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Abstract: Finding a method to evaluate people’s emotional responses to urban spaces in a valid
and objective way is fundamentally important for urban design practices and related policy making.
Analysis of the essential qualities of urban space could be made both more effective and more
accurate using innovative information techniques that have become available in the era of big data.
This study introduces an integrated method based on geographical information systems (GIS) and
an emotion-tracking technique to quantify the relationship between people’s emotional responses
and urban space. This method can evaluate the degree to which people’s emotional responses are
influenced by multiple urban characteristics such as building shapes and textures, isovist parameters,
visual entropy, and visual fractals. The results indicate that urban spaces may influence people’s
emotional responses through both spatial sequence arrangements and shifting scenario sequences.
Emotional data were collected with body sensors and GPS devices. Spatial clustering was detected
to target effective sampling locations; then, isovists were generated to extract building textures.
Logistic regression and a receiver operating characteristic analysis were used to determine the key
isovist parameters and the probabilities that they influenced people’s emotion. Finally, based on the
results, we make some suggestions for design professionals in the field of urban space optimization.
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1. Introduction

Urban spaces are closely related to the way people live and work in cities [1–3]. Since the
Industrial Revolution, people’s approaches to production and lifestyles have further encroached on all
aspects of the traditional urban space; thus creating the so called “lost space” [4]. On one hand, people
spend more time and money on meaningless commuting [5], which contributes to environmental
deterioration and consumes energy [6]; on the other hand, urban space has gradually become occupied
by motor traffic—and urban life has been relegated to the sides of the roads [7]. Since the 1960s,
scholars have paid more attention to optimizing urban spaces and promoting outdoor activities [8–11].

In previous studies, measures of urban space and form using computational methods began to be
correlated to certain human behaviors. For example, Hillier & Iida showed that centrality measures of
the street network (which are based on the geometry of the open spaces generated by the shape and
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arrangement of buildings) have a significant impact on movement patterns [12], which, in turn, have
a significant impact on the use of public space (given that commercial uses are generally located at more
frequented locations) [13]. Human cognitive responses to urban space and form are closely related to
people’s behaviors. Among the various factors that affect the perceived quality of urban space, vision is
extremely important. According to cognitive science, external information acquired by human beings is
strongly correlated with vision [14]. Some studies have focused on visual responses to spatial attributes
such as openness [15], orientation [16,17], and shape complexity [18], to study how people perceive
the built environment as these spatial attributes vary [19,20]. However, the limitations of effective
analysis methods make it difficult to objectively determine how the spatial attributes of an urban
space affect user’s subjective experiences [21]. Although questionnaire surveys are useful to a certain
extent, measurement accuracy could be increased by using the innovative information approaches
that have emerged in the era of big data. In recent years, along with the development of information
technology, relevant computer-aided methods have been gradually introduced into the fields of urban
planning and design [22–24]. Some novel methods aimed at understanding how people perceive cities
have been tested, such as extracting semantics from locations using photo tags from Flickr [25] and
gauging crowd emotion and its spatio-temporal distribution from Twitter data [26,27]. Crowdsourcing
physiological conditions by combining data from technical sensors and human sensors could also
extend the collection of emotional information in urban studies [28]. Such methods are convenient
for comprehensively analyzing urban spatial environments for determining the correlations between
various spatial attributes and peoples’ behavior and for evaluating and optimizing design schemes.

This paper starts from the perspective of a city pedestrian and then evaluates collected field data
concerning the pedestrians’ emotions. By integrating information techniques and regression models,
this study explores how urban spaces affect the emotions of pedestrians at the micro-scale, explores the
correlative coupling between urban spatial attributes and people’s emotions, constitutes an effective
evaluation method for urban spatial environments, predicts the potential influence of changes, and
provides suggestions for improving the rationality and effectiveness of urban designs to better serve
urban lifestyles. The goal of this paper is to share our experience of using information technology to
assess built environments. The described methodology provides a tool that can improve conventional
methods by which urban design professionals evaluate urban spaces. Figure 1 presents the workflow
of our research framework and analysis approaches.
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2. State of the Art

Based on progress in neuroscience over the past decade, a separate research stream has emerged
that aims to obtain insights for the field of architectural design through knowledge and techniques
from neuroscience [29]. Important study subjects in this field are the effects of the form and function of
architectural environments on human health and wayfinding strategies. Such study has relied largely
on virtual environments because such environments make it possible to carefully control the studied
parameters. However, because it is unclear how the virtual environment parameters correlate with real
space—for example with regard to the incorrect estimation of distances and angles [30]—we decide to
conduct this study in a real environment.

In this study, the model we use for measuring emotions is based on the concept of cognitive
appraisal, which categorizes a relatively complex set of secondary emotions [31]. Secondary emotions
are those that have a major cognitive component and are determined by both their level of arousal (low
to high) and their valence (pleasant to unpleasant). Figure 2 shows a model of how various secondary
emotions can be located inside a coordinate system.

Hogertz collected emotional data from urban pedestrians (n = 31) in Lisbon using Smartbands
and GPS tracking [32] and analyzed the indicated emotional responses compared to the retrospective
emotional states of the subjects by visual inspection. He concluded that “specific emotional significance
can be measured reliably by recording a person’s EDA (electrodermal activity) variations while
walking.” Most importantly, Hogertz found a relationship between people’s negative emotional
responses and certain locations.

A further analysis was conducted in the main promenades of Alexandria, where individual stress
reactions (n = 7) were identified using a promising workflow [33] in which combined datasets from
a GPS tracker, camera, and Smartband, were used to identify subjects’ stress phases over the routes
and then extract movie snippets of the relevant sections. To visualize the results, all the individual
stress points were aggregated into a heat map that showed the stress hotspots. In addition, individual
stress locations were combined into a point density analysis.

In another study, neural imaging using electroencephalograph (EEG) signals was employed to
map human responses to spaces [34]. The authors describe an experiment where participants’ affective
(emotional) states were measured while the participants moved through open spaces in Edinburgh.
The authors used a lightweight, high performance laptop, wireless EEG sensors, and a GPS unit.
The collected data were analyzed by mapping them to the defined path in terms of excitement and
frustration levels. The study showed the aggregation of excitement levels for three participants.

All these studies used measured emotional responses to show that locations exist in the urban
realm that elicit significant emotional responses. However, none of the studies have investigated
whether a given individual’s perceptions of urban spaces correlates with the perceptions of other
individuals. In other words, they did not ascertain whether certain spatial configurations have
a generalizable effect on human emotions. Additionally, none of the studies described above have
investigated whether a relationship exists between people’s emotion and isovist field parameters.
In preliminary studies we analyzed this relationship using surveys to investigate the effect of urban
form on people’s environmental appraisals of streetscapes. We also introduced a geostatistical
method for studying the relationships between urban pedestrians’ emotional responses and urban
spaces. In this paper, we investigate the effect of additional spatial features on peoples’ spatial
perceptions—including the indicators of building texture and shape, isovist parameters, visual entropy,
and visual fractals.
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3. Emotion Data Collection

3.1. Physiological Basis

According to research in developmental psychology, normal infants begin to show some common
emotional characteristics (such as interest, surprise, joy, anger and fear) when they are between two
and a half months and six months old. These inborn emotions are called “primitive emotions” or
“primary emotions”, and they have both cross-cultural and cross-regional characteristics [35,36]. Thus,
they can be understood by people from different nations, regions and countries. When the infants
reach approximately two years of age, depending on their environment, these emotions gradually
develop into a wide variety of complex secondary emotions such as embarrassment, shyness, guilt,
envy and pride, among others. These emotions are called “self-conscious emotions,” and they reflect
people’s major psychological tendencies. The major characteristics of emotions can be described by
the model of secondary emotions. In this model (Figure 2), the horizontal axis represents valence.
The right side of the horizontal axis shows positive emotions; the left side shows negative emotions.
The vertical axis represents arousal, which refers to the individual’s neurological and physiological
activation level as stimulated by the external environment. In Figure 2, arousal intensity gradually
increases from the bottom to the top.

3.2. Preparation of Experiment

The wristband sensor (Smartband), developed by Bodymonitor [37–39], is used in this experiment
as a micro-portable vital sign monitor. Through its built-in metal electrode, the Smartband can
record a subject’s skin conductivity and temperature, allowing later processing to analyze and judge
the wearer’s emotions through the collected data. The device is lightweight, and people can wear
it comfortably, thus avoiding any negative psychological impact from the equipment during the
experiment. When combined with data collected by a portable GPS tracker, the emotion data recorded
by the Smart Band can be aligned with the wearer’s location. Because the temporal resolution of the
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GPS sensors employed in this experiment is 5 s and that of the Smart Band is 1 s, the accumulated data
from the Smart Band is matched with the GPS data every 5 s to form a basic unit.

To ensure that the participants were not familiar with the experiment site, we selected the
Oerlikon District, a region approximately 6 km away from downtown Zurich, Switzerland. The route
the participants travelled is approximately 2.2 km long, starting from Max Bill Square and ending at
the Oerlikon Station Square. This route is occupied by businesses with mixed functions, residences
and commerce, all of which have rich urban spatial forms, and included a newly built office area,
a quiet residential area and a relatively busier local center. Thirty participants (13 male, 17 female,
mean age = 25, SD of age = 2.5) were involved in the experiment, which took place on sunny days from
14 October to 22 October 2013. The experimental route and a map were distributed to the subjects
in advance. Subjects were required to complete the entire route on foot and to take photos of places
they deemed important for the record. Emotion data were collected by the Smartband. The raw
data were initially processed into two groups that respectively represented positive (1478 points)
and negative (994 points) emotions. The Bodymonitor company processed and analyzed the raw
data collected by the Smartband (for evidence concerning the validity of the Smartband data see the
Bodymonitor website [38,39]), but the details of the company’s method are not explicitly published for
commercial reasons. When the experiment was over, the emotion data were geospatially projected to
OpenStreetMap (OSM) and imported to ArcGIS as point features.

3.3. Emotion Data Preprocessing

The factors that affect the emotions of subjects can be roughly divided into two classes: Class 1
refers to spatial factors at specific locations that are comparatively less affected by time and other
random factors; and Class 2 refers to random factors, non-spatially influenced factors, and temporal
factors such as activities. Because the subjects were tested at different times, there was no direct
mutual interference between subjects; therefore, we can assume that the emotional data measurements
were comparatively independent. Consequently, we can take advantage of spatial clustering analysis
(SCA) to strengthen the emotional features caused by spatial factors and reduce the interference from
random factors. The null hypothesis of SCA specifies that factors are randomly distributed. At the set
confidence level (5%), a statistic such as the p-value is required to judge whether the null hypothesis
is rejected or not. When the null hypothesis is rejected, the factor’s location and value have a very
high spatial correlation. Therefore, we can conclude that subjects commonly possess similar emotional
intensities in this location and, then, judge the degree of arousal through the z-score.

Because the SCA is significantly affected by the area used for analysis, it requires an incremental
auto-correlation spatial analysis tool for which several threshold values must be set to conduct the
test and inspect the z-score of the model. High z-scores mean that a spatial cluster feature is more
dominant under this threshold value. An analysis showed that the threshold values of the P collection
and the N collection resulted in the most dominant cluster features at 23.5 m and 11 m, respectively.
Using the Getis-Ord General G statistic [40], we performed spatial cluster analyses on the two sets of
objects. The Getis-Ord General G formula is as follows [41]:

G =

n
∑

i=1

n
∑

j=1
wijxixj

n
∑

i=1

n
∑

j=1
xixj

, ∀j 6= i, (1)

where wij is the spatial weight between i and j in all n objects; and xi and xj characterize the magnitude
of events i and j.

The resulting z-scores of the Getis-Ord General G statistic for the P collection and the N collection
were 2.87 and 1.96, respectively. The probabilities that the two sets of objects form a random distribution
are both less than 5%; thus, it can be concluded that the quite dominant high-value cluster feature
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performs at a 95% confidence level. The SCA shows that subjects’ emotion data obviously possess both
common characteristics and conformity.

Although the two sets of data are consistent overall, the distribution of arousal does not follow
an identifiable pattern. Some obvious high-value points tend to be affected by random factors and
may not possess dominant statistical significance. Consequently, determining specific locations that
produce universal influence on the subject’s emotions—namely, the effective sampling points (ESP)—is
important to further analyze the spatial attributes resulting in such an emotional discrepancy. Using
the Getis-Ord Gi* statistic [42], the formulas of the Gi* statistic and the z-value are as follows:

Gi∗ =

n
∑
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wijxj

n
∑
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values of the center feature and adjacent features within the threshold value and compares the 
results with the sum of all the features in the system. The z-score allows statistical evaluation of the 

Figure 3. Hot-spot emotion clusters. Locations of emotional arousal are color-coded based on
z-scores. Similar high or low values are shown in red or blue (a) for positive emotions; and (b) for
negative emotions.

Under the threshold values of 23.5 m and 11 m, hot-spot analysis on the points of the P and N
collections can be conducted separately. For each point feature, this method sums the values of the
center feature and adjacent features within the threshold value and compares the results with the sum
of all the features in the system. The z-score allows statistical evaluation of the cluster regions with
high and low values and their significance levels. Point clusters with high or low values form the set
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of effective sampling points for further analysis, as shown in Figure 3, where the red zones represent
the high-value clusters and the dark blue zones represent the low-value clusters. Based on subjects’
ID numbers, these data belong to different examinees, which indicates that some subjects exhibit
similar emotional features at these sampling points. The analysis resulted in extracting 348 effective
sampling points, of which 254 samples represented positive emotions that were roughly distributed
across 11 locations, and 94 samples represented negative emotions that were roughly distributed across
9 locations.

4. Spatial Analysis

Determining the locations that dominantly influenced the emotional characteristics of subjects is
fundamental for further analyzing the potential role of urban spatial attributes. To refine the problem,
the statistical analysis was roughly carried out in three steps. First, by generating isovists at the ESPs,
we extracted the architectural texture within the isovist scope and obtained basic data on the external
spatial attributes of the surrounding architecture. Second, we calculated statistics using the isovist
parameters based on the ESPs to judge the overall influence of these parameters on subject valences
and to establish a regression model for each isovist parameter and valence. Third, we recorded the
urban scenery observed by subjects while walking the route by taking photos and comprehensively
applying visual entropy and visual fractal dimensions to analyze the spatial attributes represented in
these photos and to explore their potential possibilities affecting the valence.

4.1. Influence from Building Texture

The isovist concept has been used for spatial analysis since 1979 [43,44]. The principle is to abstract
space into a collection of countless viewpoints, among which the isovist is simplified as a sub-collection
mutually and directly viewed between these viewpoints. On this basis, the attributes of an isovist are
defined through a series of geometric parameters; then, spatial mapping is further conducted to form
an isovist field covering the entire research area. Isovist can be studied from both 2 and 3 dimensional
aspects. In this research, we would only limit it to the 2D aspect.

Based on the P collection (11 sets) and N collection (9 sets) of the ESPs identified along the
experiment route, we set the isovist radius threshold to 200 m and generated isovist boundaries in
ArcGIS for all the sets of sampling points (Figure 4). Then, we extracted the building footprints within
those boundaries and calculated the shape index, including the mean area, area dispersion, degree of
fragmentation and average distance between buildings. Equation (4) shows the calculation used for
area dispersion and Equation (5) shows the calculation for the degree of fragmentation. All the shape
indices were normalized by dividing them by the mean value to allow non-dimensional conversion
and statistical analysis (Table 1).

CoV_Area =

∑
√(

S2
i −S2

)
(N−1)

S
(4)

SI = 1− 4
√

Si
P

(5)

Here, Si refers to the areas of all the architectural outlines within the isovist, S refers to the average
area of an architectural outline, N refers to the number of architectures, and P refers to the overall
length of an architectural outline.



ISPRS Int. J. Geo-Inf. 2016, 5, 218 8 of 18
ISPRS Int. J. Geo-Inf. 2016, 5, 218 8 of 18 

 

 
Figure 4. Shape of isovists at sampling points: (a) for positive emotions; (b) for negative emotions.  

Table 1. Normalized index of building texture. 

Sampling Group Mean Area Area Dispersion Average Distance Degree of Fragmentation
P collection (S1) 1.728 1.356 1.283 0.984 
N collection (S1) 1.478 1.443 0.955 0.958 
P collection (S2) 0.378 1.220 0.834 1.016 
N collection (S2) 0.366 1.076 0.863 1.038 

A railway divides the research area into two sites—an eastern portion and a western portion 
(S1 and S2); therefore, we analyzed the shape index of the two sites under circumstances of 
different valences (Figure 5). In S1, the shape index of the building footprints corresponding to sites 
of different valences is noticeably different compared to the shape index in S2. For example, when 
subjects exhibit positive emotions, the building footprints within the isovist in S1 tends to be larger 
with a comparatively small deviation. This is possibly due to the influence of building scale; the 
average center-to-center spacing is large between the buildings in S1. Moreover, the building texture 
fragmentation is higher in S1, reflecting a complicated overall outline and a spatial hierarchy within 
this area. In S2, under the circumstance of different valences, the shape indices other than 
fragmentation have collinear characteristics, indicating that the factors affecting the subject’s emotions 
may not be triggered by these shape indices in S2. Therefore, in S2, it can be speculated that the 
influence of urban form on emotions may have a comparatively secondary status. 

An independent sample t-test was further applied to analyze the shape index of the P 
collection and the N collection. The results showed that no indicators are significant (p > 0.05) at a 
confidence level of 95%. Therefore, although we can compare differences in architectural texture 
using the shape indices among a few ESPs, it is difficult to predict other locations. Consequently, 
other spatial attributes (such as isovist parameters) must be employed to conduct a deep analysis 
and to explore other, more dominant spatial influential factors.  

Figure 4. Shape of isovists at sampling points: (a) for positive emotions; (b) for negative emotions.

Table 1. Normalized index of building texture.

Sampling Group Mean Area Area Dispersion Average Distance Degree of Fragmentation

P collection (S1) 1.728 1.356 1.283 0.984
N collection (S1) 1.478 1.443 0.955 0.958
P collection (S2) 0.378 1.220 0.834 1.016
N collection (S2) 0.366 1.076 0.863 1.038

A railway divides the research area into two sites—an eastern portion and a western portion
(S1 and S2); therefore, we analyzed the shape index of the two sites under circumstances of different
valences (Figure 5). In S1, the shape index of the building footprints corresponding to sites of
different valences is noticeably different compared to the shape index in S2. For example, when
subjects exhibit positive emotions, the building footprints within the isovist in S1 tends to be larger
with a comparatively small deviation. This is possibly due to the influence of building scale; the
average center-to-center spacing is large between the buildings in S1. Moreover, the building texture
fragmentation is higher in S1, reflecting a complicated overall outline and a spatial hierarchy within this
area. In S2, under the circumstance of different valences, the shape indices other than fragmentation
have collinear characteristics, indicating that the factors affecting the subject’s emotions may not be
triggered by these shape indices in S2. Therefore, in S2, it can be speculated that the influence of urban
form on emotions may have a comparatively secondary status.

An independent sample t-test was further applied to analyze the shape index of the P collection
and the N collection. The results showed that no indicators are significant (p > 0.05) at a confidence
level of 95%. Therefore, although we can compare differences in architectural texture using the shape
indices among a few ESPs, it is difficult to predict other locations. Consequently, other spatial attributes
(such as isovist parameters) must be employed to conduct a deep analysis and to explore other, more
dominant spatial influential factors.
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4.2. Isovist Analysis

We created an isovist analysis model in Depthmap, set the analytic accuracy to 10 m and selected
6 important isovist parameters to analyze their influence on the subjects’ emotions: isovist area, isovist
perimeter, isovist compactness, occlusivity, max-visibility length and min-visibility length. Of these,
the formulas for isovist compactness and occlusivity are, respectively, as follows [45]:

Compactness = 1− 2
√

πS
P

(6)

Occlusivity = P− Pf . (7)

Here, S refers to isovist area, P refers to isovist perimeter, and Pf refers to the overall lengths of solid
boundaries within the isovist area.

We performed spatial matching between the values of all isovist parameters and the 348 ESPs.
The values were divided into two groups based on the valence from the independent sample t-test
to analyze whether significant differences occurred between the two sets of sample average values.
The results indicate that when the confidence level is 95%, all isovist parameters have dominant
differences; when the confidence level is 99%, most isovist parameters—except for min-visibility
length—show significant differences. Therefore, we can roughly assume that these isovist parameters
may influence subjects’ emotions to a certain extent.

Regression reveals relationships that may exist between one or more independent predictors and
one dependent variable. Here, we applied binary logistic regression to analyze the probability that
the isovist parameters influenced subjects’ emotions. First, we used each individual isovist parameter
for the regression; then, we included all the isovist parameters in the model simultaneously. Finally,
the predictive effects are acquired by taking the combined parameters as variables. In this case, the
response variable of the logistic regression is the valence, where 0 and 1 represent the two different
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states (0 represents negative emotions and 1 represents positive emotions). Assuming that the response
variable equals 1 (positive), the probability is P, and the formula is as follows [46]:

P(y = 1 |Xi ) =
e∑ BiXi

1 + e∑ BiXi
(8)

Here, P ∈ [0, 1], Xi refers to all six isovist parameters selected in this paper, and Bi refers to the
estimated coefficient of the variable.

The prediction efficiency of the regression model can be further inspected using a receiver
operating characteristic analysis (ROC), which divides the prediction probability into several critical
points and obtains the corresponding sensitivity and specificity of each critical point. Taking sensitivity
and specificity as the coordinate axes, the points can be connected, forming a curve. When the threshold
value curve coincides with the diagonal line, it means that sensitivity and specificity each account for
50%, indicating that the analysis result has no practical meaning. However, when the judged threshold
value is closer to the left corner of coordinate graph, the sample’s overlapped region is smaller and
the discrimination is much stronger. Overall, the area under the curve (AUC) intuitively reflects the
model’s accuracy: the larger the AUC is, the higher the accuracy is. When the Youden index is the
highest, the optimal critical point can be determined as follows [47]:

Y = Se −
(
1− Sp

)
, (9)

where Y refers to the Youden value; Se refers to sensitivity, and Sp refers to specificity.
The results show that when using only a single isovist parameter for the logical regression, the

Hosmer-Lemeshow coefficients, which reflect the model’s overall goodness-of-fit, are all less than the
set significance level (p < 0.05). This indicates that the regression model does not fully extract data, and
there is a dominant difference between the model’s predicted value and observed value. The results
also show that the ROC curve of every individual isovist parameter is located around the coordinate’s
diagonal line (Figure 6a–f), which further verifies the conclusion of the unsatisfactory regression effect.
Consequently, we can judge that the emotions of subjects cannot be estimated accurately using any
single isovist parameter. Therefore, after removing those isovist parameters with poor correlations,
we combined the remaining isovist parameters into the regression model. Finally, we chose isovist
compactness (X1), neighborhood degree (X2) and maximum visibility (X3) as the concomitant variables.
To maintain the proper proportion of estimation coefficients, corresponding scaling of parameters is
required. By selecting the regression method with optimal efficiency, we can carry out an iterative
computation. The Hosmer-Lemeshow coefficient reaches 0.128, which is larger than the set significance
level (p > 0.05). Thus, as a preliminary judgment, this model generally accepts the null hypothesis
of the model fit. The regression coefficients of this comprehensive parameter model are all higher
than 0.3, which conveys a certain statistical importance. The overall accuracy is 83.9%. The analysis
showed that max-visibility length and isovist compactness have dominant influences on the model
(Table 2). Through ROC curve analysis, the AUC value (Figure 6g) of the comprehensive parameter
model is 0.849 (p < 0.05). According to experience, 0.7 < AUC < 0.9 is a prediction range with mid-level
accuracy, showing that the model based on the comprehensive isovist parameter model has quite
good predictive power. By taking advantage of the Youden index, we can conclude that the optimal
probability division point of the comprehensive parameter model lies at approximately 0.51, which is
close to the model’s default threshold value of 0.5. Therefore, we accept the predicted result judged by
the model’s division point.
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Table 2. Comprehensive parameter logical regression model.

Inspection
Coefficient

Inspection
Result

Prediction
Coefficient

Estimated
Coefficient p-Value Wals Value

Cox & Snell R2 0.302 X1 1.03 0.000 36.549
Nagelkerke R2 0.438 X2 0.10 0.032 4.611
Hosmer-Lemeshow 0.128 X3 0.70 0.000 14.709ISPRS Int. J. Geo-Inf. 2016, 5, 218 11 of 18 
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4.3. Analysis of Visual Entropy and Fractals

To gain a better understanding of how spatial attributes affect people’s emotion via their visible
attributes, we further analyzed the photos taken by subjects at the locations, which show significant
clustering effects as described earlier. When the human visual system perceives an image, attention
is not evenly distributed. This uncertainty can be measured by the visual entropy. The concept of
entropy was initially used to describe the confusion degree in thermodynamics and was introduced
in information theory to represent the uncertainty of a signal source [48]. Visual Entropy (VE) is
a quantitative description that reflects the visual information perceived by a subject, namely—here, the
visual complexity and richness of images in an urban context. Due to the extremely high complexity of
urban spaces, it is difficult to accurately measure the geometrical parameters of all the details. Thus,
this paper uses real digital photos of those effective sampling points and calculates the VE values from
these photos. This method has been widely applied in many psychological experiments and is highly
credible [49–52]. By processing the photos into a gray-scale map with 0–255 discrete values, this paper
considers each gray-scale unit as a different signal from the image signal source. The overall VE is
then calculated by the distribution of pixels of each gray-scale unit using the following formula:

H = −∑ PilogPi (10)

where H denotes the image’s overall VE and Pi refers to the probability that every gray-scale pixel
value appears. To eliminate noise, the threshold value was set to 3%. Signals less than the threshold
value are considered not to be valid data. Only those regions where the quantity of the pixels is larger
than the threshold value in the image are evaluated. To simplify the calculations, this paper divides
the image’s gray-scale into 25 grades. The luminance information of the green wave band is quite
sufficient as it possesses better image contrast [53]. Consequently, the gray-scale map of this band is
considered in this analysis.
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Furthermore, the complexity of an urban spatial environment and its visual impact on subjects
can also be measured by fractals [54]. It has been argued that nature is a complicated system that
has characteristics of irregularity and self-similarity [55]. Mandelbrot described these unordered and
fragmentized natural forms using the concept of a “fractal.” A fractal can exist in the form of a fraction
within the Euclidean dimension. For instance, an irregular shoreline is neither a one-dimensional
straight line nor a two-dimensional plane. Its fractal lies between those two dimensions and up to
the inflection degree of the shoreline. The key to understanding fractals lies in the selection of the
measurement scale. It requires different “scales” to measure objects with fractal characteristics as well
as different quantities. The fractal dimension can describe the complexity and inflection degree of
an image. The larger the fractal dimension is, the more complicated the image will be. The operations
in this step were also based on the analysis of the real photos. The step was conducted using the
boxing-counting method as follows. First, the images were resized to 1450 × 950 pixels. The borders
of all photos were intensified and transformed into gray-scale maps. Taking the gray-scale value 128
as a segmentation point, the photos were further transformed into binary graphs containing only black
and white pixels. Considering the two-dimensional grids on the images; when the side length is d,
the quantity of effective grids in the white part is N(d). According to the fractal principle, N(d) is the
power-exponent function of d. The formula is as follows [56]:

N(d) =
1

dD . (11)

For convenience of observation and calculation, a logarithmic transformation of Equation (8)
was made, and the function is drawn on the double logarithmic coordinate graph. D is the fractal of
this image:

lnN(d) = Dln(
1
d
). (12)

By adding the VE and the fractal together, a comprehensive visual index can be obtained
as follows:

VI = VE + D. (13)

By alternately comparing the current comprehensive index with the previous index, we can
observe the changing tendencies of the data, the formula for which is as follows:

VIi
′ = VIi −VIi−1, (14)

where VIi
′ is the variability index of the visual index and VIi refers to the comprehensive visual index

of the sampling site. The numbers 1 and 0 are used to represent the positive and negative symbols of
the calculation, matching all the sampling locations’ variability indices with the valence.

In this analysis, 13 hot-spot clusters were selected from the P and N collections for sequencing
(Figure 7). Photos were matched with the shooting locations. We used a full frame camera with
a 35 mm by 24 mm CCD and set the focal length to 50 mm, which results in images similar to a human
field of vision. Then, based on the photos, we calculated the VE and fractal (Figure 8). Generally,
photos in which all the elements are well-defined and integrated, resulting in high fractal and VE
values, seem important in causing positive emotions in people; locations with positive emotions tend
to present images with a strong sense of order and richness. In these areas, the buildings are arranged
neatly, and the images reflect enclosed space (No. 1 and No. 2). Other than a compact and neat isovist
form, the richness of plant landscapes and greening hierarchy may influence positive emotions (No. 7
and No. 11). After the test, subjects reflected that it is easier to feel a sense of safety in such spaces.
According to Maslow’s theory, safety is an important precondition for pleasure, and locations with
negative emotions show comparatively weak spatial order, such as weak orientation and open space
(No. 4 and No. 13). Although No. 8 and No. 10 locations present high values of fractal and VE,
the continuity of space is damaged due to intervening roadblocks and junk, which may be among
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the reasons that led subjects to experience negative emotions. Furthermore, positive and negative
emotions overlap with each other in some locations, such as the No. 3 location. Those photos show
quite strong cityscape contrasts. Rich landscaped vegetation and rigid architectures appear on both the
left and right sides of the image simultaneously. Therefore, the emotions of subjects in such locations
may change based on the objects that currently hold their attention, causing the sampled emotions in
these locations to vary.
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Through visual analysis of every photo location, Figure 9 shows that VE and fractal have obvious
wave resonances and correlation. The Pearson coefficient of those two variables is 0.694 (the confidence
level is 99%), showing a strong linear correlation. The two sets of data both have comparatively high
values at the No. 7 and No. 11 locations—lush trees grow at these two locations. The visible buildings
are low and mostly covered by greenery. In both images, the sky accounts for only a small proportion;
the landscape dominates both photos. In contrast, the No. 5 and No. 6 locations have very low VE
and fractal values. No. 6 is located at the end of a bridge across the railway and has a broad view.
The landscape element has a comparatively flat visual depth because the bridge and sky account
for the greater part of the view. There are few trees, and the sense of any enclosed space is weak.
To properly analyze the visual differences under these two valence statuses, we divided the data for VE
and fractals into two sets based on the valence and then conducted an independent t-test to compare
the mean values of the two sets. The results show no significant difference overall (p > 0.05).
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Additionally, valence and variability index correlate at 9 locations (Table 3), accounting for 70% of
the 13 total locations. To a certain extent, this supports the prior assumptions, namely, that changes
in emotion cannot be judged merely by isovist parameters. In addition to the comprehensive impact
of all kinds of visual factors, emotion changes in the subjects were also related to the sequence in
which people experienced the spaces. In addition, the switching node (e.g., crossroads and street
corners) usually has significant effects. Such an influence is, moreover, affected by time. When subjects
enter the next switching space, they will consciously compare it with the former node and its spatial
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attributes. The comprehensive differences between these two sets of spatial attributes may constitute
an important trigger for changes in emotion.

Table 3. Visual entropy and visual fractal inspection results.

Location
No. Fractal Visual

Entropy
Comprehensive

Visual Index
Predicted

Value
Observed

Value
Inspection

Result

1 1.6616 2.677428 4.339028 1 1
√

2 1.7354 2.958627 4.694027 1 1
√

3 1.7770 2.798628 4.575628 0 0
√

4 1.5876 2.744836 4.332436 0 0
√

5 1.4898 2.674102 4.163902 0 1 ×
6 1.6030 2.805265 4.408265 1 0 ×
7 1.8466 2.999055 4.845655 1 1

√

8 1.6561 2.979993 4.636093 0 0
√

9 1.7202 2.915624 4.635824 0 0
√

10 1.7974 2.998140 4.79554 1 0 ×
11 1.8463 3.027640 4.87394 1 1

√

12 1.7044 3.061204 4.765604 0 1 ×
13 1.6973 2.969658 4.666958 0 0

√

5. Discussion and Conclusion

This paper investigated the correlative coupling effects between urban spatial attributes and
people’s subjective emotions using a combination of quantitative analysis and qualitative description.
The results show that the attributes of urban spaces and visual factors do possess complicated
characteristics that affect people’s emotions. While making this summary, this paper proposes some
further discussion points as follows:

1. People’s emotions are affected by different building layouts—in particular, how people perceive
the spaces between buildings. Among those factors, isovist scope and relevant attributes
are important ways for people to obtain visual information during their urban experience.
Pedestrians activities in urban spaces are not simply restricted to any single isovist parameter but
to the comprehensive impact of several isovist parameters, of which compactness, occlusivity,
and maximum visibility are comparatively dominant. Among the three, higher compactness and
greater visibility within a space seem to be advantageous in causing positive emotions, indicating
that people may prefer spaces with good vistas within a suitable distance and clearer boundaries.
However, this does not mean that people prefer an unlimited field of view. Large unending
avenues might be monotonous and boring. A threshold effect may occur, and that is the question
our future research will seek to answer.

2. Spatial attributes are not merely reflected in planar isovist form; the richness and complexity of
three-dimensional space are also important reasons affecting the spatial experience of pedestrians.
Visual information analysis can help designers effectively interpret the qualities of an urban
space. According to this research, enclosed urban spaces are very important in fostering a sense
of security in pedestrians. During the process of urban planning and design, specific entity
borders, neat and compact isovist forms, a rich landscape hierarchy and greenery are easy ways
to create urban spaces with a sense of place. Some man-made obstacles can seriously weaken the
qualities of the spatial environment. Only by strengthening management and daily maintenance
is it possible to ensure the design achievements, which are hard to obtain, and maintain a spatial
environment with positive qualities.

3. Human perception of urban space tends to focus on important spatial nodes; therefore, we cannot
neglect changes in the spatial sequence or the design treatment of spatial nodes. These should
strengthen the systematic construction of urban spatial nodes, including public squares, street
greening, and street corners. The integration of points, lines and networks—especially those that
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reinforce the continuity and network of pedestrian space—should give full weight to the way in
which the scenes of these spatial nodes switch and cultivate urban spatial sequences with special
meanings that reinforce positive images during urban movement.

Finally, the findings of the presented study motivated us to undertake a more comprehensive
study aimed at obtaining more significant results. The sample sizes in this study and in all the
related studies mentioned earlier were small. Our more comprehensive study is being performed in
the ongoing research project ESUM (http://www.ia.arch.ethz.ch/esum/), for which we developed
a sensor backpack that gathers considerably more data from the urban environment. This will be
a novel data collection process for Smart Cities that includes (i) environmental data, such as noise, dust,
illuminance, temperature, relative humidity; (ii) location/mobility data, such as GPS and occupant
density detected via WiFi; and (iii) perceptual social data, collected by citizens’ responses using smart
phones. These fine-grained real-time data can provide additional insights about the spatial correlations
between urban environments and emotional responses of the inhabitants.

However, people’s emotions may be affected by many other complicated factors such as building
façade details, building functions, and what individuals actually see. To clarify the manifold influences
concerning the relationships between people’s emotions and built environments, we need to develop
a more solid and accurate theoretical framework for future research.
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