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Abstract: The prediction of travel times is challenging because of the sparseness of real-time traffic
data and the intrinsic uncertainty of travel on congested urban road networks. We propose a new
gradient–boosted regression tree method to accurately predict travel times. This model accounts
for spatiotemporal correlations extracted from historical and real-time traffic data for adjacent and
target links. This method can deliver high prediction accuracy by combining simple regression
trees with poor performance. It corrects the error found in existing models for improved prediction
accuracy. Our spatiotemporal gradient–boosted regression tree model was verified in experiments.
The training data were obtained from big data reflecting historic traffic conditions collected by probe
vehicles in Wuhan from January to May 2014. Real-time data were extracted from 11 weeks of GPS
records collected in Wuhan from 5 May 2014 to 20 July 2014. Based on these data, we predicted link
travel time for the period from 21 July 2014 to 25 July 2014. Experiments showed that our proposed
spatiotemporal gradient–boosted regression tree model obtained better results than gradient boosting,
random forest, or autoregressive integrated moving average approaches. Furthermore, these results
indicate the advantages of our model for urban link travel time prediction.

Keywords: urban link travel time prediction; spatiotemporal correlations; spatiotemporal
gradient–boosted regression tree model; big data

1. Introduction

Estimating and predicting travel times is challenging because of the intrinsic uncertainty of travel
on congested urban road networks and uncertainty stemming from the collection of data with probe
vehicles equipped with GPS. Uncertainty is produced by fluctuations in traffic and affected by many
other factors, such as traffic demand (e.g., due to population characteristics, seasonal effects, time
instant, driver behavior, the availability of traffic information, and user responses), traffic control
(e.g., due to accidents, road work, and road geometry), weather conditions (e.g., due to temperature,
rain, snow, and wind), stochastic arrivals and departures at signalized intersections [1], and the travel
direction of traffic flows. These random fluctuations are often complicated and difficult to predict.
Understanding these fluctuations is especially necessary when developing more accurate prediction
algorithms. Meanwhile, due to the low frequency [2–4] of probe vehicle GPS data acquisition and the
regional limitation of driving areas, trajectory information collected by probe vehicle GPSs cannot
cover an entire urban road network. Therefore, the collected data are sparse [5,6]. Estimating and
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predicting link travel time using sparse data is a challenge that must be solved for accurate estimation
and prediction of travel times.

Corresponding to the needs of travel time prediction, many prediction methods have been
proposed, including statistical and regression methods [7–9], historical average and smoothing [10–12],
diverse machine learning [13,14], and traffic flow theory-based methods [15]. Among these methods,
the Autoregressive Integrated Moving Average Model (ARIMA) model is gradually becoming a
benchmark for evaluation of newly developed prediction models [16]. The ARIMA model [7,17]
generally assumes a certain model structure for the data and provides interpretable parameters with a
simple model structure. This model can better predict travel time when traffic flow exhibits patterns of
regular change. Another effective prediction method involves machine learning algorithms, which
are also widely applied in traffic prediction. Successful applications include support vector machines
(SVM) [13,18], neural networks [14,19] and hybrid and ensemble techniques [13,20]. In contrast to
existing statistical models, in machine learning, it is not necessary to assume that the data have a
certain structure; this structure can be unknown. Machine learning algorithms can capture the potential
model structure of data [21]. An important disadvantage of this approach, however, is the lack of
interpretability that limits the application of this model.

In recent years, ensemble algorithms have become important for solving prediction and classification
problems in many different fields with certain achievements [22]. Among all the ensemble algorithms,
tree-based ensemble algorithms are one of the most important methods. Instead of fitting a single
model, tree-based methods combine multiple single tree models to obtain optimal prediction
performance. This approach produces better predictions and may help policy makers better
understand the relationship between traffic and the factors that impact it. Moreover, tree-based
ensemble algorithms require less data preprocessing and provide better fits to nonlinear relationships.
These advantages make the tree-based approach a good choice when addressing traffic analysis.

There is limited research, however, on the use of tree-based algorithms in the transportation
field. Hamner [23] applied the random forest algorithm to predict travel time and showed that the
proposed model outperformed other models in terms of prediction precision. Wang [24] applied
an ensemble bagging decision tree to forecast the influence of weather on airport capacity and
demonstrated that its performance is better than that of the SVM algorithm. Ahmed and Abdel-Aty [25]
identified transportation risks using data obtained from different sensors; the results showed that the
stochastic gradient boosting method is superior to traditional statistical methods. Similarly, Chung [26]
applied a gradient regression tree to study crash occurrences. These latter two studies utilized a
boosting algorithm to address classification and prediction problems, rather than travel time prediction.
Yanru Zhang [27] utilized a gradient boosting method to improve travel time prediction considering
real travel time but ignored information from historical travel time data and the spatiotemporal
correlation between target and adjacent links. In addition, this approach cannot efficiently predict
link travel time under sparse data conditions. The existing research illustrates the effectiveness and
efficiency of tree-based algorithms. Nevertheless, there is little research on the use of gradient boosting
trees to predict travel time.

To fill this gap, our research presents a tree-based ensemble algorithm to predict urban link
travel time considering relevant input variables derived from historical travel time and real travel
time. At the same time, we consider the spatiotemporal correlation between target and adjacent
links when calculating urban link travel time. Our proposed algorithm exploits the Spatiotemporal
Gradient–boosted regression tree (STGBRT) model from machine learning to predict link travel time.
The STGBRT model uncovers underlying patterns in travel time data to enhance the accuracy and
interpretability of the model. In contrast to other tree-based models, the gradient boosting tree approach
assigns a lower weight to trees that produce incorrect classifications generated by the regression tree
model while identifying an optimal combination of trees. The gradient boosting method has the
potential to provide more accurate predictions than random forest algorithms.
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The article is outlined as follows. In Section 2, a detailed description of single regression tree
and gradient–boosted regression tree methods is provided. In Section 3, the standardization of
measurement and correlation between the target and adjacent links is described. In Section 4, we
describe our experiment, including the data we used, the application of our model, and the comparison
of our model to others. A discussion of the results and some conclusions are outlined at the end.

2. Methodology

Ensemble algorithms based on multiple basic models, such as neural networks, random forests,
decision trees, and k-Nearest Neighbors, can obtain higher accuracy in estimation and prediction. In an
ensemble algorithm, every basic model can provide a solution to a problem. These predictions are
combined in some way, such as weighting or averaging, to generate a final output. In general,
the prediction accuracy of an ensemble model is superior to that of the basic models included
in the ensemble model [28]. The predictions of ensemble models can be understood from the
following example. For instance, we usually ask for other people’s opinions when we make decisions.
Each person will give a solution to the problem based on their own experience. We can make a
more accurate decision by comprehensively measuring all the opinions. Ensemble algorithms reduce
decision-making errors by correcting mistakes in each basic model.

Of the possible base models, decision trees, also called regression trees, are among the most
commonly used approaches. In operations research, decision trees help identify a strategy to reach a
goal, and they are also a popular tool in machine learning. A decision tree is a flowchart-like structure
in which each internal node represents a “test” performed on an attribute (e.g., whether a coin flip
comes up heads or tails); each branch represents the outcome of the test and each leaf node represents
a class label. The paths from root to leaf represent classification rules. Decision tree algorithms have
many attractive properties, such as low training time and complexity, fast prediction processing,
and straightforward demonstration. At the same time, they have disadvantages, such as overfitting.
Tree-based ensemble algorithms establish many individual trees, combining the results of each tree
for more accurate results. In general, there are two types of ensemble algorithms based on trees, the
random forest method and the gradient–boosted regression tree algorithm [29]. A single regression tree
is used as the base model in these two algorithms. Section 2.1 briefly explains how single regression
trees work and illustrates the process of constructing a gradient–boosted regression tree (GBRT).

2.1. Single Regression Tree

As with all regression techniques, we assume the existence of a single output variable (response)
and one or more input variables. The general regression tree-building methodology allows input
variables to be a mixture of continuous and categorical variables. A regression tree may be considered
a variant of decision trees, which are designed to approximate real-valued functions instead of being
used for classification tasks. A regression tree is built through a process known as binary recursive
partitioning [30]. This is an iterative process of splitting the data into partitions and then further
splitting the partitions in each of the branches. Initially, all of the records in a training set are together
in a single group. The algorithm then tries to divide up the data using every possible binary split
on every field. The algorithm chooses the split that partitions the data into two parts such that it
minimizes the sum of the squared deviations from the mean in the separate parts. This splitting or
partitioning is then applied to each of the new branches. The process continues until each node reaches
a user-specified minimum node size and becomes a terminal node.

A single regression tree [27] can be described as follows. As depicted in Figure 1a, the left panel is
split into five regions, {R1, R2, R3, R4, and R5}, according to two variables X1 and X2 using four split
points b1, b2, b3, and b4. The size of the regression tree in Figure 1 is the total number of end nodes
because the tree was partitioned into five different regions, which is equal to the number of end nodes
of the tree. The right panel of Figure 1 is a binary tree representation of the same model, expressing
five different split regions.
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Figure 1. Single regression tree.

Now, we consider a general question of the same type as the example shown in Figure 1, which
includes p inputs with one output corresponding to the input of the regression problem. For example,
we have n observations and each observation is denoted as yi, xi1, xi2, xi3, . . . , xij, . . . , xip for i = 1, 2, . . . ,
n. For travel time prediction, yi is the dependent variable and is regarded as the predicted travel time
corresponding to the ith observation. xi1, xi2, xi3, . . . , xij, . . . , xip are independent variables relevant to
the prediction of travel time, such as historical travel time, real-time travel time, traffic volume, time
instant, and weather or other external factors. Let us assume that the feature space is divided into
m regions R1, R2, . . . , Rm representing the different regions of different traffic conditions. Thus, the
traffic state is divided into different categories by an input parameter, and the corresponding model
is established for each type of dependent variable. Generally, the expected value in each region of
the dependent variable is regarded as a constant Cm. It is an expected optimal value that we hope to
obtain using the independent variables. If the optimality criterion is to minimize the sum of squares
of the deviation, then the optimal value of Cm is the average of the yi values in the area of Rm [31].
As shown in Figure 1a, we estimated different values in the area Rm. In this research, we use a greedy
algorithm [32,33] to determine the best split variables and split points. The single regression tree is the
basic model for the gradient–boosted regression tree.

2.2. Gradient–Boosted Regression Tree

The idea of gradient boosting originated from the observation made by Leo Breiman [34]
that boosting can be interpreted as an optimization algorithm on a suitable cost function. Explicit
gradient boosting regression algorithms were subsequently developed by Jerome H. Friedman [35,36].
Mason et al. [37] introduced the abstract view of boosting algorithms as iterative functional gradient
descent algorithms; that is, they are algorithms that optimize a cost function over function space
by iteratively choosing a function (a weak hypothesis) pointing down the gradient. This functional
gradient view of boosting has led to the development of boosting algorithms in many areas of machine
learning and statistics beyond regression and classification. Gradient Tree Boosting, also termed
the Gradient–Boosted Regression Tree (GBRT) method, is a generalization of boosting applied to
arbitrary differentiable loss functions. Gradient boosting is a machine learning technique for regression
and classification problems that produces a prediction model in the form of an ensemble of weak
prediction models, typically decision trees. It builds the model in a stepwise fashion, similar to
other boosting methods, and generalizes these methods by allowing optimization of an arbitrary
differentiable loss function.

Friedman [35] put forward an improvement to the method of gradient boosting using fixed size
regression trees as the basic model. The modified model improves the quality of the gradient boosting
model [37]. In this study, an improved gradient-boosted regression tree model, the spatiotemporal
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gradient–boosted regression tree (STGBRT) model, is proposed for travel time prediction. This model
considers spatiotemporal correlations between target and adjacent links. Assuming that the number of
leaves for each tree is J, the space of the m-th tree can be divided into J disjoint subspaces, such as R1m,
R2m, . . . , RJm, and the predicted value for subspace RJm, is the constant bjm. Therefore, the regression
tree can be expressed by Equations (1) and (2):

gm (xi) =
J

∑
j=1

bjm I
(
xi ∈ Rjm

)
(1)

I
(

xi ∈ Rjm
)
=

{
1, i f xi ∈ Rjm
0, otherwise

(2)

To minimize the loss function of the STGBRT model, we use the steepest descent method, which is
among the simplest frequently used numerical minimization methods Following the numerical
optimization paradigm, we take the approximate solution, F (xi), to be

F (xi) =
M

∑
m=0

fm (xi) (3)

where f0 (x) is an initial guess, M denotes the index of the tree, and { fm (xi)}M
1 are incremental

functions defined by the optimization method [35]. Using the steepest descent method, there exists the
following equation

fm (xi) = −ρmgm (xi) (4)

The current gradient gm, is computed according to Equation (5) [35], based on the sequence of
preceding steps. It defines an increment. In Equation (5), f (xi) is an estimation or approximation of
observation yi that corresponds to “input” or “explanatory” variables, x = {x1, . . . , xn},

gm (xi) = [
∂L (yi, f (xi))

∂ f (xi)
]

f (xi)= fm−1(xi)

(5)

The multiplier ρm in Equation (4) is given according to Equation (6):

ρm = argminρ

n

∑
i=1

L(yi, fm−1 (xi) + ρmgm (xi)) (6)

The model is updated according to Equation (7):

Fm (xi) = Fm−1 (xi) + ρmgm (xi) (7)

The gradient–boosted regression tree method establishes a new model in the direction of residual
decrease and updates the model by minimizing the expectations of the loss function according to
Equations (5)–(7). This step is the most important part of gradient boosting. In general, the fitted model
can reduce its training error with an increase in the number of basic trees in the model. However,
it will also reduce the generalizing ability of the fitted model if the model is too close to the training
data. By increasing the number of iterations, the model becomes complex, so minor fluctuations in the
data are exaggerated. This added complexity will cause poor prediction performance for the test data.
Consequently, it is necessary to determine the optimal number of iterations for the model to minimize
potential prediction errors. The overfitting phenomenon can also be avoided by controlling the number
of iterations, the number of basic trees, and the learning rate. The STGBRT model strategically makes
each basic model achieve minimum loss. It uses a stage-wise sampling strategy, which pays more
attention to unfavorable examples. This feature distinguishes it from the random forest model that
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trains each model using random sampling or equal probability sampling. Therefore, the performance of
the STGBRT model is influenced by the number of trees and the learning rate. The optimal performance
of the model can be obtained by carefully selecting the best combination of these parameters [38].

3. Measurement and Correlation in Space and Time

3.1. Spatial Correlation

Many indices have been designed to quantitatively measure the correlations among spatial and
temporal data, and most of these indices are based on Pearson’s coefficient [39]. In statistics, the Pearson
correlation coefficient (referred to as PCC or Pearson) is a measure of the linear correlation between
two variables X and Y and takes a value between −1 and +1. If the value is 1, it indicates a perfect
positive correlation; while 0 indicates no correlation and −1 indicates perfect negative correlation. It is
widely used in the sciences as a measure of the degree of linear dependence between two variables
and was developed by Karl Pearson. Given two variables X and Y, the Pearson’s correlation coefficient
is defined as follows:

ρX,Y =
E [(X− µX) (Y− µY)]

σXσY
(8)

where µX and µY are the averages of variables X and Y, respectively. Similarly, σX and σY are the
corresponding standard deviations of variables X and Y. The spatial correlation coefficient between a
target link and an adjacent link can be calculated according to Equation (8).

The schematic diagram in Section 4.1 reveals the traffic flow, where link 82 is a target link, link
88 is an upstream link, and link 77 is a downstream link. In this research, the time step was set to
30 min. Therefore, we extracted the expected speed associated with corresponding links in a certain
direction every 30 min. Table 1 shows the pairwise correlations between individual links on a subset
of the network according to Equation (8). As can be inferred from Table 1, the correlation coefficient of
the expected speed in a certain direction and for a different time between every two links for links
82, 77, and 88 are significantly correlated at the 0.01 confidence level (two-tailed). The correlation
coefficients for speed on different days have different values and vary by the day. Figure 2 is a line
chart reflecting the relationship of expected speed between links 77, 82, and the adjacent link 88 from
Monday to Friday. As seen in the line chart, the expected speed for link 82 increases when the expected
speed of the adjacent link 88 increases, indicating a positive correlation. It is also seen in Figure 2 that
the expected speed of links 77, 82, and 88 has a rhythmic pattern. Consequently, both Table 1 and
Figure 2 reflect the dynamic spatial correlations between a target link and an adjacent link. Thus, we
selected adjacent link information as model inputs for target link travel time prediction.

Table 1. The correlation coefficient of expected speed in a certain direction at different times among
target link 82, adjacent link 77, and adjacent link 88.

Link Monday Tuesday Wednesday Thursday Friday

Link 77, link 82 in −1 traffic flow direction 0.755327 ** 0.599857 ** 0.451914 ** 0.575618 ** 0.558733 **
Link 88, link 82 in −1 traffic flow direction 0.719256 ** 0.837093 ** 0.762925 ** 0.715509 ** 0.605603 **

** Significantly correlated at the 0.01 confidence level (two-tailed). * Significantly correlated at the 0.05 confidence
level (two-tailed).

3.2. Temporal Correlation

The temporal autocorrelation function (TACF) [40] treats two time series as a bivariate stochastic
process and measures the covariance coefficients between each series at specified lags. For example,
if there is a time series at time t for variable X, then there exists another time series at lag time k



ISPRS Int. J. Geo-Inf. 2016, 5, 201 7 of 24

corresponding to variable X at time t-k. Then, the correlation coefficient of these two time series
corresponding to X can be denoted as in the following equation:

ρk =
E [(Xt − µ) (Xt−k − µ)]

σX2 (9)

where µ is the mean of variable X and σX is the corresponding standard deviation of variable X.ISPRS Int. J. Geo-Inf. 2016, 5, 201  7 of 25 
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In fact, a temporal autocorrelation coefficient can be measured simply by taking the correlation of
a variable with a lagged specification of itself. Therefore, the temporal autocorrelation was measured
by modifying PCC to include this lagged specification. The temporal difference of variable X is
measured between time t and time t–k according to Equation (9). If the process is stationary, then σX

2

can be used as the deviation of x and is assumed to be constant over time. Table 2 reveals the temporal
autocorrelation of link 82 at different lag times corresponding to time t.

Table 2. Temporal autocorrelation of link 82 for different lag times relative to a particular time t.

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

t 1 0.774 ** 0.557 ** 0.365 * 0.224 0.169 0.189 0.114 ** −0.014
** −0.104 *

t+1 0.774 ** 1 0.741 ** 0.542 ** 0.377 ** 0.236 0.168 0.202 0.139 0.040
t+2 0.557 ** 0.741 ** 1 0.734 ** 0.516 ** 0.363 * 0.225 0.128 0.201 0.142
t+3 0.365 * 0.542 ** 0.734 ** 1 0.724 ** 0.511 ** 0.358 * 0.205 0.132 0.211
t+4 0.224 0.377 ** 0.516 ** 0.724 ** 1 0.727 ** 0.508 ** 0.350 * 0.223 0.169
t+5 0.169 0.236 0.363 * 0.511 ** 0.727 ** 1 0.725 ** 0.511 ** 0.360 * 0.244
t+6 0.189 0.168 0.225 0.358 * 0.508 ** 0.725 ** 1 0.725 ** 0.514 ** 0.366 *
t+7 0.114 0.202 0.128 0.205 0.350 * 0.511 ** 0.725 ** 1 0.749 ** 0.554 **
t+8 −0.014 0.139 0.201 0.132 0.223 0.360 * 0.514 ** 0.749 ** 1 0.753 **
t+9 −0.104 0.040 0.142 0.211 0.169 0.244 0.366 * 0.554 ** 0.753 ** 1

** Significantly correlated at the 0.01 confidence level (two-tailed). * Significantly correlated at the 0.05 confidence
level (two-tailed).

4. The Experiment

In contrast to estimation methods, the purpose of travel time prediction is to forecast the travel
time for a trajectory that will start at a particular moment, using historical and current travel time
for that trajectory. A prediction is made now or in the future [41]. For this purpose, traffic data
of target and adjacent links from past and current data were used as depicted in Figure 3, which
shows a schematic diagram of travel time prediction based on past data combined with current data.
Therefore, both real-time traffic data and big data reflecting historical traffic conditions contribute
to link travel time prediction. Real-time traffic data more accurately reflect current traffic states.
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Travel time prediction models the correlation of different variables with available traffic information.
Consequently, the more comprehensive the information we extract is, the more accurate the travel time
prediction results will be. Considering that traffic characteristics are a complex phenomenon involving
non-linear and chaotic characteristics, it is often difficult to construct an exact equation expressing the
relationship among different characteristics. Data-driven approaches are a promising area in modeling
and predicting traffic. The following subsections discuss in detail the application of the spatiotemporal
gradient–boosted regression tree model (STGBRT) to travel time prediction.
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Figure 3. Schematic diagram of travel time prediction.

4.1. Data Description and Preparation

Probe vehicles equipped with GPS as mobile traffic sensors are used to collect network-wide
traffic data. In our research, historical and real-time probe vehicle data provided by a private-sector
company are used. The Oracle database containing the probe vehicle data were acquired from the
Intelligent Transportation System (ITS) in Wuhan, China. Probe vehicles collect information such
as instantaneous speeds, timestamps, longitude and latitude coordinates, and compass headings;
reflecting the running state of the urban traffic, which plays an important role in real-time or near
real-time travel time estimation and prediction. Our research utilized travel time data from probe
vehicles operating on the local road network of the city of Wuhan to predict travel time. Table 3
shows location information for selected local roads in Wuhan’s road network. These data include
section number, starting geographic coordinates, ending geographic coordinates, and the length of
each segment. Figure 4 shows the local roads in the Wuhan road network.
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Table 3. Selected arterial road network used in the experiment.

Section ID
Start Coordinate End Coordinate

Length (Meter)
Latitude Longitude Latitude Longitude

88 30.535 114.329 30.533 114.334 475.69
82 30.533 114.334 30.532 114.338 489.10
77 30.532 114.338 30.530 114.342 411.43

Due to the effect of GPS positioning error [42], GPS points tend to deviate from the actual road of
probe vehicle travel. Therefore, GPS points that deviate from the road network must be first projected
to the road according to the probe vehicle passing trajectory. The link travel time of a single probe
vehicle is then calculated using these map-matched points. In our research, probe vehicle trajectories
were adjusted using a map matching algorithm [43–46]. We calculated travel times and average
speeds of probe vehicles traversing target links, taking into consideration the probe vehicles’ states
at intersections [47–49]. We extracted the characteristics of the links from the massive quantities of
statistical travel time data collected by probe vehicles traversing the target link. The obtained statistical
data includes link ID, entering endpoint ID, exiting endpoint ID, probe vehicle ID, the moment a
probe vehicle entered the link, the travel time for a probe vehicle traversing the link, and the average
speed of a probe vehicle traversing the link, as depicted in Table 4. Existing research has shown
that probe vehicle trajectories display similar traffic patterns over a weekly cycle [50–53]. Therefore,
we extracted characteristics between target and upstream links as historical characteristics according
to the weekly cycle. Meanwhile, the accessed data were aggregated over 30-minute time intervals
because of the scarcity of travel information. Therefore, one day was divided into 48 time intervals
and input characteristics were extracted from this information to predict future travel times. Figure 5
is a schematic diagram of traffic flow on a partial road network from Figure 4 that includes road
numbers and traffic direction. In our research, we use our model to predict travel times for link 82
using observed spatiotemporal correlations among link 82, link 88, and link 77. We extracted the
spatiotemporal correlation characteristics from big data reflecting historic traffic conditions collected
by probe vehicles from January to May, 2014. Next, the eleven weeks of data covering the period from
5 May 2014 to 20 July 2014 were taken as training data for the STGBRT model. Finally, one week of
data from 21 July 2014 (Monday) to 25 July 2014 (Friday) was taken as test data to verify the validity of
the model.
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Tables 5–7 summarize travel time information from probe vehicles traveling in the same direction
from January to May 2014 in terms of descriptive statistics, including the mean; the standard deviation
(SD); the 25th, 50th and 75th percentiles; and the minimum (Min) and maximum (Max) observations.
Travel time data were recorded in seconds. From these three tables, it can be inferred that the quartiles
of speed for the same link are similar for each day, and differences from day to day are small. In contrast,
a great difference in speeds exists among different links. Figures 6–8 show the distributions of observed
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speeds from link 88, link 82, and link 77, respectively, on Mondays and Wednesdays. Two histograms
from the same link show similar patterns, with an approximately normal distribution, if abnormal
values are ignored. However, the distributions of travel speed show slight differences among the
different links.

Table 4. Travel information from individual probe vehicles.

Link ID Enter
Endpoint ID

Exit
Endpoint ID

Probe
Vehicle ID

Time
Instant

Travel
Time (s)

Average
Speed (m/s)

82 35 48 23501 2014–06–03
03:17:11 100.0 4.89

82 35 48 22608 2014–06–02
00:00:50 85.0 5.75

82 48 35 29444 2014–06–02
00:12:03 101.0 4.84

Table 5. Basic statistics of travel speed (m/s) for link 88.

Workday Mean SD 25th 50th 75th Min Max

Monday 6.55 2.22 5.23 6.61 7.8 1.03 26.43
Tuesday 6.56 2.19 5.17 6.61 7.8 1.15 15.35

Wednesday 6.64 1.95 5.41 6.61 7.8 1.46 16.4
Thursday 6.68 2.23 5.52 6.7 7.8 1.43 18.3

Friday 6.42 2.10 5.23 6.34 7.55 1.2 15.86

Table 6. Basic statistics of travel speed (m/s) about link 82.

Workday Mean SD 25th 50th 75th Min Max

Monday 4.83 2.15 3.27 4.33 6.04 0.94 15.78
Tuesday 4.82 2.08 3.26 4.41 6.09 1.06 13.97

Wednesday 4.73 2.09 3.12 4.25 6.19 1.04 13.59
Thursday 4.77 2.18 3.14 4.33 6.25 0.93 13.22

Friday 4.97 2.20 3.37 4.61 6.04 1.11 17.47

Table 7. Basic statistics of travel speed (m/s) about link 77.

Workday Mean SD 25th 50th 75th Min Max

Monday 4.42 1.77 3.27 4.16 5.08 1.2 16.46
Tuesday 4.16 1.61 3.21 3.92 4.84 1.12 13.72

Wednesday 4.61 1.81 3.37 4.29 5.14 1.32 13.72
Thursday 4.18 1.52 3.14 4.03 4.84 1.04 11.76

Friday 4.47 1.82 3.37 4.24 5.02 1.24 18.7
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As shown in Table 2, due to the time distance at the current moment, the temporal autocorrelation
is significant within a three-step time period at a 0.01 confidence level when a two-sided test is used.
The autocorrelation coefficient decreases with increasing lag time; there is no correlation for lags
greater than three time steps. Consequently, it is unnecessary to examine temporal autocorrelation
outside a three time step period. Therefore, we selected information collected within two time steps
prior to the current time as model inputs when making travel time predictions. We selected several
spatiotemporal variables that are relevant to travel time as the inputs and the output for our model,
as shown in Table 8. The first 17 columns are the input variables of the model, and the last column is
the output variable, which is a function of the inputs. The output of the model is real travel time at lag
time t denoted as tarRTTt, and the 17 input variables that were used to predict travel time at lag time
t are as follows: weekday, time of day, tarHTTt−1, tarHTTt−2, ∆tarHTT t−1, tarRTTt−1, tarRTTt−2,
∆tarRTT t−1, UpHTTt−1, UpHTTt−2, UpRTTt−1, UpRTTt−2, DoHTTt−1, DoHTTt−2, ∆UpHTTt−1,
∆UpRTT t−1 and ∆DoHTT t−1. Weekdays are indexed from one to five, representing Monday to
Friday; time of day is represented by 30-minute time steps, indexed from 1 to 48. tarHTTt−1 and
tarHTTt−2 are the two most recent historical travel time observations of a target link at times t−1
and t−2; ∆tarHTT t−1 is the growth rate of the historical travel time for a link over two consecutive
times, as calculated according to Equation (10). tarRTTt−1 and tarRTTt−2 are the two most recent real
travel time observations for a target link at times t-1 and t-2; ∆tarRTT t−1 is the growth rate of real
travel time for a link between two consecutive time steps and calculated according to Equation (11).
Correspondingly, UpHTTt−1 and UpHTTt−2 are the two most recent historical travel time observations
of upstream links at times t−1 and t−2; UpRTTt−1 and UpRTTt−2 are the two most recent real travel
time observations of an upstream link at times t−1 and t−2. DoHTTt−1 and DoHTTt−2 are the two
most recent historical travel time observations of a downstream link at times t−1 and t−2. Similarly,
∆UpHTT t−1, ∆UpRTT t−1, and ∆DoHTT t−1 are the growth rates of historical travel times for an
upstream link, the real travel time growth rate for an upstream link and the historical travel time
growth rate for a downstream link between two consecutive time steps, respectively. These variables
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were calculated according to Equations (12–14). Due to the low frequency of probe vehicle GPS
data acquisition and the regional limitations of driving areas, however, the trajectory information
collected by a probe vehicle GPS unit cannot cover the entire urban road network; therefore, the
data collected are sparse [5,6]. Through analysis, we found that our data lacked sufficient probe
vehicle travel information during the period between midnight and 5 a.m. In contrast, data for other
time periods were relatively abundant. Therefore, we choose daily traffic data for the period from
6 a.m. and midnight everyday as the research time period. For the missing real-time data during
some experimental time intervals, we used travel information from big data reflecting historic traffic
conditions corresponding to the time period to make up the missing real-time data.

∆tarHTTt−1 = tarHTTt−1 − tarHTTt−2 (9)

∆tarRTTt−1 = tarRTTt−1 − tarRTTt−2 (10)

∆UpHTTt−1 = UpHTTt−1 − UpHTTt−2 (11)

∆UpRTTt−1 = UpRTTt−1 − UpRTTt−2 (12)

∆DoHTTt−1 = DoHTTt−1 − DoHTTt−2 (13)

4.2. Model Application

To obtain the optimal model, understanding the influence of different parameter combinations on
the model performance is critical. Considering input information, we obtained optimal combination
parameters of the model to achievelower prediction error. This section shows how performance varies
for different choices of parameters. These included the number of trees N and the learning rate lr that
were used when extracting spatiotemporal characteristics from five months of travel time information
collected between January and May 2014. We extracted weekday data from Monday to Friday for
the period 5 May to 20 July 2014 as training data. The following five days of data gathered from
Monday, 21 July 2014, to Friday, 25 July 2014 were taken as test data. We fitted the spatiotemporal
gradient-boosted regression tree (STGBRT) using different numbers of trees (1–5000) and various
learning rates (0.01–1) to training data reflecting probe vehicle spatiotemporal characteristics extracted
from the urban road network. To evaluate the performance of an STGBRT model that combines various
parameters, we introduced the mean absolute percentage error (MAPE) as an indicator. The definition
of the MAPE is as follows:

MAPE = 100%× 1
n

n

∑
i=1

∣∣tpv,i − ttrue,i
∣∣

ttrue,i
(15)

where tpv,i denotes the link travel time prediction for a probe vehicle traveling the target link at some
future time and ttrue,i is the true link travel time.

To study the influence of the number of trees and the learning rate on prediction accuracy, we
conducted experiments using different numbers of trees. Figures 9 and 10 demonstrate the influence
of various parameters including the number of trees (N) and the learning rate (lr) on the link travel
time prediction errors using the MAPE. Here, the parameter N represents the number of basic trees
in the STGBRT model and lr denotes learning rate. Theoretically, higher prediction accuracy can be
achieved by increasing the number of trees in the model. When there are too many trees, however,
overfitting may occur. This overfitting influences the prediction accuracy of the model when applied
to probe vehicle travel time data that were not included in the training dataset. At the same time,
the computing time for the model will increase with the number of basic trees included in the model.
Figure 9 plots the relationship between MAPE and N under different learning rates. The lower panel
of Figure 9 shows a portion of the upper panel in greater detail. As is shown, MAPE decreases as the
number of regression trees increases, up to a certain value. The slopes of the plotted curves vary with
different learning rates, lr. The curve for lr = 0.01 has the smallest slope because the contribution to
prediction accuracy from every tree becomes limited with a small learning rate. It reaches a minimum
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with N = 300. The curves corresponding to higher learning rates decline more quickly and quickly
reach the minimum MAPE using basic trees. For example, the curved with lr = 0.5 and lr = 1 reach
a minimum at N = 10 and N = 50, respectively. As we can see from Figure 9, higher learning rates
such as lr = 1, lr = 0.5, lr =0.25, and lr = 0.2 obtain the best predicted performance with relatively few
regression trees. Too many trees may lead to overfitting if the number of regression trees exceeds some
threshold. Consequently, we can guarantee prediction accuracy by using enough trees and at the same
time prevent overfitting with an appropriate number of trees.
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Figure 10 illustrates the effect of learning rate on MAPE. MAPE varies with the learning rate
provided that the number of regression trees is held constant. The lower panel of Figure 10 shows a
portion of the upper panel in greater detail. The learning rate is used to adjust the influence of each
tree on the prediction precision of the model. The learning rate value ranges from 0 to 1. In general,
smaller values limit the contribution of each tree to the model accuracy. More iterations are usually
required when predicting the link travel time with smaller learning rates. The optimal value of lr
varies with the number of trees in the ensemble. The MAPE for predicted travel time goes down with
an increase in the learning rate if the number of regression trees is 200 or less. In this case, MAPE
decreases with an increase in the number of regression trees at the same learning rate. MAPE reached
a minimum when the learning rate equaled 0.01 and the number of regression trees exceeded 200.
Taking N = 500 in Figure 10 as an example, MAPE reaches a minimum when lr = 0.01, whereas the
error increases with the learning rate. This result occurs because the number of regression trees is
sufficient; the model reaches its highest accuracy at a smaller learning rate of 0.01; higher learning
rates led to poor predictive performance under these conditions.
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Table 8. Sample rows from the training and testing datasets (that is, inputs and output for the models).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Weekday Period
of day tarHTTt−1 tarHTTt−2

∆tarHTT
t−1

tarRTTt−1 tarRTTt−2
∆tarRTT

t−1
UpHTTt−1 UpHTTt−2

∆UpHTT
t−1

UpRTTt−1 UpRTTt−2
∆UpRTT

t−1
DoHTTt−1 DoHTTt−2

∆DoHTT
t−1

tarRTTt

1 13.0 111.16 114.01 −2.85 49.0 110.0 −61.0 85.56 85.56 0.0 85.56 85.56 0.0 86.26 86.26 0.0 105.82
2 20.0 143.01 209.02 −66.01 153.83 111.14 42.69 96.49 110.89 −14.4 71.0 110.89 −39.89 103.91 114.3 −10.39 239.41
3 30.0 109.18 113.22 −4.04 102.97 175.2 −72.23 75.87 78.24 −2.37 160.0 58.0 102.0 106.32 89.06 17.26 144.19
4 36.0 132.91 125.41 7.5 286.39 237.0 49.39 74.68 89.75 −15.07 162.99 89.75 73.24 121.74 109.14 12.6 88.0
5 15.0 98.81 98.81 0.0 47.97 106.0 −58.03 73.87 70.79 3.08 73.0 70.79 2.21 101.6 85.72 15.88 130.47
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reach the minimum MAPE using basic trees. For example, the curved with lr = 0.5 and lr = 1 reach a 
minimum at N = 10 and N = 50, respectively. As we can see from Figure 9, higher learning rates such 
as lr = 1, lr = 0.5, lr =0.25, and lr = 0.2 obtain the best predicted performance with relatively few 
regression trees. Too many trees may lead to overfitting if the number of regression trees exceeds 
some threshold. Consequently, we can guarantee prediction accuracy by using enough trees and at 
the same time prevent overfitting with an appropriate number of trees. 
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Figure 11 shows a flowchart that describes how the GBRT model predicts link travel time while
including information from spatiotemporal correlations. Based on our experimental results, we can draw
the following conclusions. (1) A smaller learning rate with more basic regression trees in the model for
prediction accuracy is superior to a larger learning rate with fewer basic regression trees. A smaller
learning rate shrinks the contribution of each tree to the model prediction accuracy and achieves optimal
prediction performance with more reliable prediction results. (2) It is necessary to find a balance
between prediction accuracy and computational time. A small learning rate combined with a greater
number of basic regression trees will need more computational time to reach the same performance,
while lower prediction accuracy requires less computation time. In our experiment, MAPE reached a
minimum when the learning rate was 0.01 and the number of regression trees was 500. Consequently,
we trained the STGBRT model using those parameters to accurately predict link travel time.
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4.3. Model Comparisons

To test the performance of the spatiotemporal gradient–boosted regression tree (STGBRT) method,
we compared the predictive performance of STGBRT with that of the Autoregressive Integrated Moving
Average [12], Random Forest [54] and Gradient Boosting [27] methods in terms of their absolute
percentage errors (MAPE). The Gradient Boosting Method (GBM) considers the time correlation of
a target link without regard for the influence of spatial correlation or big data describing historic
traffic conditions in estimating link travel time. The Autoregressive Integrated Moving Average Model
(ARIMA) model is a generalization of the autoregressive moving average (ARMA) model and is one
of the most widely recognized methods for traffic parameter forecasting. The model is fitted to time
series data to understand the data better or to predict future points in the series. ARIMA is applied in
cases where data show evidence of non-stationarity. It converts non-stationary time series to stationary
time series. The model is constructed using the dependent variable, its lag value, and the present
value of the random error; predictions from ARIMA are based on regression of current and past data.
Non-seasonal ARIMA models are generally denoted as ARIMA (p, d, q) where parameters p, d, and q
are non-negative integers, p is the order of the autoregressive model, d is the degree of differencing, and
q is the order of the moving average model. Optimization of the ARIMA model involves order selection
and parameter estimation. Detailed information on the theoretical background underlying ARIMA,
and the steps involved in fitting an ARIMA model, can be found in the literature [55]. The Random
Forest (RF) method is another widely used ensemble method whose extension was developed by Leo
Breiman [54] and is different from the gradient–boosted regression tree method.

To compare these four methods for predicting link travel time, we obtained statistical data
collected by probe vehicles traversing the regional road network in Wuhan on weekdays, Monday
to Friday, except holidays, from January to May 2014. We extracted the spatiotemporal features of
links within the network. The data from 21 July 2014 to 22 July 2014 were used as test data to compare
the prediction performance among the four models (STGBRT, GBM, RF, and ARIMA). The prediction
accuracy of these four models was compared based on their predictions one and two time steps (that is,
30 and 60 min) after the present time. The experiment discussed in Section 4.2 showed that the MAPE
of the STGBRT model achieved a minimum value when the learning rate was set to 0.01 and the
number of basic regression trees was set to 500. Therefore, in the comparative experiment, we set
the corresponding experimental parameters to 0.01 and 500, respectively. For GBM and ARIMA,
we tested different combinations of variables during the training process and selected the parameters
that achieved the minimum MAPE values.

We used traffic big data representing historic traffic conditions from January to May in 2014
and real data obtained from the 11 weeks between 5 May 2014 and 20 July 2014 as training data.
We used two days of data (21 and 22 July 2014) as test data to compare the prediction performance
among STGBRT, GBM, and ARIMA. The line charts in Figures 12 and 13 illustrate the variation among
predictions made 30 min and one hour ahead from the four models on 21 July 2014 and 22 July 2014,
respectively. The blue line in the two figures represents the true link travel time, while the red line
represents prediction results from the STGBRT model, the green line represents the prediction results
from GBM, the orange line represents the prediction from RM and the purple line represents the
prediction results from the ARIMA model. As shown, the STGBRT model and GBM model fit the true
link travel time most closely. ARIMA provided the least favorable match to the true link travel time
among the four models. Under the same conditions, the predictions of STGBRT outperform those
from the random forest method in our experiments, as depicted in Figures 12–14. Figure 14 shows
a comparison of the MAPE values for the performance of these four models for predictions made
30 min and one hour ahead. As illustrated in Figure 14, the prediction results of STGBRT outperformed
those of the other three models. The MAPE for STGBRT (7.43%) was superior to the MAPE values
corresponding to half-an-hour predictions for GBM, RF, and ARIMA, which were 9.37%, 15.83%,
and 33.79%, respectively. At the same time, the STGBRT half-an-hour prediction performance had a
significantly better MAPE value (7.43%) than the one-hour prediction (9.49%). Figure 15 illustrates the
standard deviations of predictions made 30 min and one hour ahead by the four models for 21 July
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2014 and 22 July 2014. As illustrated in Figure 15, the prediction results of STGBRT had a small
MAPE value and outperformed the other three models except in terms of the one-hour predictions
made for 21 July 2014. Figure 16 gives the computational performance of different models under the
same conditions, that is, using the same training and prediction data. The figure shows that STGBRT,
GBM, and RF require similar amounts of computational time: 5.09 s, 5.73 s, and 5.24 s, respectively.
The ARIMA model requires the smallest amount of computation time; however, it had poor prediction
performance compared to the other three models, as depicted in Figure 14. A Wilcoxon test showed
that the differences between true link travel time and the results from the STGBRT, GBM, and RF
models are all symmetrically distributed about zero except for predictions made one hour ahead by
the RF model for 21 July 2014. However, the differences between true link travel time and predicted
values from ARIMA are not symmetrically distributed about zero except for predictions made one
hour ahead for 22 July 2014. Therefore, the STGBRT, GBM, and RF models yield better predictions
than the ARIMA model. Figure 17 shows five days (Monday, 21 July 2014–Friday, 25 July 2014) of
predicted link travel times from the STGBRT model. The blue line represents the true link travel
time, and the red line represents the predicted link travel time. Table 9 shows the MAPE values for
the travel time prediction obtained from the STGBRT model from Monday to Friday; the STGBRT
model had high MAPE values. Figure 17 reflects overall trends, as well as how well the models
captured sudden changes in travel time. For example, on 21 July 2014 (upper panel of Figure 17),
the STGBRT model captured changes especially well during the morning rush hour when congestion
is likely to occur. Theoretically, the STGBRT model can handle complex interactions among input
variables and can fit the complex nonlinear relationships found in dynamic traffic systems for superior
prediction performance.
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Figure 13. Comparisons of predictions made 30 min and one hour ahead for the four models, using
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Figure 14. Comparison of MAPEs for predictions made 30 min and one hour ahead, generated
by STGBRT, GBM, and ARIMA. (a) Comparison of MAPEs for predictions made 30 min ahead;
(b) Comparison of MAPEs for predictions made one hour ahead.
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Figure 15. Comparison of standard deviations of predictions made 30 min and one hour ahead,
generated by STGBRT, GBM, and ARIMA. (a) Comparison of standard deviations of predictions made
30 min ahead; (b) Comparison of standard deviations of predictions made one hour ahead.
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Figure 17. Travel time prediction results from the STGBRT model from Monday to Friday. (a) Monday;
(b) Tuesday; (c) Wednesday; (d) Thursday; (e) Friday.

Table 9. The MAPE of travel time prediction results from the STGBRT model from Monday to Friday.

Ate 21 July 2014 22 July 2014 23 July 2014 24 July 2014 25 July 2014

MAPE of predictions
made 30 min ahead 7.43% 11.25% 11.23% 10.26% 7.89%

MAPE of predictions
made an hour ahead 9.49% 11.94% 10.98% 10.31% 9.77%

5. Discussion and Conclusions

The GBRT model has characteristics that make it different from traditional ensemble methods,
such as the random forest and bagged trees approaches, as well as classical statistical approaches.
The GBRT model grows trees sequentially by adjusting the weight of the training data distribution
in the direction of “steepest descent” to minimize the loss function. It reduces model bias through
forward stepwise modeling and reduces variance through averaging. However, our proposed method,
the STGBRT-based travel time prediction model, has considerable advantages over the traditional
GBRT model. The proposed method not only uses the “steepest descent” method but also incorporates
the spatiotemporal correlation between a target link and adjacent links in the training data. Thus,
it delivers higher performance than the GBM, ARIMA, or RF models in terms of prediction accuracy.

As far as the authors are aware, there are few studies that discuss the STGBRT method in
the context of travel time prediction and little work on the application of the STGBRT method to
estimate urban link travel time. The STGBRT model can capture sudden discontinuities, an important
characteristic of traffic flows, given that traffic changes quickly from uncongested to congested and
vice versa. More importantly, the STGBRT model considers the spatiotemporal features of traffic,
not only present traffic flows but also in relation to historical traffic data. It not only considers target
link traffic features but also exploits information from adjacent traffic link features. In contrast to
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traditional machine learning algorithms, which are often regarded as “black boxes”, the number
of basic regression trees and the learning rate in STGBRT are parameters that can be analyzed and
set. Compared with the GBM and ARIMA methods, the STGBRT method considers spatiotemporal
features and is superior to conventional statistical models.

Parameter optimization is an important aspect for link travel time prediction using the STGBRT
model. Just as in model optimization, the performance of the STGBRT model is substantially influenced
by its parameters, including the number of regression trees, the learning rate, and the complexity of
the tree. Therefore, it is necessary to find the optimal combination of variables when using the STGBRT
model. Computation time is another important issue when increasing the number and the complexity
of the regression trees. Consequently, we must weigh the increase in calculation time against the
accuracy of model.

The STGBRT model has distinct advantages in terms of free-flow travel time prediction. It is
possible for us to collect large quantities of different traffic data from road sensors, smart phones,
and GPS devices, given the development of these advanced technologies. As time goes on, more and
more traffic information can be collected and used to study traffic phenomena. Therefore, it is critical
to find a model that can represent complex relationships when combining heterogeneous big data.
The STGBRT model can address complex nonlinear relationships, making it a promising algorithm
for travel time prediction. The accuracy of the proposed modeling approach is such that it can be
applied in intelligent transportation systems for link travel time prediction or real-time travel time
prediction. It can also be extended to traffic flow prediction. This model, however, currently only
considers first-order spatial correlations of target links. Further research will incorporate second-order
and higher levels of correlation to more accurately capture traffic dynamics. Another issue that must be
addressed is the lack of data. When historical and real-time traffic data for the same time are missing,
this model cannot predict link travel. This problem is an important topic that we will investigate in the
future. Our experimental results are based on specific road segments. We will extend our experiments
to other road segments in the future.
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