highest pressure for land use change will
continue to be the Grasslands and Shrublands. By 2024, the former would lose 15.8% while the latter
would lose 16.7% of the area. These methods are valuable for urban planning and the results could
support growth plans for Chihuahua City, Mexico, with a sustainable approach.

Keywords: land use change; Markov; Cellular Automata; transition matrix

1. Introduction

The increase in population and urbanization is one of the most complex processes because it
involves changes in land use and vegetation at local, regional and global scales [1,2]. Although urban
areas cover only 2% of the planet’s surface, they have significantly altered the natural landscape [3–6].
During the last decade, urban sprawl has become a topic of particular interest due to the accelerated
growth of human settlements on the planet and the great impact involved in the phenomenon [7–10].

Cities are responsible for the production of 78% of the greenhouse gases, contributing significantly
to global climate change [11]. Other effects of urbanization include alteration of the biogeochemical
cycles [12] and the reduction of areas dedicated to agricultural crops, grasslands, forests and in general
of the ecosystems located nearby. This has resulted in land fragmentation and degradation [13].
Therefore, the understanding of the growth dynamics of urban areas is of great importance to elaborate
better and more environmentally friendly urban growth plans, and to take actions for the preservation
of the natural resources [14].

To analyze the structure and growth dynamics of urban systems it is necessary to link the spatial
patterns with the landscape to quantify the causes and consequences of their evolution [15]. Several
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methods for detecting changes in the urban area are based on remote sensing [16–18]. Such methods
either employ multi-temporal analyses of satellite images using algebra of maps [19] or apply imaging
spatial regression techniques [20]. The latter are the ones most recently employed to estimate land use
through the variation of a regression model [21]. However, they have limitations for the quantification
of changes on a temporal basis [22].

Markov Chains (MC) and Cellular Automata (CA) are stochastic models that incorporate the
interaction of spatial and temporal dynamics [22–26]. These methods can serve to analyze the dynamic
behavior of land use in a time-space pattern and provide forecasts of future changes that can help
in decision-making [23,27]. Some studies have shown the strong capabilities of traditional Markov
models to describe trends in land use change [28–30]. Even though the Markov analysis itself cannot
simulate and predict changes in land use, MC together with CA have the capability of determining the
spatiotemporal dynamics and project future scenarios when fed with appropriate susceptibility and
limitations criteria [31–33]. Therefore, the integration of MC and CA give complementary results [34].
The method of MC quantifies the transition changes based on the past while CA uses this parameter to
estimate changes in the future and their location [35].

Chihuahua City, Mexico, has experienced rapid growth in past decades. From 8489 ha occupied
in 1980, Chihuahua City grew to 19,024 ha by 2005 [36]. This urban growth has caused a process of
fragmentation and loss of biodiversity, resulting in significant losses of area for the natural ecosystems
that were once located in the peripheral areas of the city. Such ecosystems included mainly Grasslands
and Shrublands. These Grasslands are immersed in the Chihuahuan desert and they belong to the
North America Grasslands Priority Conservation Areas [37]. Besides that, Grasslands are one of the
most threatened ecosystems on the planet [13], and, specifically in this region, they possess a great
biodiversity and a high degree of endemism [38].

Chihuahua City requires high inputs of water for domestic and industrial operations. It has been
reported that a total of 150.2× 106 m3 of water is spent by the city on an annual basis. This concentrates
great pressure over the aquifers due to the amount of water extracted from them. Besides that, some
of the city’s growth has occurred over their recharged zones [38]. In addition, the growth of the city
is expected to continue at high rates in the coming years. The lack of local policy on this topic in
Chihuahua is threatening the sustainability of the water governance system on a long-term basis,
with serious externalities on other areas such as agriculture [39]. If this is regulated, urban growth
would occur by taking into account both the space demand and the impact over the natural resources.
However, the magnitude and direction of such growth is not known precisely, limiting urban managers
for making effective growth plans to mitigate environmental impacts.

The objective of this study was to analyze the growth dynamics and the pressures for land use
change in the urban and peripheral areas of Chihuahua City, Mexico. The analysis was based on the
methodologies of MC and CA. The land use transitions for the period 1989–2014 were determined
through MC. In addition, projections of land use for the years 2019 and 2024 were generated by CA.
Analysis and discussions on the effects of the future growth of the city over the nearby ecosystems
are presented.

2. Materials and Methods

2.1. Study Area

The urban and peripheral areas of Chihuahua City, Mexico, were studied. The city lies at the
geographic coordinates of 28◦40′N and 106◦05′W (Figure 1). The topography of the area has elevations
ranging from 1306 to 2665 m above the sea level. The land uses of the nearby city areas are Grasslands,
Shrublands, Oak forest, Water bodies, Croplands and Riparian vegetation. In 2010, Chihuahua had
a total population of 819,543 [40].
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1989, 1999, 2009 and 2014 and they were obtained from the United States Geological Survey [41]. The 
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Figure 1. Location of the study area.

2.2. Collection and Pre-Processing of the Data

Four scenes covering the study area and taken by the Landsat sensor (Path 32, Row 40) were
used. The spatial resolution of the scenes was 30 m × 30 m. The four scenes corresponded to the
years 1989, 1999, 2009 and 2014 and they were obtained from the United States Geological Survey [41].
The characteristics of each of the scenes are presented in Table 1.

Table 1. Characteristics of the scenes corresponding to the urban and peripheral areas of Chihuahua.

Satellite Capture Data Characteristics Path/Row

Landsat (TM) 1989 7 spectral bands, 30 m resolution 32/40
Landsat (TM) 1999 7 spectral bands, 30 m resolution 32/40
Landsat (TM) 2009 7 spectral bands, 30 m resolution 32/40
Landsat (OLI) 2014 8 spectral bands, 30 m resolution; panchromatic band, 15 m resolution 32/40

The scenes were radiometrically corrected. The conversion from digital numbers (DN´s) to
reflectance values was performed with the Top of the Atmosphere (TOA) process, which allows
making comparisons among images from different dates. The radiometric conversion for the Landsat
TM sensor was performed by following Equations (1) and (2), where the spectral radiance (Lλ) and the
TOA reflectance (ρλ) were obtained:

Lλ = ((Lmaxλ − Lminλ) / (QCALmax−QCALmin)) ∗ (QCAL−QCALmin) + Lminλ (1)

ρλ =
π ∗ Lλ ∗ d2

ESUNλ ∗ cosθs
(2)

where QCAL is DN; QCALmin and QCALmax are the minimum and maximum quantized calibrated
pixel value, respectively; Lminλ is the spectral radiance scales to QCALmin; Lmaxλ is the spectral
radiance scales to QCALmax; d is the distance from the earth to the sun; ESUNλ is the mean solar
exoatmospheric irradiance; and θs is the solar zenith angle.
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In the case of the data from the Landsat OLI, the radiometric conversion was performed applying
Equation (3).

ρ∗λ =
ρλ

sinθSE
(3)

where ρλ is the TOA planetary reflectance, with a correction for the solar angle, and θSE is the local
sun elevation angle.

For the reflectance normalization of the images from 1989, 1999 and 2009, the image from Landsat
OLI was used. This process allowed an improvement on the histograms by modifying the brightness
values in the images from 1989, 1999 and 2009, taking as a reference the image from 2014. With this,
spectral variations of the land use covers were minimized [42].

As a final step for data processing, the scenes were edited and the study area was defined on the
images by using the software ArcMap 10.2®. The edges were made similar to those of the watersheds of
the area. Such edges were taken from the digital elevation model of the state of Chihuahua. All scenes
were ensured to cover the same area after the edition process.

2.3. Land Use Classification

Image layer stacking was performed with the software ERDAS®. This procedure allowed
generating false/true colored images, which were required for the analysis of land use classification.
For the case of the Landsat TM sensor, band 5 corresponding to the infrared channel (1.55–1.75 µm),
band 4 in the near infrared range (0.76–0.90 µm), and the band 3 in the red range (0.63–0.69 µm) were
used. These combinations were made based on the recommendations by Lillesand and Kiefer [43]
and applied to the images from the years 1989, 1999 and 2009. Likewise, band 6 corresponding to the
medium infrared channel (1.57–1.65 µm), band 5 in the near infrared range (0.85–0.88 µm), and band 4
in the red range (0.64–0.67 µm) were used for the Landsat OLI. These combinations were applied to
the image from the year 2014.

A classification based on the method of maximum likelihood was applied to obtain the information
of land use (Equation (4)). This method employed Gaussian probability. As a result, thematic maps
of land use were obtained for each year indicated in the second column of Table 1. The classification
areas included the following land use types: (1) Croplands; (2) Human settlements; (3) Shrublands;
(4) Grasslands; (5) Oak forest; (6) Water bodies; and (7) Riparian vegetation. The image carries
properties allusive to each type of land use as shown in Table 2.

gi (x) = In p (ωi)−
1
2

In
∣∣∑ i

∣∣− 1
2

(x−mi)
T ∑ i−1

(x−mi) (4)

where gi is the class, x represents the n-dimensional data (where n is the number of bands), p (ωi) is
the probability that the class ωi appears in the image and that is assumed for all classes, |∑i| is the
determinant of the co-variance matrix with data from class ωi, T is the transposed matrix, ∑i−1 is the
inverse matrix and mi is the vector.

Table 2. Definition of land uses for the study area and properties of corresponding training areas.

Land Use Properties of the Training Areas from Each Land Use Type

Croplands Irregular shape composed of pixels colored “Peridot Green” and “Ultramarine”
Human settlements Irregular shape composed of pixels colored “Glacier Blue”

Shrubland Irregular shape composed of pixels colored “Lime Dust”
Grasslands Irregular shape composed of pixels colored “Cantaloupe”
Oak forest Irregular shape composed of pixels colored “Green Leaf”

Water bodies Irregular shape composed of pixels colored “Dark Navy”
Riparian vegetation Irregular shape composed of pixels colored “Quetzal Green”
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2.4. Land Use Classification Accuracy

The cartography of land use land cover from the government of the state of Chihuahua
(scale 1:50,000) was used for accuracy validation [44]. The cartography corresponding to land use land
cover from the Mexican Institute of Statistics, Geography and Informatics (INEGI) (scale 1:250,000) was
also employed [40]. In addition, data from field sampling and photointerpretation were considered
during the validation process.

The statistical index KAPPA [45] was used to determine the accuracy of the land use classification
on the maps. KAPPA is a discrete multivariate technique for comparing classes through a matrix [46].
It can be used to establish the degree of similarity between mapped and actual or real values of land
use [47]. A KAPPA value equal to one indicates a 100% similarity between mapped and real values.
Conversely, a value equal to zero suggests a similarity of 0%. KAPPA is represented by Equation (5).

KAPPA =
N ∑K Xii ∑k (Xi+ ∗ X+i)

N2 −∑k (Xi+ ∗ X+i)
(5)

where KAPPA is the Kappa index; k is the total number of matrix rows; Xii is the observation number
on row i and column i (along the diagonal); Xi+ and X+i are total marginal for row i and column i,
respectively; and N is the total number of observations.

To estimate the KAPPA index, a group of sample points in the peripheral area was employed.
The resulting accuracy is shown in Table 3.

Table 3. Accuracy of the land use classification.

Land Use
Precision

1989 1999 2009 2014

Croplands 0.82 1.00 1.00 1.00
Human settlements 1.00 1.00 0.83 1.00

Shrublands 0.61 0.85 0.57 0.44
Grasslands 0.83 0.80 1.00 0.51
Oak forest 0.87 1.00 1.00 1.00

Water bodies 1.00 1.00 1.00 1.00
Riparian vegetation 1.00 1.00 1.00 0.81

General Precision KAPPA 0.87 0.95 0.91 0.82

2.5. Models of Markov Chains and Cellular Automata

To elaborate projections of land use change for future years, the geosimulation techniques of
MC and CA were employed [48]. They account for the changes in land use between two dates by
extrapolating them assuming constant changes [49]. The CA technique includes a simulation model
where space and time are discrete variables while the assigned interactions are local variables [30]. It is
fed with the results from the MC methodology to simulate land use in a future time. In this study,
the classifications of 1989 and 1999 were used to estimate the land uses of 2009. Likewise, the land
uses of 2014 were estimated based on the classifications of 1999 and 2009.

The MC methodology was implemented in the MARKOV module of the software Idrisi Selva®.
This technique is based on a stochastic model that describes the probability of change from one state to
another through a transition probability matrix [28]. The results of the MC methodology include a
probability matrix, a matrix of transition areas and transition probability maps. The probability matrix
includes the probability of one land use to change from one category to another. This matrix is the
result of the crossing between the images after setting a proportional error. The matrix of transition
areas states the number of pixels that are expected to change from each land use to the others during
the period of time analyzed. The transition probability maps are generated based on the projections of
possible changes during the period analyzed. In this study, changes in land uses of 1989, 1999, 2009
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and 2014 were used to develop the transition probability matrix that helped to develop the land use
projections for 2019 and 2024. The mathematical expression of the transition probability is:

m

∑
I=1

Pij = 1 i = 1, 2 . . . . . . m (6)

P = (Pij) =
P11 P12 . . . P1m
P21 P12 P2m
Pm1 Pn2 Pmm

(7)

where Pij is the the probability of transition from one land use to another, and m is the total number of
land use types of the study area. Pij values stay within the range 0–1.

According to the non-after effect of the Markov methodology and the condition equations of
Bayes, the Markov prediction model is obtained (Equation 8):

P (n) = P(n−1)Pij (8)

where P (n) is the probability P in time n, (n− 1) is the probability of the previous time n.
The combination of MC and CA was implemented through the module of CA_Markov available

in the software IDRISI Selva®, which allows simulating the dynamics of growth based on the increase
of the number of pixels. Each pixel can take a value from a finite set of states [34]. All pixels are
affected by a transition function that takes as arguments the measured values of the pixels and the
values of the neighboring pixels as a function of time. Cellular Automata and MC were implemented
to simulate the land uses of 2009 and 2014. Since this period comprehends five years, periods of the
same number of years were used to estimate land uses of the future. That is, land uses were simulated
for the years 2019 and 2024.

For the simulations, it was assumed that the probabilities of change were low and constant during
the periods analyzed. Thus, the transition probability matrix created from the changes observed
between 2009 and 2014 was used to simulate the land uses of 2019. Likewise, the transition probability
matrix of 2014 and 2019 was used to estimate the land uses of 2024.

In an iterative process, the module of CA_Markov uses the transition probability of each land use
to establish the susceptibility of each pixel, based on their properties, to be occupied by each of the
other types of land use. While that is performed, a spatial filter restricts the susceptibility of pixels
located away from the class being processed, which is done by assigning a value of greater preference
to neighboring areas. In this study, spatial filters of 5 × 5 were applied (Figure 2).
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Figure 2. The 5 × 5 filter configuration used in CA_Markov.

2.6. Suitability Parameters and Limitations for Urban Growth

The parameters to define the suitability of a given pixel to change from one type of land use to
another were defined. Such parameters serve to represent the susceptibility of the land to be occupied
by each of the other land uses. These parameters were assigned to the variables of elevation, slope,



ISPRS Int. J. Geo-Inf. 2016, 5, 235 7 of 19

distance to rivers and distance to roads. It was assumed that these variables remained unchanged over
the 25 years represented by the dates of the oldest and most recent satellite images analyzed in this
study. The suitability parameters for the variables of elevation and slope were defined as zero for not
suitable and one for suitable (Figure 3). The suitability parameters for distance to rivers and distance
to roads were assigned on a scale of 0 to 255 to represent a minimum and maximum convenience,
respectively (Figure 4).ISPRS Int. J. Geo-Inf. 2016, 5, 235  7 of 18 
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2.7. Validation of the Land Use Change Projections

The transition probability matrix, matrix of transition areas and transition maps for 1989 and
1999 were created with the Markov methodology. Then, we used the CA_Markov module to simulate
the land use of 2009. Likewise, the transition probability matrix, the matrix of transition area and
the transition maps of 1999 and 2009 were generated and then used to simulate the change in land
use for 2014.

The validation of the model to simulate land use change was conducted by comparing the results
of the estimated land use changes with the land uses verified through supervised classifications for
2009 and 2014. For this, a randomly stratified sampling design was used and the KAPPA index was
employed. Once the simulated land uses were validated, estimations of land use for 2019 and 2024
were made. Finally, the procedure used in this study is summarized in Figure 5.
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Figure 5. Procedure followed to analyze the spatio-temporal changes of seven land uses in the urban
and metropolitan areas of Chihuahua City.

3. Results

3.1. Detection of Land Use Changes

Results from the analysis of land use show a remarkable gain for the surface area corresponding
to Human settlements (Table 4). Chihuahua City increased more than twice its occupied area in the
past 25 years. The expansion occurred mainly to the north and southeast directions (Figure 6). In these
directions, the lowest elevations exist and this condition makes the terrain desirable for residential
development. Of the categories analyzed, the only one that showed continuous growth is the Human
settlements, with 13.57%, 17.01%, 24.63% and 28.50% for 1989, 1999, 2009 and 2014, respectively.
In contrast, the land uses of Shrublands and Grasslands showed a reduction in their area during the
same period (Figure 7). Regarding the classes of Croplands, Oak forest, Water bodies and Riparian
vegetation, their occupied surface areas stayed in general constant. Each of these classes presented a
change lower than 1% for the period 1989–2014.
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Table 4. Occupation percentages of seven land use types in the urban and peripheral areas of Chihuahua
City in 1989, 1999, 2009 and 2014.

Land Use
Occupation (%)

1989 1999 2009 2014

Croplands 4.12 3.76 3.66 3.48
Human settlements 13.57 17.01 24.63 28.58

Shrublands 54.53 53.64 49.35 48.06
Grasslands 23.50 21.67 18.18 16.01
Oak forest 2.89 2.86 2.86 2.86

Water bodies 0.07 0.08 0.11 0.11
Riparian vegetation 1.31 0.97 1.21 0.90
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Figure 7. Growth dynamics of seven land use types in the urban and peripheral areas of Chihuahua
City during 1989–2014. CL, Croplands; HS, Human settlements; OF, Oak forest; WB, Water bodies;
S, Shrublands; G, Grasslands; R, Riparian vegetation.

The dynamics of land use changes are presented in Table 5. The Grasslands presented the greatest
loss of surface with 1471 ha during the period 1989–1999. This land use increased its loss in surface
to 2820 ha during the period 1999–2009 and further reduced its area to 1746 ha during the period
2009–2014. The area occupied by Shrublands was, after the Grasslands, the category that lost most
of the surface area. By contrast, the Human settlements experienced the largest growth with a total
increase of 12,097 ha for the period of 1989–2014. The location of housing projects has markedly
contributed to the increase in the area occupied by Human settlements.

Table 5. Change dynamics of seven types of land use in the urban and peripheral areas of Chihuahua
City. Positive and negative numbers indicate gains and losses of surface, respectively.

Category Surface (ha)
Total

Year 1989–1999 1999–2009 2009–2014

Croplands −290 −82 −146 −518
Human settlements 2772 6143 3182 12,097

Shrublands −26 0 0 −26
Grasslands 12 21 0 33
Oak forest −720 −3458 −1041 −5219

Water bodies −1471 −2820 −1746 −6037
Riparian vegetation −273 195 −249 −327

The transition probabilities of the land use corresponding to the periods 1989–1999, 1999–2009,
and 2009–2014 are shown in Table 6. Bold numbers along the diagonal show the transition probabilities
among the study periods. The probability of change from the land use of agriculture to the one
of Human settlements was 16% for the period 1999–2009 and decreased to 14% during 2009–2014.
Shrublands had a probability of change of 11% during 1989–1999, 15% during 1999–2009 and 12%
during 2009–2014. Moreover, Grasslands presented the highest increase in the probability of change
during the same period: 16% for the period 1989–1999, 23% for the period 1999–2009 and 20% for the
period 2009–2014.

This transition probability matrix (Table 6) indicates that the classes of Croplands, Shrublands,
Oak forest, Water bodies and Human settlements had been stable with a tendency to stay in the same
land use during the periods 1989–1999 to 2009–2014, as indicated by the probabilities close to 1.0 in the
transition matrix. Regarding Grasslands, there was a decrease in the transition probability of 0.82 from
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the period of 1989–1999 to 0.75 during 1999–2009 and to 0.79 for the period 2009–2014. The decrease in
the transition probability indicates an increased likelihood for change of the Grasslands to another
type of land use.

Table 6. Transition probability matrix for the periods 1989–1999, 1999–2009, and 2009–2014.

Land Use Year CL HS S G OF WB R

CL
1989–1999 0.81 0.05 0.13 0.00 0.00 0.00 0.00
1999–2009 0.83 0.16 0.00 0.00 0.00 0.00 0.00
2009–2014 0.85 0.14 0.00 0.00 0.00 0.00 0.00

HS
1989–1999 0.00 0.89 0.10 0.00 0.00 0.00 0.00
1999–2009 0.00 0.89 0.10 0.00 0.00 0.00 0.00
2009–2014 0.01 0.90 0.01 0.01 0.01 0.01 0.01

S
1989–1999 0.00 0.11 0.87 0.00 0.00 0.00 0.00
1999–2009 0.00 0.15 0.82 0.00 0.00 0.00 0.01
2009–2014 0.00 0.12 0.87 0.00 0.00 0.00 0.00

G
1989–1999 0.00 0.16 0.00 0.82 0.00 0.00 0.00
1999–2009 0.00 0.23 0.01 0.75 0.00 0.00 0.00
2009–2014 0.00 0.20 0.00 0.79 0.00 0.00 0.00

OF
1989–1999 0.00 0.00 0.11 0.00 0.88 0.00 0.00
1999–2009 0.01 0.01 0.01 0.01 0.90 0.01 0.01
2009–2014 0.01 0.01 0.01 0.01 0.90 0.01 0.01

WB
1989–1999 0.01 0.01 0.01 0.01 0.01 0.90 0.01
1999–2009 0.01 0.01 0.01 0.01 0.01 0.90 0.01
2009–2014 0.01 0.01 0.01 0.01 0.01 0.90 0.01

R
1989–1999 0.02 0.00 0.29 0.00 0.00 0.01 0.66
1999–2009 0.00 0.16 0.00 0.00 0.00 0.00 0.83
2009–2014 0.01 0.01 0.01 0.01 0.01 0.01 0.90

CL, Croplands; HS, Human settlements; OF, Oak forest; WB, Water bodies; S, Shrublands; G, Grasslands;
R, Riparian vegetation.

The algorithm of CA_Markov determines the exact location of the changes. Thus, the probability
of change of any pixel depends on the previously assigned filter and on the restriction and suitability
parameters applied to neighboring pixels. The Human settlements showed an increase in the transition
probability, indicating a stabilization of this class due to population growth [40], as shown in Figure 8.
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Figure 8. Relationship between the urban sprawl and its population.

The previous results indicate three main findings from the analysis of the growth dynamics of
Chihuahua City: (1) the class that had the greatest loss of land use and the one that had the greatest
transition change was Grasslands; (2) it is expected that Croplands continue to change to urban areas;
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and (3) Shrublands are another type of land use that will increase its probability of change to urban
area (Table 6). This shows a dominance of the urban land use over the Croplands, Grasslands and
Shrublands. In addition, this indicates a continuous change and a pressure on the neighboring natural
resources due to the expansion of the urban area through time.

3.2. Validation of the Land Use Change Projections

For the validation of land use change projections, the land uses of 2009 and 2014 were simulated
with CA_Markov. The simulated land uses were then compared with the actual land uses resulting
from the supervised classifications of the same years. The comparison of simulated and actual values
of land use are shown in Figure 9, where deviations can be visually assessed.
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Figure 9. Comparison of simulated and real land uses for: 2009 (left); and 2014 (right). CL, Croplands;
HS, Human settlements; OF, Oak forest; WB, Water bodies; S, Shrublands; G, Grasslands;
R, Riparian vegetation.

It can be observed in Figure 9 that for both, 2009 and 2014, the differences between the actual and
simulated land uses were small. The overall accuracy was 90% for 2009 and 91% for 2014. The greatest
accuracy was obtained for the class of Oak forest, while the class that showed the lowest accuracy was
Human settlements with 0.79 and 0.70 for 2009 and 2014, respectively (Table 7).

Table 7. Agreement between the real and simulated values of seven land uses of 2009 and 2014 in the
urban and peripheral areas of Chihuahua City.

Land Use
Agreement between Real and Simulated

2009 2014

Croplands 0.88 0.86
Human settlements 0.79 0.70

Shrublands 0.90 0.95
Grasslands 0.85 0.85
Oak forest 0.99 0.99

Water bodies 0.99 0.99
Riparian vegetation 0.92 0.99

General Precision KAPPA 0.90 0.91

The 100% agreement between the simulated and real values for the class of Oak forest were
obtained because the probability of change of this class was unaffected by other classes. In addition, this
class is not geographically close to the urban area. In the case of Human settlements, the resulting lower
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agreement could be due to the growth patterns influenced by different causes such as socio-economic,
political, and other larger contextual factors. Still, all agreement values estimated during the validation
process could be considered as very good. The values of KAPPA close to 1.0 indicate a high similarity
between the simulated and real values, as well as a spatial distribution of the simulated land uses close
to reality. Based on the above, CA_Markov model can be used to predict future changes in land uses in
the study area.

3.3. Simulations of Land Use

The model of CA_Markov was used to simulate the areas occupied by seven land uses for the
years 2019 and 2024, as an effect of the urban development. For the simulation of the land uses of 2019,
the transition probability matrix of the period 2009–2014 was used, setting 2009 as the base year and
considering the following five years of change. Afterwards, the year of 2019 was established as the
starting point to generate the land uses of 2024. For that, the transition probability matrix of the period
2014–2019 was employed.

The transition probabilities for the years 2019 and 2024 are shown in Table 8. The class of
Grasslands, which had the lowest probability represented by a 0.64 in 2014–2019 and 0.58 in 2019–2024,
is the class which would be subjected to the greatest probability of change with a value calculated of
0.79 for 2014 (Table 6) and an estimated and reduced value of 0.58 for the next 10 years (Table 8).

Table 8. Transition probability matrix for 2019 and 2024.

Year CL HS S G OF WB R

CL
2014–2019 0.74 0.25 0.00 0.00 0.00 0.00 0.00
2019–2024 0.68 0.31 0.00 0.00 0.00 0.00 0.00

HS
2014–2019 0.00 0.89 0.10 0.00 0.00 0.00 0.00
2019–2024 0.00 0.89 0.10 0.00 0.00 0.00 0.00

S
2014–2019 0.01 0.18 0.79 0.00 0.00 0.00 0.00
2019–2024 0.01 0.18 0.79 0.00 0.00 0.00 0.00

G
2014–2019 0.00 0.32 0.02 0.64 0.00 0.00 0.00
2019–2024 0.00 0.38 0.03 0.58 0.00 0.00 0.00

OF
2014–2019 0.01 0.01 0.01 0.016 0.90 0.01 0.01
2019–2024 0.01 0.01 0.01 0.01 0.90 0.01 0.01

WB
2014–2019 0.01 0.01 0.01 0.01 0.01 0.90 0.01
2019–2024 0.01 0.01 0.01 0.01 0.01 0.90 0.01

R
2014–2019 0.01 0.01 0.01 0.01 0.01 0.01 0.90
2019–2024 0.01 0.01 0.01 0.01 0.01 0.01 0.90

CL, Croplands; HS, Human settlements; OF, Oak forest; WB, Water bodies; S, Shrublands; G, Grasslands;
R, Riparian vegetation.

It is estimated that Human settlements is the land use that will show the greatest percentage of
change in coverage beginning with 28.57% in 2014 (Table 4) and reaching 38.57% in 2019 (Table 9).
This type of land use will end up covering almost half of the study area (47.33%) in 2024. The classes
of Water bodies, Oak forest and Riparian vegetation will be nearly unaffected by the urban growth.
However, according to the results from the projections for 2019 and 2024, Human settlements will be
extended over adjacent and sensitive areas such as Grasslands and Shrublands (Figure 10).
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Table 9. Simulated coverage areas and percentage of occupation of seven land uses of the urban and
peripheral areas of Chihuahua City by 2019 and 2024.

Year 2019 2024

Land Use Surface (ha) Occupation (%) Surface (ha) Occupation (%)

Croplands 2565.23 3.22 2328.43 2.92
Human settlements 30,666.91 38.57 37,636.71 47.33

Shrublands 33,667.13 42.34 30,075.10 37.82
Grasslands 9244.07 11.62 6105.60 7.67
Oak forest 2305.23 2.89 2305.26 2.89

Water bodies 87.02 0.10 86.90 0.10
Riparian vegetation 975.01 1.22 972.73 1.22

Total 79,511 100 79,511 100ISPRS Int. J. Geo-Inf. 2016, 5, 235  14 of 18 
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The estimated dynamics of land use gains and losses for the periods 2014–2019 and 2019–2024
are shown in Table 10. During these two periods, it is estimated that Shrublands and Grasslands
will suffer the greatest losses of areas. Human settlements, represented by gains of 7629.92 and
6969.79 ha for the periods of 2014–2019 and 2019–2024, respectively, is the class that would experience
the greatest expansion.

Table 10. Dynamics of land use changes for seven land use types of the urban and peripheral areas of
Chihuahua City by 2019 and 2024.

Year 2014–2019 2019–2024

Land Use Surface (ha) Surface (ha)

Croplands −241.76 −236.79
Human settlements 7629.91 6969.79

Shrublands −5070.86 −3592.03
Grasslands −3662.92 −3138.47
Oak forest −0.76 0.02

Water bodies 0.02 −0.12
Riparian vegetation 248.01 −1.27
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4. Discussion

The model of CA_Markov has been widely used for simulations of land use changes and its
impact on the landscape by projecting possible trends. In this study, the model was used to project the
land uses of the urban and peripheral areas of Chihuahua City by 2019 and 2024. To first understand
the urban growth dynamics, this research determined the land uses of the past years as a basis
for simulating future changes in the study area. This tool is an alternative means of support for
urban planners.

Remote sensing produces valuable data with quick acquisition, which can be used for analyses of
land use; for example, the data from the Landsat sensor, which provides images taken from 1972 to
date. This satellite has a worldwide coverage with a medium spatial resolution. The Markov prediction
method employs the historical data from the Landsat sensor to analyze the dynamic behavior of land
use in a time-space pattern. Based on that, forecasts of future changes are estimated.

The methodology employed in this study showed a good level of precision, with values of
the KAPPA index above 0.82. This precision is comparable with the ones estimated in other studies
employing similar methodologies [2]. The high precision in this case was due to a clear spatial
distribution of the land uses in the study area. These land uses are strongly related to the topography
where the City is located. The plain areas are clearly occupied by ecosystems of Grasslands while
surfaces conformed by terrains with slight slopes are dominated by communities of Shrublands.
The results of this study show the feasibility and validity of the CA_Markov based model for simulating
urban land use change.

From 1989 to 2009, the city of Chihuahua grew mainly to the north and southeast directions.
One of the main reasons is the increasing manufacturing industry present in those parts of the city.
In these directions, the lowest elevations exist and these conditions make the terrain desirable for
industrial development. In its growth stage, this industry has been settled on plain lands with access to
the main roads. The most important road in Chihuahua is the one running in the north-south direction,
which connects the city with the rest of the country and with the United States of America. The latter
represents the main market of the manufacturing items produced in the city.

Another reason for this growth could be attributed to the increase on the number of small houses,
which were constructed for people with low incomes. Many of these people work on the manufacturing
industry. Thus, the location of housing projects has markedly contributed to the increase in the area
occupied by Human settlements. Together, these two factors have influenced the city growth dynamics,
the urban structure, its geographical expansion, and the location of the jobs generated in the city.

Before the 1970s, the number of jobs generated by the manufacturing industry was small and their
location was scattered around the city. In those days, jobs were related to mining or logging activities.
This scenario changed with the installation of the industrial parks called “Complejo Industrial
Chihuahua”, “Las Americas” and “Saucito”. Thereafter, Human settlements had a remarkable growth,
with areas where jobs related to the industry sector are concentrated [38]. The location of industrial
parks near the main roads and the houses of social interest are factors that have influenced the growth
of the city, as it can be visually verified on Figure 6. Other factors include the requirement of labor
force, the access to highways, and the proximity of the edge of the urban area to the rural areas.

With the model of CA_Markov the growth of the urban area and the land use change on the
suburban areas were assessed and quantified. Due to the absence of a conservation policy for suburban
land uses, it is expected that a number of both economic and social factors cause alterations on the
land uses of Grasslands, Shrublands and Riparian vegetation areas. The establishment of buffer zones
could improve conditions for the use of land surrounding the city.

Even though the MC and CA methodologies have been criticized for its inability to incorporate
social factors such as human decision [28], this study simulated land use changes for the years of 2009
and 2014 with a high degree of accuracy. One of the reasons for that could be the period between the
dates of the images used, which was in general consistent (10-year period), compared to other studies
that employed only three dates [50] or dates with varied periods among the dates of the images [51].
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This gave confidence about the results from the simulations of land use for 2019 and 2024. It is possible
that the estimated changes, in the absence of policy intervention, become a reality and mainly affect
Grasslands and Shrublands, as indicated in the results of this study. Information on land use changes
generated in this study could be useful for decision-making and for the creation of public policies
focused on urban planning.

The probability matrices revealed that Grasslands were the least stable land use. This suggests
that urban development will mainly occur on the plains and small slopes. Grasslands are one of the
most threatened ecosystems worldwide [13]. This ecosystem possess a high degree of endemism in the
region [38] and provide us with ecosystem services such as water harvest, carbon sequestration, soil
retention, and contributions to weather stability, just to name a few [52]. This class lost the biggest
surface area. All this area has been converted to the urban use. Urban planners in Chihuahua should
take these findings into account and promote a more equilibrated growth.

Meanwhile, Shrublands have also been affected by the expansion of Human settlements due to
the construction of commercial and residential buildings. This land use is distributed in lands with
slopes generally greater than those of the lands where Grasslands are located. The lack of urban
planning has led to a non-organized growth of Chihuahua City, with a relatively large urban area with
a small population density. The increase in population, the demand for residential buildings, and the
introduction of industrial parks are additional factors causing the change of the landscape.

The population of Chihuahua City has increased in the past 20 years from 530,783 to 867,910
inhabitants in the year 2014, representing an increment of 337,127 inhabitants [40]. The population
growth rate for the periods 1989–1999, 1999–2009 and 2009–2014 was of 27%, 21% and 7%, respectively.
These percentages mean an economic growth of the city that promotes population migration from
small towns, especially the ones located nearby. People from these small towns move to the city looking
for job opportunities. This produces an economic diversification demanding more labor force and
space. Given the amount of territory reserves declared by the “Instituto de la Vivienda del Estado de
Chihuahua” (State Institute for Housing), the city might continue growing towards the North direction
unless new industrial developments occur in other directions. Lands with good characteristics for
industrial development are also located south of the city.

5. Conclusions

Markov Chains and Cellular Automata, applied to remote sensing data, showed their potential as
a tool for urban planning. This study established the change dynamics of seven land uses of the urban
and peripheral areas of Chihuahua City. Chihuahua is experiencing a rapid urban growth regardless of
the land use types of the surroundings and the urban area is becoming the main land use. In contrast,
the land uses of Shrublands and Grasslands were the ones experiencing the greatest pressures from
land use change.

The methodology of CA_Markov allowed describing the future behavior of the areas occupied
by seven land uses in the study area. The urban growth of Chihuahua City will be mainly directed
towards the North and East. Housing projects and the establishment of manufacturing industries
are trigger factors for urban growth. This condition is expected to persist for over the next 10 years.
The growth of the urban area indicated from this study, will cover 50% of the surface area by 2024,
mainly affecting the ecosystems of Grasslands and Shrublands located nearby.

Urban planning through public policies, accompanied by projections of urban growth, could
contribute to mitigate the impact over the ecosystems located nearby the City. The methods employed
in this study, which identified land use transitions, represent an alternative tool for urban and
territory planning. Furthermore, these results could support the elaboration of urban growth plans for
Chihuahua City, Mexico, with a sustainable approach.

The model of CA_Markov has some limitations for this application. The model does not integrate
socio-economic data, such as population growth, social demand, political decisions, the willingness of
landowners to sell their property, or the policy changes regarding land use during the study period.
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It is considered that these factors notoriously influence the urban expansion. Therefore, the inclusion
of these variables can improve the accuracy of the simulations; however, such variables have to be first
generated in a spatiotemporal basis for the study area.
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