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Abstract: Partial Differential Equations (PDEs)-based morphology offers a wide range of continuous
operators to address various image processing problems. Most of these operators are formulated
as Hamilton–Jacobi equations or curve evolution level set and morphological flows. In our
previous works, we have proposed a simple method to solve PDEs on point clouds using the
framework of PdEs (Partial difference Equations) on graphs. In this paper, we propose to apply
a large class of morphological-based operators on graphs for processing raw 3D point clouds and
extend their applications for the processing of colored point clouds of geo-informatics 3D data.
Through illustrations, we show that this simple framework can be used in the resolution of many
applications for geo-informatics purposes.

Keywords: generalized distance; Hamilton–Jacobi equation; weighted graphs; partial difference
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1. Introduction

Partial Differential Equations (PDEs) are widely used for modeling and solving many inverse
problems in image processing and computer vision. PDEs of the Laplacian or p-Laplacian type have
been used successfully in many applications, such as image denoising, restoration, segmentation and
inpainting; see [1–4] and the references therein. PDEs of the Hamilton–Jacobi type play a central
role in continuous mathematical morphology. They have been used to model many continuous
morphological operators, such as dilation, erosion, leveling or watershed transforms [5–9]. However,
many of these models focus on images defined on the Euclidean domain where discretization, based
on finite differences, finite elements, finite volumes, etc, is well investigated and traditionally used.

On the other hand, with the development of 3D scanning technology, it is now easy to generate 3D
models from real objects, together with standard images painted on them. LIDAR (Light Detection and
Ranging) scanners allow one to generate point clouds by estimating the distance between sensors and
ground objects and have found interest in geoscience; see [10–13]. These scanners generally provide
raw data in the form of (noisy) unorganized point clouds representing surface samples with images
on point clouds. With the increasing popularity and the very broad applications in geoscience, art,
medicine and security of manufacturing, there is a growing interest to transpose PDEs-based tools
for signal/image processing to image processing on point clouds. The discretization of differential
operators becomes more difficult compared to the previously mentioned approaches.

There are a variety of methods for solving PDEs on surfaces numerically [14–16]. However, these
methods do not process directly the raw 3D point clouds and require point clouds to be in a suitable
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representation. One can quote several methods that can be classified into four categories according to
the representation:

• Methods using explicit representations of surfaces represented by a parametric function: This
corresponds to attaching a two-dimensional parametric domain (u, v) to the 3D object. By relying on
a specific parametrization of the given surface, differential operators can be defined and computed
analytically [17,18]. However, the computation of the parametrization is a difficult task for arbitrary
given surfaces, and topological changes can hardly be handled.

• Methods using implicit representations of surfaces represented by a zero level-set function of a
signed distance function in Euclidean domains. The differential operators are then approximated by
combining the Euclidean differential operators with a projection along the normal direction [1,19].
For instance, in [20], the coordinates of the closest point for each point of the surface is used, and
fast algorithms can be obtained in Euclidean domains. Implicit representations can deal easily
with topological changes, but all of the data have to be extended to the definition domain of the
implicit function.

• Methods using intrinsic geometry to study variational problems directly on the surface represented
as a triangular mesh. Lai and Chan have recently proposed [14] a framework for intrinsic image
processing on surfaces. They approximate surface differential operators, such as surface gradient
and divergence, by specific intrinsic differential geometry definitions. Intrinsic methods do not
need any pre-processing, but they require a specific discretization scheme on triangles.

• Methods solving PDEs directly on point clouds [15,16] by using intermediate representations to
approximate differential operators on point clouds. The authors in [16] use a local triangulation
that requires pre-processing. This pre-processing is needed to estimate differential operators on
triangular meshes. This method can then further be categorized as an intrinsic method. The authors
of [15] compute a local approximation of the manifold using moving least squares from the k-nearest
neighbors. From this local coordinate system, a local metric tensor is computed at each point such
that the differentiation on the manifold is simplified. This method can therefore be categorized as
an explicit method.

In our previous works [21,22], we have proposed a different approach that can cope with both
3D meshes and point clouds of arbitrary connectivity. To achieve this goal, we proposed the Partial
difference Equation (PdE) framework. This method provides a new approach that can be used to
overcome all of the difficulties and drawbacks of the methods mentioned above. Let us recall briefly
the method. A local or non-local graph is first constructed from the geometry of surfaces or point
clouds. Then, the transcription of PDEs on the graph is done and resolved by using the framework of
PdEs. Our approach allows one to transpose and extend many processes in classical image processing
to surfaces and point clouds. Contrary to other approaches, our method provides the following
advantages: (1) no parametrization, nor pre-processing, nor assumption is required; and (2) local and
non-local processing are unified. Since 3D point clouds and triangular meshes can have very different
topologies, we proposed to rely on graph-based methods that directly work in any discrete domain.

In this paper, we adopt the PdE framework, and we focus on some PDEs-based continuous
morphological operators in the Euclidean domain: dilation/erosion, mean curvature flows and the
Eikonal equation. One strong benefit of our approach is that it enables the processing of both geometry
and color associated with raw 3D point clouds. Our motivation is to extend their applications for
the processing of 3D surfaces and 3D point clouds. We apply this approach for geo-informatics
purposes on examples, such as restoration, denoising, inpainting, object extraction or estimation of the
minimal path.

Mathematical Morphology (MM) is a popular nonlinear approach for image processing that has
found numerous applications including shape and texture analysis, biomedical image processing,
document recognition or multiresolution techniques [23,24]. MM offers a wide range of operators
to address various image processing problems. These operators can be defined in terms of
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algebraic (discrete) tools or as PDEs. We now briefly review some of these operators formulated
as Hamilton–Jacobi equations, curve evolution level sets and morphological flows. For a detailed
review and numerical algorithms, see [2,25].

Hamilton–Jacobi equation for morphological dilation/erosion: Most of the morphological
continuous operators can be modeled by the Hamilton–Jacobi equation. Let us assume an image as a
Lipschitz continuous function f : Ω ⊂ Rn → R. Consider the general following initial-value PDEs:

∂ f
∂t

(x, t) = ±H(x,∇ f (x, t)), in Ω× (0,+∞),

f (x, 0) = g(x), in Ω
(1)

A solution of this Hamiltonian is called a viscosity solution [26]. For a particular Hamiltonian H,
a kind of canonical morphological PDE is formulated:

∂ f
∂t

(x, t) = ±1
2
||∇ f (x, t)||2, x ∈ Rn

f (x, 0) = g(x), x ∈ Rn
(2)

The corresponding viscosity solutions correspond to a dilation δB f (x) and an erosion εB f (x) of
the function f (x) defined as:

δB f (x) = sup
y∈Rn
{g(y) + B(y− x)}, (3)

εB f (x) = inf
y∈Rn
{g(y)− B(y− x)}, (4)

using as the structuring function B(x) the so-called multiscale quadratic (or parabolic)
structuring function:

pt(x) = −||x||
2

2t
. (5)

Due to its properties of being a semigroup (dimension separability and invariance to transform
domain [27]), the structuring function pt(x) can be considered as the canonical one in morphology,
playing a similar role as the Gaussian kernel for linear filtering. Other particular forms of the
Hamilton–Jacobi model Equation (1) cover the flat morphology by disks [7] (i.e., ft = ±||∇ f ||),
as well as operators with more general P-power concave structuring functions (i.e., ft = ±||∇ f ||p).
For the application of the latter model to adaptive morphology, see [25] and the references therein.

These versions of dilation and erosion are also the basis of other continuous morphological
operators, such as leveling or continuous watershed with the Eikonal equation [28]. To be applicable
to images, PDEs are discretized, and specific numerical schemes are used: for instance, see [29–31] and,
more recently, a variant of the flux corrected transport technique [32,33] used for tensor images and
matrix morphological processing [34]. Other morphological PDEs, based on curve evolution, the level
set or the Eikonal equation, are used for image segmentation, generalized distance computation or
shape analysis.

Curve evolution, level sets and morphological flows: The level set formulation to describe the
curve evolution has been introduced by Osher and Sethian [2]. It provides well-known advantages,
such as dealing with self-intersections or topological changes, and can be easily extended to Rd with
d ≥ 1. Given a parametrized curve Γ0 : [0, 1] → Ω, evolving on a domain Ω due to the effect of a
velocity F :

∂Γ(x, t)
∂t

= F · N , (6)

with F : Ω → R a function on Ω that depends on the curvature and the normal N . The level set
method aims to find a function φ(x, y), such that at each time t, the evolving curve Γt can be provided
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by the zero-level set of φ. In other words Γt = {x|φ(x, y) = 0} and the curve evolution can be
processed by solving: 

∂φ(x, t)
∂t

= F|∇φ|,

φ(x, 0) = φ0(x)
(7)

where φ0(x) is the initial embedding of Γ or an initial image. The velocity function F can depend on
the gradient or mean curvature. For F = ±1, we get the dilation and erosion:

∂φ

∂t
= ±|∇φ|, (8)

For F = div
(
∇φ
|∇φ|

)
, we get the mean curvature flow:

∂φ

∂t
= div

(
∇φ

|∇φ|

)
|∇φ|. (9)

which found application in image denoising, segmentation, reconstruction and active contour models.
In this paper, we consider the following general level set equation on surfaces or point clouds:

∂φ(x, t)
∂t

= H
(

t, x, φS,∇φS, div
(
∇φS
|∇φS|

))
. (10)

To solve this PDE on a surface S, we replace the differential operators by their discrete analogous
provided by the PdE framework on an adapted graph G(V, E, w). Thus, the transcription of the PDE
Equation (10) on the graph is defined as:

∂φ(u, t)
∂t

= Ĥ
(
t, u, φ,∇+

w φ,∇−w φ,Kwφ
)

φ(u, 0) = φ0(u)
(11)

where Ĥ is an approximation of theH function, and∇+
w ,∇−w ,Kw are the external gradient, the internal

gradient and the mean curvature defined on a weighted graph. Respectively, these operators will be
defined in the following section.

The rest of this paper is organized as follows. In Section 2, we present partial difference operators
on graphs. We present morphological operators on graphs in Section 3. In Section 4, we present the
construction of a patch-based weighted graph from a point cloud and examples of filtering, inpainting
and segmentation of images on point clouds. The last section concludes.

2. Partial Difference Operators on Graphs

In this section, we recall definitions and operators on graphs. This constitutes the basis of the
framework of PdEs [35] that enables transposing PDEs on graphs. All of these definitions are borrowed
from [6,9,36].

2.1. Notations and Preliminaries

A weighted graph G = (V, E, w) consists of a finite set V = {v1, . . . , vN} of N vertices and a finite
set E ⊂ V ×V of weighted edges. We assume G to be undirected, with no self-loops and no multiple
edges. Let (u, v) be the edge of E that connects two vertices u and v of V. Its weight, denoted by w(u, v),
represents the similarity between its vertices. Similarities are usually computed by using a positive
symmetric function w : V ×V → IR+ satisfying w(u, v) = 0 if (u, v) /∈ E. The notation u ∼ v is also
used to denote two adjacent vertices. The degree of a vertex u is defined as δw(u) = ∑v∼u w(u, v).
Let H(V) be the Hilbert space of real-valued functions defined on the vertices of a graph. A function
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f : V → IR of H(V) assigns a real value f (u) to each vertex u ∈ V. The function space H(V) is
endowed with the usual inner product 〈 f , h〉H(V) = ∑v∈V f (v)h(v), where f , h : V → R.

2.2. Difference Operators on Weighted Graphs

Let G = (V, E, w) be a weighted graph, f : V → IR be a function of H(V) and w : V ×V → R+ a
weight function defined as a similarity measure between two vertices.

Definition 1. The directional derivative (or edge derivative) of f , at a vertex u ∈ V, along an edge e = (u, v),
is defined as:

∂v f (u) =
√

w(u, v)( f (v)− f (u)). (12)

The external and internal morphological directional partial derivative operators are respectively defined
as [9]:

∂+v f (u) =
(
∂v f (u)

)+, (13)

∂−v f (u) =
(
∂v f (u)

)−. (14)

where (x)+ = max(x, 0) and (x)− = −min(x, 0).

Definition 2. Discrete upwind non-local weighted gradients are defined as:

(∇±w f )(u) =
(
(∂±v f )(u)

)T
v∈V , (15)

where w corresponds to the weight function defined on graphs.
The Lp and L∞ norms of these gradients are defined by:

||(∇±w f )(u)||p =

[
∑

v∼u
w(u, v)

p
2
[
( f (v)− f (u))±

]p
] 1

p

, (16)

||(∇±w f )(u)||∞ = max
v∼u

(
w(u, v)|( f (v)− f (u))±|

)
. (17)

Definition 3. The normalized two-Laplacian on the graph is defined as:

(∆N
w,2 f )(u) = ∑v∼u w(u, v) f (v)

δw(u)
− f (u) (18)

Definition 4. The ∞-Laplacian on the graph is defined as:

(∆w,∞ f )(u) =
1
2
[
||(∇+

w f )(u)||∞ − ||(∇−w f )(u)||∞||
]

. (19)

Definition 5. The anisotropic p-Laplacian on the graph of a function f : V → R for 1 ≤ p < ∞ is defined as:

∆w,p f (u) = ∑
v∈V

w(u, v)
p
2 | f (v)− f (u)|p−2( f (v)− f (u)). (20)

Definition 6. The mean curvature Kw of a function f at u ∈ V on a graph is defined as:

Kw(u, f ) =
∑ f (v)− f (u)≥0 w(u, v)−∑ f (v)− f (u)<0 w(u, v)

δw(u)
. (21)

This corresponds to:

Kw(u, f ) = ∑u∈V w(u, v)sign( f (v)− f (u))
δw(u)

, (22)
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with sign(r) =

{
1 if r ≥ 0
−1 otherwise.

3. Morphological Operators on Graphs

Based on the discrete gradient on weighted graphs, we now present a class of discrete equations
that mimic PDEs-based definitions of erosion, dilation, ∞-Laplacian and mean curvature flows, the
time level-set and the Eikonal equation.

3.1. Dilation and Erosion on Graphs for Filtering

The dilation and erosion of an initial function f 0 : V → R is defined by [6]:

∂ f
∂t

(u, t) = +||(∇+
w f )(u)||p

∂ f
∂t

(u, t) = −||(∇−w f )(u)||p,
(23)

for 1 ≤ p ≤ ∞, with initial condition f (u, 0) = f 0(u). The discrete expression of the internal
and external gradient constitutes a direct spectral numerical scheme, with the usual notation
f n(u) = f (u, n∆t). The iterative scheme for dilation and erosion can be defined as:

f n+1(u) = f n(u)± ∆t||∇±w f n(u)||p with f (0) = f 0(u) (24)

considering the Lp norm, the equation becomes:

f n+1(u) = f (n)(u)± ∆t

[
∑

v∈V
(w(u, v))

p
2 |∂±v f n(u)|p

] 1
p

(25)

f (0) = f 0(u) (26)

Note that, under this form, the coefficients of this algebraic equation can depend on the data.
For w = 1 (unweighted graph) and for a grid graph, this corresponds to the first order

discretization scheme of Osher and Sethian.
Considering the L∞ norm, this equation becomes:

f (n+1)(u) = f (n)(u)± ∆t max
v∼u

(
√

w(u, v)|∂±v f (n)(u)|). (27)

With ∆t = 1 and w = 1, the dilation and erosion equations become:

f (n+1) = max
v∼u

( f (n)(v), f (n)(u)) (28)

f (n+1) = min
v∼u

( f (n)(v), f (n)(u)) (29)

In the special case where ∆t = 1, the dilation and the erosion can be interpreted as iterative
Non-Local Dilation (NLD) and a Non-Local Erosion (NLE) process, respectively. These processes can
be expressed as:

f n+1(u) = NLD( f n)(u), (30)

where:
NLD( f )(u) = f (u) + ||(∇+

w f )(u)||∞ (31)

for the dilation and:
f n+1(u) = NLE( f n)(u), (32)
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where:
NLE( f )(u) = f (u)− ||(∇−w f )(u)||∞ (33)

for the erosion.
This approach can be used to define other morphological operators based on erosion ε or dilation

δ operators, such as openings γ = (δε), closings φ = (εδ) or morphological gradients (δ− ε). For
instance, we propose a formulation of the Non-Local Closing (NLC) operation that can be defined as:

∂ f
∂t

(u, t) =− sign+(t− s + 1)||(∇−w f )(u)||∞

+ sign+(s− t)||(∇+
w f )(u)||∞,

(34)

with t ∈ [0, 2s[, s ∈ R+ and:

sign+(x) =

{
1 if x > 0,

0 otherwise.
(35)

This PdE has a time-dependent switching coefficient that makes it act as a dilation δ for t ∈ [0, s]
and an erosion ε for t ∈ [s, 2s]. This formulation is different from the classical PDEs one [5] and does
not produce discontinuities at the switching time. This can be interpreted as the following non-local
iterative process:

f (n+1)(u) = NLC( f (n))(u)

= sign+(t− s + 1)NLE( f (n))(u)

+ sign+(s− t)NLD( f (n))(u).

(36)

Similarly, one can express the Non-Local Opening (NLO) as an iterative process.

3.2. Infinity Laplacian and Mean Curvature Flows on Graphs

In this subsection, we present a numerical scheme for the ∞-Laplacian and the mean curvature
flows on graphs. We will show that these flows can be formulated using non-local dilation or non-local
erosion defined above. If we consider the following parabolic PDE on the graph involving the
∞-Laplacian: 

∂ f
∂t

(u, t) = ∆w,∞ f (u, t) u ∈ V

f (u, 0) = f 0(u),
(37)

using the notation f n(u) = f (u, n∆t), one can we replace the ∞-Laplacian by its definition (19): f n+1(u) = f n(u) + ∆t
1
2
[
||∇+

w f (u)||∞ − ||∇−w f (u)||∞
]

f (0) = f 0(u).
(38)

If ∆t = 1, the ∞-Laplacian can be interpreted as a symmetric morphological filter that depends on
non-local dilation and non-local erosion. Indeed, Equation (38) can be rewritten as:{

f n+1(u) = f n(u) + NLA( f n)(u)

f (0) = f 0(u),
(39)

where:
NLA( f )(u) =

1
2
[NLD( f )(u) + NLE( f )(u)] (40)

For the discretization of the continuous mean curvature flow equation:

∂φ

∂t
= div

(
∇φ

|∇φ|

)
|∇φ|, (41)
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we propose to replace the continuous curvature by the curvature on the graph and to use the following
morphological scheme:{

∂ f
∂t (u) = (Kw( f (u)))+‖(∇+

w f )(u)‖∞ − (Kw( f (u)))−‖(∇−w f )(u)‖∞

f (u, 0) = f0(u),
(42)

The time discretization leads to the following equation:

f n+1(u) = [1− ∆t|Kw( f n(u))|] f n(u) + ∆t(Kw( f n(u)))+ · NLD( f n)(u) + ∆t(Kw( f n(u)))− · NLE( f n)(u). (43)

One can note that for |Kw| 6= 0 and ∆t < 1
|Kw( f n(u))| , the previous equation corresponds to the

following non-local average filtering:

f n+1(u) = NLA0( f n)(u), (44)

where:

NLA0( f )(u) = (1− ∆t|Kw( f (u))| · f (u) + ∆t(Kw( f (u)))+ · NLD( f )(u) + ∆t(Kw( f (u)))− · NLE( f )(u). (45)

One can remark that this filter alternates between the non-local dilation of the image or non-local
erosion of the image according to the sign of the curvature.

For |Kw( f n(u))| 6= 0 and ∆t = 1
|Kw( f n(u))| , the discrete mean curvature flow corresponds to the

following non-local average filter:

f n+1(u) = NLA1( f n)(u), (46)

where:

NLA1( f )(u) =
(Kw( f (u)))+

|Kw( f (u))| · NLD( f )(u) +
(Kw( f (u)))−

|Kw( f (u))| · NLE( f )(u). (47)

NLA1 is a non-local morphological filter alternating between non-local dilation and non-local
erosion according to the curvature sign.

3.3. Level Set Equations on Graphs

Now, we present our transcription of PDEs level set equations on weighted graphs of arbitrary
topology and an algorithm for solving the Eikonal equation on graphs.

Time-dependent level set: Let G(V, E, w) be a weighted graph. A front evolving on G is defined
as a subset Ω0 ⊂ V and is implicitly represented at the initial time by a level set function φ0 = U0 =

χΩ0 − χΩc
0, where χ : V → {0, 1} is the indicator function and Ωc

0 is the complement of Ω0. In other
words, φ0 equals one in Ω0 and −1 on its complementary.

Then, from the general Equation (7) transposed on graphs, the front propagation can be
described by: 

∂φ

∂t
(u) = F (u)||(∇wφ)(u)||∞

φ0(u) = U0

(48)

with F ∈ H(V), and w : V × V → R+ is the weight function. Based on the previous definition
of discrete dilation and erosion on graphs [9,37], the front propagation can be expressed as a
morphological process with the following sum of dilation and erosion:

∂φ

∂t
(u) = F+||(∇+

w φ)(u)||∞ −F−||(∇−w φ)(u)||∞

φ0(u) = U0

(49)
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To solve this dilation and erosion process, on the contrary to the PDEs case, no spatial
discretization is required thanks to derivatives directly expressed in a discrete form. Then, the
general iterative scheme to compute φ at time t + 1 for all u ∈ V is given by:

φt+1(u) = φt(u) + ∆t[(F (u))+||(∇+
w φt)(u)||∞−

(F (u))−||(∇−w φt)(u)||∞]
(50)

At each time t + 1, the new value at a vertex u only depends on its value at time t and the existing
values in its neighborhood. This equation can be split into two independent equations, depending on
the sign of F :

φt+1(u) =

{
φt(u) + ∆tF (u)||(∇+

w φt)(u)||∞ ,F (u) > 0

φt(u) + ∆tF (u)||(∇−w φt)(u)||∞ ,F (u) < 0.
(51)

Stationary level set: Eikonal equation: When F ≥ 0 on Ω, the relation between the level set
formulation (48) and the Eikonal equation (F (x)||∇T(x)|| = 1) stems from the following change of
variable: φ(x, y) = t− T(x) (where T(x) is the arrival time of the curve at a point x).

Using previous definitions of morphological evolution equations, one can formulate the same
relation and obtain a PdEs-based version of the Eikonal equation, defined on weighted graphs of
arbitrary topology. Let G(V, E, w) be a weighted graph, with functions T and F defined on H(V).
Because F ≥ 0, the evolution process described by Equation (48) can be seen as a dilation process, and
the evolution equation can be rewritten as:

∂φ

∂t
(u) = F||(∇+

w φ)(u)||. (52)

With a similar change of variable φ(u) = t− T(u), one has:

∂φ

∂t
(u) = F||(∇+

w (t− T)(u)|| = F||(∇−w T)(u)||, (53)

and then,
F||(∇−w T)(u)|| = 1. (54)

Finally, with P = 1/F , we obtain a discrete adaptation of the Eikonal equation on weighted
graph, which describes a morphological erosion process, and defined as:{

||(∇−w f )(u)||p = P(u) ∀u ∈ V

f (u) = 0 ∀u ∈ V0
(55)

From Equation (55) and using norms defined in Equations (16) and (17) with the property
min(x, 0) = −max(−x, 0), we obtain the following equations for the Lp and L∞ norms:

• When p ∈ {1, 2}: (
∑

v∼u
wp/2

uv max (0, f (u)− f (v))p

)1/p

= P(u) (56)

With a simple transformation of variables and some conventional notations, Equation (56) can be
rewritten as:

n

∑
i=1

(
(x− ai)

+

hi

)p

= C p, (57)

where x = f (u), hi =
√

1/wuv, n = card(N(u)), a = { f (vi)|vi ∈ N(u) with i = 1, ..., n}, C = P(u).

• When p = ∞:
max
v∼u

(
√

wuv max(0, f (u)− f (v))) = P(u) (58)
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Using the same transformation of variables, we obtain:

max
i

(
(x− ai)

+

hi

)
= C . (59)

Local solutions (i.e., solution for a vertex, assuming the others are held fixed) of Equation (55) over
a weighted graph are given by Equations (57) and (59). Both equations are clearly independent of
the graph formulation and can be applied to weighted graphs of arbitrary topology.

Algorithm 1: x computation (Local solution).
Sort increasingly the ai, i = 1, ..., n
an+1 ← ∞
m← 1
x̂ ← ∞
while x̂m ≥ am+1 and m ≤ n− 1 do

x̂m ← solution of ∑m
i=1

[
x−ai

hi

]p
= C p with p = 1 or 2

m← m + 1
end
x ← x̂m

For the case p = {1, 2}, local solution x at a particular vertex can be easily obtained with an
iterative algorithm as described in Algorithm 1. It is based on the knowledge that there exists k
(1 ≤ k ≤ n), such that ak ≤ x ≤ ak+1, and x is the unique solution of the equation. Then, the algorithm
consists of sorting increasingly the values ai and computing temporary solution x̂m until the condition
x̂m ≤ am+1 is satisfied. To compute the solution of Eikonal equation at each vertex, we used Fast
Marching’s updating scheme [37].

Label propagation: We propose a simple way to propagate an initial set of labels (from a set of
seed vertices V0) through the graph, following the evolution of the propagating fronts. Then, the
propagating front that reaches a vertex is necessarily the front coming from the nearest seed (according
to the weight function). Therefore, each time a distance is updated on a vertex u, we find the neighbor
v of u, which is the closest to both u and a seed v ∈ V0, and extend the label of v to the current vertex
u. The labeling process can be summarized by the following formula: each time f (u) is updated, the
label L(u) is given by:

L(u) = L(v)|v ∼ u, f (v) < f (u) and
f (v)

w(u, v)
= min

z∼u

(
f (z)

w(u, z)

)
(60)

4. Graph Construction and Examples of Image Processing on Point Clouds

4.1. Graph Construction from Images on 3D Point Clouds

We consider a surface or a point cloud composed by a set S of vertices, such as S = {x1, x2, ...},
with xi ∈ R3. To each raw point xi ∈ S, one associates a vertex of a graph G to define a set of vertices
V. Data on the image or point cloud can be defined as a function f : V → R. The construction of such
a graph consists of modeling the neighborhood relationships between the data through the definition
of a set of edges E and using a pairwise similarity measure µ : V × V → IR+. In the particular
case of images, edges based on geometric neighborhoods are particularly well-adapted to represent
the geometry.

From a point cloud, a k-nn-graph is built. k controls the number of incident edges at each vertex
and depends on the application. Generally, a low value (e.g., k = 5) is set for a local processing and a
higher value for a non-local processing.
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From a mesh, the set E is deduced from the implicit graph in the triangular mesh. The similarity
between two vertices is computed by a similarity measure s : E→ IR+, which satisfies:

w(u, v) =

{
s(u, v), if (u, v) ∈ E

0, otherwise.

Common similarity functions are the following:

s0(u, v) ≡ 1,

s1(u, v) = exp
(
−µ
(

f (u), f (v)
)
/σ2

)
,

for which the variance parameter σ > 0 usually depends on the variation of the function µ.
The function f used to describe the data at a vertex u is considered as the feature vector. Several

choices can be considered for the expression of the feature vectors, depending on the nature of the
features to be used for graph processing. In the context of image processing, one can use a simple gray
scale or color feature vector Fu or a patch feature vector Fτ

u =
⋃

v∈Wτ(u) Fv (i.e., the set of values Fv for
which v is in a square windowWτ(u) of size (2τ + 1)× (2τ + 1) centered at pixel u). Note that the
latter vector allows one to incorporate nonlocal features for τ ≥ 1. We now present our method for the
construction of patches on surfaces and point clouds.

Patch construction for 3D point clouds: Extending the notion of a patch to three-dimensional point
cloud data is not an easy task. In [21], we have proposed a novel definition of patches that can be used
for any graph representation associated with meshes or point clouds. In particular, around each vertex,
we build a two-dimensional grid (the patch) describing the close neighborhood. This grid is defined on
the tangent plane of the point (i.e., the vertex). Then, the patch is oriented accordingly, and finally, the
patch is filled in with a weighted average of the graph-signal values in the local neighborhood. The first
step consists of estimating the orientation of each patch. The second step consists of the actual patch
construction. The set of values inside the patch of the vertex u is denoted as ~P(u). Let Ck(u) denote the
k-th cell of the constructed patch around u with k ∈ {1, · · · , n2}. With the proposed patch construction
process, one can define the set Vk(u) = {v | ~p′v ∈ Ck(u)} as the set of vertices v that are assigned to

the k-th patch cell of u. Then, the patch vector is defined as ~P(u) =

 ∑
v∈Vk(u)

w(~ck ,~pv) f (v)

∑
v∈Vk(u)

w(~ck ,~pv)

T

k∈{1,··· ,n2}

with w(~ck,~pu) = exp(− ||~ck−~p′u ||22
σ2 ), for which ~ck is the vector of coordinates of the k-th patch cell center.

This weighting enables us to take into account the point distribution within the patch cells in order to
compute their mean feature vectors. Figure 1a summarizes our patch construction method.

Figure 1. Interpolation of the content of the patch with a patch length of l > 0. ~o0(u) and~o1(u) are
the orientations of the patch ~P(u) at a point ~pu. Elements marked by a “×” symbol correspond to the
projected neighbors ~p′u of the point ~pu on the patch. These projections are used to deduce the values of
each patch cell (a “o” symbol) by a weighted average of the associated graph signal values.
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4.2. Local, Non-Local Inpainting and Filtering of Images on Point Clouds

In this section, we illustrate through some examples the application of morphological operators
on graphs for inpainting, filtering of images on point clouds. All processing have been implemented in
C++ and take almost several seconds on a current laptop running on a GNU/Linux operating system.

Inpainting: Image inpainting using a patch-based approach has been proposed by [38]. Recent
works on inpainting tend to unify local and non-local approaches under a discrete or continuous
variational formulation (for more details, see [39,40] and the references therein). Here, we consider
that images on point clouds are defined on a general domain represented by an adaptive graph
G = (V, E, w). We consider both local and non-local inpainting as an interpolation problem.
Let f 0 : V → IR be an initial function. Let A ⊂ V be the subset of vertices with unknown values
and ∂A the subset of vertices with known values. The purpose of inpainting is to find a function f
extending f 0 in V by solving the ∞-Laplacian equation:{

(∆w,∞ f )(u) = 0 ∀u ∈ A,
f (u) = f 0(u) ∀u ∈ ∂A.

(61)

The solution f is said to be infinity-harmonic [40].
The solution is obtained with this simple iterative algorithm based on the NLA

operator introduced in Equation (40). At each iteration, only the internal boundary
∂−A = {u ∈ A|∃v ∼ u, v ∈ ∂A} is interpolated:NLA( f )(u) =

1
2
[NLD( f )(u) + NLE( f )(u)] ∀u ∈ ∂−A,

NLA( f )(u) = f 0(u) ∀u ∈ ∂A.
(62)

At the end of each iteration, the set ∂A is updated by ∂A(n+1) = ∂A(n) ∪ ∂−A(n), and ∂−A(n+1) is
updated from ∂A(n+1). The algorithm stops when the set of vertices to inpaint is empty.{

f (0)(u) = f 0(u),

f (n+1)(u) = NLA( f (n))(u).
(63)

Figure 2 shows the inpainting results of a synthetic textured point cloud with a constant (w = 1)
weight function defined locally (Figure 2b) and with a patch-based similarity metric defined on a
non-local neighborhood (Figure 2c). The method presented in Section 4.1 has been used to construct the
graph from the point cloud. Better results are obtained with non-local processing with the patch-based
similarity measure. This weighting scheme captures texture information and is then able to interpolate
repetitive patterns. Figure 3 shows an inpainting result of a colored point cloud acquired from a
real object.

Filtering: We give some examples of filtering by local and non-local morphological operators:
NLD (Non-Local Dilation), NLE (Non-Local Erosion), NLA (∞-Laplacian) and NLA1 (mean curvature).

Figure 4 shows the filtering of a colored point cloud with the NLD, NLE and NLA operators. The
weight functions w are computed from the colors of the point cloud. Results are shown with w 6= 1
and w = 1. When w 6= 1, denoising results are better since edges are preserved. Figure 5 shows the
filtering of a colored point cloud with several operators. The NLA1 operator defined in Equation (47)
corresponds to a filtering operator by alternating the process of non-local dilation and non-local erosion
according to the sign of the curvature Kw on the graph Equation (21). When w = 1, the filtering is
unable to restore the colors on the point clouds. Figure 6 shows a comparison of the result obtained
with the NLAand NLA1 operators on a scanned room [41]. The NLA1 operator produces better results
by smoothing the colors while preserving details and contours, while the NLA operator smooths by
removing many details.
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(a) (b) (c)

Figure 2. Inpainting of the color on a point cloud. (a) Point cloud to inpaint; (b) result of inpainting
with w = 1; (c) result of inpainting with w based on the patch defined on point clouds (see Section 4.2).

(a) (b) (c) (d)

Figure 3. Inpainting of the color on a point cloud. (a) Original point cloud; (b) point cloud to inpaint,
where the red color represents points to inpaint; (c) result of inpainting with w = 1; (d) result of
inpainting with the patch-based similarity metric (see Section 4.2).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Filtering of a colored point cloud with the NLD, NLD and NLA operators with k = 8.
(a) Original; (b) NLA w = 1; (c) NLE w = 1; (d) NLD w = 1; (e) NLA0 w 6= 1; (f) NLA w 6= 1;
(g) NLE w 6= 1; (h) NLD w 6= 1. (b–d,g,h) The results after 20 iterations. (e,f) The results after
200 iterations (see Section 4.2).
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(a) (b) (c) (d) (e)

Figure 5. Filtering of a colored point cloud with several operators. Parameters are k = 8, σ = 15 with
20 iterations for (a–e) (see Section 4.2). (a) Original; (b) NLD; (c) NLE; (d) NLA; (e) NLA1.

(a) (b) (c)

Figure 6. Filtering of a colored point cloud with NLA Equation (40) and NLA1 Equation (47) operators
after 500 iterations. The point cloud comes from RGB-D Scenes Dataset v2 [41]. (a) Original; (b) NLA1;
(c) NLA.

4.2.1. Generalized Weighted Distance, Shortest Path and Eikonal Equation for Segmentation of the
Image on Point Clouds

The Eikonal equation defined in Equation (55) on a weighted graph of arbitrary topology allows
one to compute generalized distances on graphs. We use the Eikonal equation with label propagation
for computing the shortest path and segmentation on meshes or images painted on point clouds.

Generalized weighted distance: We compute the generalized distance on several point clouds by
solving the Eikonal equation; see Figure 7. We built the graph as a k-nn with k = 5, in the coordinate
space of the point cloud. Since the spatial discretization step is regular enough, we use a constant
weight function (w(u, v) = 1). The superimposed red line on the figure is the shortest path between
the source point (the point from which the distance is computed) and another point in the point cloud.
This path was deformed using the computed distance function. Figure 8 shows the evolution of the
distance estimation on a mesh from a vertex, with or without colorimetric constraints.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Geodesic distances on 3D point clouds with the Eikonal equation on the graph. (a–c) show
the original point clouds; (d–f) show the evolution of the distances with the minimal path linking two
points of the point cloud. Blue and red color show low and high distances, respectively. White lines
display isolines.

(a) (b) (c)

Figure 8. Generalized distance on the mesh with the Eikonal equation on the graph. From left to right:
(a) original mesh; (b) result with w = 1; (c) result with w that depends on the vertices’ colors (see
Section 4.2.1). Blue and red color show low and high distances, respectively. White lines display isolines.

Figure 9 shows the shortest path between two points of a 3D city. This latter 3D point cloud has
been generated from the online web interface to estimate colorized point clouds obtained from stereo
satellite images [42]. The shortest path was obtained by processing the raw point cloud. Note that,
even if the point cloud estimated is highly noisy and not uniform, the shortest path takes roads by
nicely avoiding buildings. The result has been obtained with k = 10.
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Segmentation: Figure 10 shows the segmentation of a point cloud from colorimetric values.
In Figures 8 and 10, the similarity function w is computed from the color distance with
w(u, v) = e−|| f (u)− f (v)||2/σ2

and f : V → R the colorimetric function. Figure 11 shows the segmentation
of meshes from the estimation of the geometric curvature; the similarity function is computed with
w(u, v) = e−(K(u)−K(v))2/σ2

; and K : V → R the function that associates an estimation of the square of
major principal curvature at each vertex u ∈ V. The estimation of the principal curvature is obtained
by computing the eigenvalues as proposed in [43,44].

(a) (b)

Figure 9. Estimation of a shortest path on raw point clouds of a 3D city. The point cloud has been
estimated from satellite images using [42]. From left to right: (a) one of the satellite images used to
estimate the 3D point cloud; (b) 3D point cloud of a city, with the shortest path depicted in red.

(a) (b) (c)

(d) (e) (f)

Figure 10. Segmentation of 3D point clouds based on the colorimetric values by solving the Eikonal
equation with P(u) = 1 (see Section 4.2.1). (a–c) contain initial labels on point clouds. (d–f) show the
results of the colorimetric segmentation, where red color represents the border between the blue and
the green area.
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(a) (c) (e)

(b) (d) (f)

Figure 11. Segmentation of 3D meshes based on the geometric principal curvatures by solving the
Eikonal equation with P(u) = 1 (see Section 4.2.1). (a,b) show the square of major principal curvature
(blue color for low values, red for high values); (c,d) show the initial labels on the 3D mesh; (e,f) show
the results of the geometric segmentation.

5. Conclusions

In this paper, we have adopted the PdE framework, and we have focused on some PDEs-based
continuous morphological operators on Euclidean domains: dilation/erosion, mean curvature flows
and the Eikonal equation. We have extended their applications for the processing of colored point
clouds of geo-informatics 3D data. We briefly presented the construction of a graph from mesh or
point cloud and show several examples, such as restoration, denoising, inpainting, object extraction or
estimation of the minimal path. We have shown results on geographic data, such as the estimation
of the shortest path on a raw point cloud of a 3D city or the segmentation of a LIDAR 3D point
cloud based on the colorimetric values. The results demonstrated many potentials of the point cloud
approach for the processing of geo-informatics 3D data.
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