
 International Journal of

Geo-Information

Article

Real-Time Spatial Queries for Moving Objects Using
Storm Topology

Feng Zhang 1,2, Ye Zheng 1, Dengping Xu 3, Zhenhong Du 2,*, Yingzhi Wang 4,*, Renyi Liu 2

and Xinyue Ye 5,*
1 School of Earth Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China;

zfcarnation@zju.edu.cn (F.Z.); zy274508496@126.com (Y.Z.)
2 Zhejiang Provincial Key Laboratory of Geographic Information Science, 148 Tianmushan Road,

Hangzhou 310028, China; liurenyi@163.com
3 Academy of Forest Inventory and Planning, State Forestry Administration, Beijing 100714, China;

bj119xdp@163.com
4 Department of Public Order, Zhejiang Police College, 555 Binwen Road, Hangzhou 310053, China
5 Department of Geography, Kent State University, Kent, OH 44240, USA
* Correspondence: duzhenhong@zju.edu.cn (Z.D.); wangyingzhi@zjjcxy.cn (Y.W.); xye5@kent.edu (X.Y.);

Tel.: +86-571-8827-3287 (Z.D.); +86-138-1919-8735 (Y.W.); +1-419-494-7825 (X.Y.)

Academic Editor: Wolfgang Kainz
Received: 27 July 2016; Accepted: 23 September 2016; Published: 29 September 2016

Abstract: With the rapid development of mobile data acquisition technology, the volume of available
spatial data is growing at an increasingly fast pace. The real-time processing of big spatial data
has become a research frontier in the field of Geographic Information Systems (GIS). To cope with
these highly dynamic data, we aim to reduce the time complexity of data updating by modifying
the traditional spatial index. However, existing algorithms and data structures are based on single
work nodes, which are incapable of handling the required high numbers and update rates of moving
objects. In this paper, we present a distributed spatial index based on Apache Storm, an open-source
distributed real-time computation system. Using this approach, we compare the range and K-nearest
neighbor (KNN) query efficiency of four spatial indexes on a single dataset and introduce a method
of performing spatial joins between two moving datasets. In particular, we build a secondary
distributed index for spatial join queries based on the grid-partition index. Finally, a series of
experiments are presented to explore the factors that affect the performance of the distributed index
and to demonstrate the feasibility of the proposed distributed index based on Storm. As a real-world
application, this approach has been integrated into an information system that provides real-time
traffic decision support.

Keywords: real time; spatial query; moving objects; Apache Storm

1. Introduction

Advanced technologies for sensing and computing have resulted in the creation of massive
datasets consisting of trajectories of people and vehicles. The development of mobile phones and other
handheld GPS devices as well as the widespread use of location-based services (LBS) have contributed
to the acquisition of spatial information related to moving objects. Understanding and analyzing the
large-scale and complex data that reflect moving objects is crucial for enhancing both quality of life
and built environments. As a significant branch of the field of Geographic Information Systems (GIS),
real-time GIS technology is devoted to the study of the collection, integration, management and analysis
of spatial data streams in real-time contexts, such as emergency response and disaster monitoring.

Scientists in this domain need to store, manage, query and visualize large volumes of dynamic
flow data to perform exploratory and analytical tasks. However, they are facing enormous challenges

ISPRS Int. J. Geo-Inf. 2016, 5, 178; doi:10.3390/ijgi5100178 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2016, 5, 178 2 of 19

because of a lack of sufficient computing power to support big-data-driven studies. A platform
is needed that integrates scalable trajectory databases with intuitive and interactive visualization
and high-end computing resources [1]. The absence of such tools that explicitly support interactive
visual analytics is impeding progress in fully utilizing the trajectory data that are becoming available.
To accomplish this goal, a fast and robust spatial query method is needed. An appropriate spatial
index for moving objects could be used to reduce the time consumed for spatial queries. However,
increasing accuracy requirements and the growing amounts of moving object data are driving
a corresponding increase in the frequency of spatial data updates, thereby posing considerable
challenges for the building of spatial indexes and the real-time execution of spatial queries.

To address this issue, cloud technologies are emerging as a new solution. For example,
Hadoop MapReduce can be used to improve the efficiency of polygon overlay analysis in spatial big
data (SBD) applications by building a grid spatial index [2]. S. You et al. proposed an approach using
a distributed computing framework based on memory to address the problem of spatial join operations,
because the intermediate calculation results of Hadoop must be stored on hard disk, which reduces
analytical efficiency because of the excessive disk I/O cost [3]. Although these cloud technologies
offer the benefits of high-performance computing for GIS applications based on static SBD, a novel
approach to cloud computing is needed to cope with highly dynamic spatial data.

The major difference between static data and dynamic data is that the former are stored in
a distributed file system in the form of data blocks, whereas the latter are streamed from an external
sensor device with the help of distributed message-oriented middleware (DMOM), tuple by tuple.
Compared with static SBD, for which the relevant problems are predominantly focused on the amount
of data, the problems that must be solved to handle dynamic data are predominantly related to the
rapid update of the data. Rapidly changing data are known as fast data [4].

To lay the foundations for effective visual analytics of trajectory datasets, this manuscript presents
a method of building a distributed spatial index on an open-source cloud computing framework,
namely, Apache Storm, which has been playing an important role in traffic statistics [5] and network
anomaly detection [6]. Based on this technology, we conduct real-time spatial querying of spatial
fast data (SFD), including range querying, KNN querying, and spatial join querying. In particular,
we build a secondary index based on the grid-partition index for spatial join queries. According to
the experimental results, we find that using a quadtree structure for the secondary index yields the
best performance in spatial computing. The proposed approach offers the capability of large-scale
data management and support for various types of queries by leveraging Cloud computing platforms.
This research will help the research community to conduct mobility-related studies in a more efficient
and productive way.

In summary, the main contributions of this paper are as follows:

1. We propose a distributed index based on a Storm topology for moving objects and then implement
range queries and continuous KNN (CKNN) queries using this distributed index. In this way,
the pressure of updating data streams in stand-alone nodes can be relieved, and real-time
updating for moving objects can be realized.

2. We design a spatial join algorithm using Storm for moving object streams. Experiments show that
a quadtree-based index outperforms other types as the secondary index for distributed querying
and updating.

The remainder of the paper is organized as follows. Section 2 reviews the technological
background and related work, including the Storm topology programming paradigm and spatial
indexes for moving objects. In Section 3, we describe the problem setting, and the semantics of
various types of spatial queries, in accordance with the characteristics of spatial datasets, are formally
presented. Section 4 proposes two types of spatial query approaches based on Apache Storm. Section 5
reports several sets of experiment conducted to explore the possible factors that affect the distributed
spatial index. Section 6 describes the conclusion of the study and potential applications of this research.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 3 of 19

2. Related Work and Background

2.1. Related Work

2.1.1. Spatial Index for Moving Objects

Many previous studies have suggested that modifications to the traditional spatial index can help
to cope with the storage of changing mobile spatial data [7,8]. According to the research content and
spatial data type, the proposed indexes can be categorized into two main types [9]: 1. Spatial indexes
for storing trajectories of moving objects. The temporal and spatial information of the objects’ motion
can be expressed by extending the traditional spatial data structure into the time dimension [10–12].
These indexes are built on the hypothesis that all data have been stored in advance. As a result, spatial
indexes that belong to this category, such as MV3R-tree, STR-Tree, and TB-Tree, are still optimized
for spatial queries; 2. Spatial indexes for storing current or near-future positions of moving objects.
Some studies have focused on reducing the number of updates by describing the positions of moving
objects in terms of linear functions and only updating the processes in the spatio-temporal databases
when the actual location of a point diverges from the value indicated by the function by a certain error
threshold [13–15]. Other studies have considered points based on periodic reports of an object’s latest
position at individual timestamps from peripheral equipment [9,16,17]. These studies represent efforts
to improve the efficiency of data updating to adapt to the frequent changes in dynamic data.

In addition, multi-core processors, graphics processing units (GPUs) and other parallel
technologies have been adopted to improve the spatial index updating and query efficiencies for
computations on increasing amounts of data [18–20].

2.1.2. U-Grid and P-Grid

U-Grid (Uniform Grid) is one type of update-efficient spatial index that works in a single thread of
the main memory, especially for moving objects. As shown in Figure 1, U-Grid divides the space into
uniform grids, and each grid cell within the array stores a pointer to a linked list of buckets that contain
the object data [21]. Moreover, it also stores a secondary index, which points directly to entities in the
grid, in a table. When the data are updated locally, the index is refreshed in a bottom-up fashion [22],
which improves the update efficiency. P-Grid (Parallel Grid), a method of parallel spatial computing
on multiple threads and concurrency control, has also been proposed to improve performance [18,23].

ISPRS Int. J. Geo-Inf. 2016, 5, 178 3 of 19

distributed spatial index. Section 6 describes the conclusion of the study and potential applications

of this research.

2. Related Work and Background

2.1. Related Work

2.1.1. Spatial Index for Moving Objects

Many previous studies have suggested that modifications to the traditional spatial index can

help to cope with the storage of changing mobile spatial data [7,8]. According to the research content

and spatial data type, the proposed indexes can be categorized into two main types [9]: 1. Spatial

indexes for storing trajectories of moving objects. The temporal and spatial information of the objects’

motion can be expressed by extending the traditional spatial data structure into the time dimension

[10–12]. These indexes are built on the hypothesis that all data have been stored in advance. As a

result, spatial indexes that belong to this category, such as MV3R-tree, STR-Tree, and TB-Tree, are

still optimized for spatial queries. 2. Spatial indexes for storing current or near-future positions of

moving objects. Some studies have focused on reducing the number of updates by describing the

positions of moving objects in terms of linear functions and only updating the processes in the spatio-

temporal databases when the actual location of a point diverges from the value indicated by the

function by a certain error threshold [13–15]. Other studies have considered points based on periodic

reports of an object’s latest position at individual timestamps from peripheral equipment [9,16,17].

These studies represent efforts to improve the efficiency of data updating to adapt to the frequent

changes in dynamic data.

In addition, multi-core processors, graphics processing units (GPUs) and other parallel

technologies have been adopted to improve the spatial index updating and query efficiencies for

computations on increasing amounts of data [18–20].

2.1.2. U-Grid and P-Grid

U-Grid (Uniform Grid) is one type of update-efficient spatial index that works in a single thread

of the main memory, especially for moving objects. As shown in Figure 1, U-Grid divides the space

into uniform grids, and each grid cell within the array stores a pointer to a linked list of buckets that

contain the object data [21]. Moreover, it also stores a secondary index, which points directly to

entities in the grid, in a table. When the data are updated locally, the index is refreshed in a bottom-

up fashion [22], which improves the update efficiency. P-Grid (Parallel Grid), a method of parallel

spatial computing on multiple threads and concurrency control, has also been proposed to improve

performance [18,23].

Entity1
<ID,X, Y>

Entity2 Entity3 Entity4 Entity5
OID Idx Ptr1 Ptr2

ID 2

Secondary Index

Buckets

Grid

Y

X

Figure 1. U-Grid index. Figure 1. U-Grid index.

U-Grid and P-Grid enable the implementation of the data structure and algorithm for the mobile
data spatial index in the main memory and the performance of spatial querying and updating by
means of multithreading on multi-core processors, respectively. However, a single node is unable

ISPRS Int. J. Geo-Inf. 2016, 5, 178 4 of 19

to meet the requirements of these approaches when faced with a rising number of spatial data and
an increasing update frequency due to higher accuracy requirements.

2.1.3. Spatial Querying on a Distributed Platform

Recently, many distributed platforms have been applied in GIS applications to improve
spatial querying on massive spatial data [24]. Hadoop is the most commonly used distributed
platform for handling spatial queries. In [25,26], the authors implemented spatial join queries
and KNN join queries using MapReduce. Afsin Akdogan et al. improved the efficiency of
parallel queries by building a distributed Voronoi diagram as a flat spatial index [27]. VegaGiStore
implements an “indexing + MapReduce” data processing architecture to provide efficient spatial
query processing over SBD and numerous concurrent user queries [28]. In addition, many spatial
processing platforms based on Hadoop, such as Hadoop-GIS [29] and SpatialHadoop [30], have been
proposed. Hadoop-GIS is optimized for spatial partitioning, partition-based parallel processing over
MapReduce using the Real-time Spatial Query Engine (RESQUE) and multi-level spatial indexing.
SpatialHadoop employs a simple high-level spatial language, a two-level spatial index structure,
basic spatial components constructed inside the MapReduce layer, and three basic spatial operations:
range queries, KNN queries, and spatial joins. These platforms have proven to be powerful GIS tools
for spatial querying.

Beyond the above, with the development of efficient distributed memory computing platforms,
research has begun to focus on increasing the efficiency of spatial join queries with the help of Apache
Spark. SpatialSpark [3] implements partition-based spatial joins using Spark, which is more universal
and efficient than the earlier approach. GeoSpark [31], which consists of three main layers—an Apache
Spark Layer, a Spatial RDD Layer and a Spatial Query Processing Layer—extends the regular Apache
Spark RDD to support geometrical and spatial objects with data partitioning and indexing. In addition,
SparkGIS [32] and Simba [33] also support high-performance spatial querying on SBD with the help of
Apache Spark. However, the spatial data that are handled by the current GIS distributed platforms
are offline static data stored on hard disk or HDFS. Because of the rapidly changing nature of online
mobile data, update messages may be sent from a terminal at any time; consequently, we cannot
store these data in such media in advance. Consequently, the traditional distributed batch processing
framework is not applicable, and a novel cloud computing approach should be developed.

2.2. Technological Background

2.2.1. Distributed Streaming Processing Framework

Since 2010, when the open-source distributed stream processing platform S4 was released by
Yahoo!, many platforms that are similar but possess different characteristics have been proposed.
Among them, Apache Storm, Yahoo S4, SparkStreaming and Samza are representative examples.
They each have their own characteristics, and the main differences between them are summarized
in Table 1.

Apache Storm was chosen over other distributed streaming platforms for use in our work for
the following reasons: (1) Spark Streaming addresses stream data in a micro-batch-based manner.
It handles real-time streaming data in micro-batches created via time slicing and transforms stream
processing into the batch processing of time slices. In contrast, Storm handles streaming data tuple by
tuple, which is more suitable for the frequent updating of mobile data; (2) In Samza, each step in a job
workflow is an independent entity, and those entities are connected using Kafka. In Storm, all steps
are connected by an internal system, resulting in much lower latency and satisfying the requirements
of real-time querying for moving objects; (3) Compared with S4, Storm offers higher reliability and
a more flexible routing method, which make it easier to implement a distributed spatial index.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 5 of 19

Table 1. Comparison of distributed streaming processing frameworks.

Item Storm S4 Spark Streaming Samza

Time 2011 2010 2012 2013
Grain Single Record Single Record Micro-batching Single Record

Data Model Tuple Event Object Object
Routing User-defined By Key / Depends on Kafka

State Management Not Built In Stateful Dedicated DStream Stateful Operations
Latency Very Low Low Medium Low

Throughput Low Low High High
Maturity High Low High Medium

Intermediate
Result Storage Local Memory Local Memory Local Memory or

File System Kafka

Guarantees At Least Once None Exactly Once At Least Once

In summary, real-time spatial querying for moving objects requires a high-speed event processing
platform that allows for incremental computations. Consequently, Storm is most suitable for our
purposes because of its characteristics of low latency, high reliability and maturity.

2.2.2. Storm Topology Programming Paradigm

A topology is a workflow that describes an entire job in Storm. A Storm topology is a directed
topology graph that includes a number of components, including spouts and bolts [34]. A spout
is a unit that produces a data stream, and a bolt is a unit for processing a data stream. Each tuple
generated by a spout flows to a bolt in a particular way. Each bolt also sends a tuple to the next bolt in
a specifically defined grouping until the tuple is stored in the persistent memory.

Apache Storm provides multiple ways to group data streams. Three main types of grouping are
considered in our discussion: ShuffleGrouping, FieldsGrouping and AllGrouping. When streams are
grouped via ShuffleGrouping, each tuple is randomly emitted to a bolt instance. FieldGrouping is
another type of stream grouping in which tuples are emitted to bolt instances based on a specific field.
Streams that have the same value in this field are guaranteed to flow to the same bolt instance. The last
stream grouping method on which we focus is AllGrouping. In this method, all tuples are copied to
each bolt instance and are then processed in parallel.

All processes have independent resources that are distributed to each node in a Storm topology.
Each bolt instance processes only one tuple at a time, unless the bolt instance itself creates threads.
For this reason, a Storm program is thread-safe under normal circumstances. Notably, a Storm
transaction topology can ensure the order of the submitted computations. However, a tuple will be
sent again if its processing fails. To simplify the problem, this paper does not consider such scenarios.

3. Problem Setting and Semantic Information

3.1. Problem Setting

Based on the characteristics of the vast majority of application scenarios, we regard moving
objects as discrete points in a two-dimensional |X| * |Y| space. |X| (|Y|) represents the number
of different positions in the horizontal (vertical) dimension. The spatial index stores points, each of
which contains an ID and a quantity Pstore (X, Y), which represents the spatial position information
of the corresponding moving object. When the distance between the stored position and the actual
position is greater than ∆Tolerance (Dist (Pstore (X1, Y1), Pactual (X2, Y2)) > ∆Tolerance, where ∆Tolerance
is the tolerance distance), the point will send an update message (OID, Xold, Yold, Xnew, Ynew),
which represents the movement of the point from location (Xold, Yold) to location (Xnew, Ynew), to the
central server [35]. Under this premise, if no new update message has been delivered, we regard the
index running in the server as the most recently updated data. All spatial queries we discuss in this
article are based on this index. The spatial information of each moving object can be represented by

ISPRS Int. J. Geo-Inf. 2016, 5, 178 6 of 19

an 8-byte tuple [36]. Therefore, less than 8 GB of storage is required for a spatial index for 100 m
moving objects, that is, a normal PC can be used. However, the update speed of these dynamic spatial
data may reach 1 m/s or even higher.

3.2. Semantic Information

Spatial queries can be classified into two categories. One consists of spatial queries on a single
dataset. Range queries and KNN queries, for example, are included in this category. The other category
consists of spatial queries between two datasets, which ignore the spatial relationships within either
individual dataset, such as spatial joins.

Definition 1. Range Query: Suppose that there is a given set of moving points represented by O and that
F(O) represents the spatial properties of O. The process of obtaining O’ as a subset of O in the spatial attribute
range (F(O’).min>F(Range).min∩F(O’).max<F(Range).max) is defined as a range query [19,37,38].

Definition 2. KNN Query: Suppose that there is a given set of moving points represented by O and that a query
point q is specified. A KNN query refers to the process of obtaining a subset of O that satisfies the following
conditions: 1. |O’|=K. 2. For any point Pout outside of O’ and any point Pin inside O’, the distance between Pout

and q is larger than the distance between Pin and q (∀o ∈ (O-O’), Fdist(q,o > Max{Fdist(q,o’)|o’∈ O’}) [17].

Definition 3. Range Spatial Join Query: Suppose that there are two given sets of moving points, L and R.
A spatial join query is a spatial query for a pair of points PL ∈ L and point PR ∈ R that satisfy the inequality
Fdist (PL,PR)<d, where Fdist (PL,PR) refers to the Euclidean distance between PL and PR and d is a constant
known as the join distance (JD). If the join query result is also required to satisfy PL, PR ∈ Range, then the query
is called a range spatial join query [39–41].

Definition 4. Continuous Query: Unlike static spatial queries, continuous queries [42,43] can be classified
into three types—moving queries on stationary objects, stationary queries on moving objects and moving queries
on moving objects [44]. In our research, we regard the result of a continuous query as a continuous series of
snapshots of a set of results, which is calculated based on the constantly changing spatial positions of the moving
objects of interest. That is, q’ = (It1 (a1), It2 (a2), . . . , Itn (an)), where Iti (ai) represents the snapshot of the result
set obtained based on condition ai at time ti.

For range queries and range spatial join queries as defined above, a rectangular range is the most
commonly used type of query condition. The corresponding update message is thus a tuple in the
form (Xmin, Ymin, Xmax, Ymax).

4. Structure and Algorithms for Spatial Data in a Storm Topology

4.1. Storm Topology Algorithm for a Single Dataset

The general concept of the establishment of a Storm topology for a single dataset has three steps:
1. The spatial data are grouped according to the ID field via FieldsGrouping; 2. Distributed indexes
are established in each bolt instance, and local results are obtained by means of the main memory
spatial query algorithm; 3. After the local results are summarized, the global outcome for the dataset
is integrated.

As shown in Figure 2, there are two spout components, the query spout and the update spout,
where data streams are generated in the topology. The Update Spout connects to the external MOM
and receives real-time transmissions of update message from external mobile devices. In this way,
spatial information is sent to the Storm topology in the form of a tuple stream for data operations.
The Query Spout converts continuous queries into tuples entering the topology in the form of a stream
and performs a distributed spatial query. In Figure 2, the transmission of data from the Update Spout is
represented by dashed lines because the update messages are grouped into clusters via FieldsGrouping.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 7 of 19

For all update messages corresponding to spatial points for a specific ID, there exists a unique bolt
instance to accept them. In contrast, the transmission of data from the Query Spout is represented by
solid lines because the query messages are copied to every Moving Objects Algorithm Bolt (MOAB)
instance via AllGrouping. Initially, the MOABs are a batch of executors with the same data structure
that are randomly assigned to each work node. The data structure in each bolt represents a partition of
the spatial index separated by point ID and stores the corresponding local point values. These bolts
are the core of the entire topology because all updating and querying operations are executed in
these bolts in parallel. When it enters the topology, a tuple message is assessed to determine whether
it is an update message or a query message. Then, depending on the type of message, a query or
update operation is performed. A MOAB instance is an implementation of the algorithm for moving
objects in the main memory and requires considerable resources for its intensive calculations. A Result
Aggregation Bolt then obtains the global solution through aggregation and calculation of the result set
from each partition. It obtains the tuples from the MOABs via FieldsGrouping based on the QueryID
field. A range query then requires only adding the results from each relevant partition. The iSEE
algorithm is implemented for continuous KNN (CKNN) queries [17]. Initially, TopK is calculated
for each partition. When a MOAB receives an update message, according to the obtained tuple and
the local critical distance, it is determined whether expansion or contraction operations are needed.
If a new local critical distance is generated, further comparisons with the global critical distance are
performed at the Result Aggregation Bolt.ISPRS Int. J. Geo-Inf. 2016, 5, 178 7 of 19

Figure 2. Storm topology for a single dataset.

As shown in Figure 2, there are two spout components, the query spout and the update spout,

where data streams are generated in the topology. The Update Spout connects to the external MOM

and receives real-time transmissions of update message from external mobile devices. In this way,

spatial information is sent to the Storm topology in the form of a tuple stream for data operations.

The Query Spout converts continuous queries into tuples entering the topology in the form of a

stream and performs a distributed spatial query. In Figure 2, the transmission of data from the Update

Spout is represented by dashed lines because the update messages are grouped into clusters via

FieldsGrouping. For all update messages corresponding to spatial points for a specific ID, there exists

a unique bolt instance to accept them. In contrast, the transmission of data from the Query Spout is

represented by solid lines because the query messages are copied to every Moving Objects Algorithm

Bolt (MOAB) instance via AllGrouping. Initially, the MOABs are a batch of executors with the same

data structure that are randomly assigned to each work node. The data structure in each bolt

represents a partition of the spatial index separated by point ID and stores the corresponding local

point values. These bolts are the core of the entire topology because all updating and querying

operations are executed in these bolts in parallel. When it enters the topology, a tuple message is

assessed to determine whether it is an update message or a query message. Then, depending on the

type of message, a query or update operation is performed. A MOAB instance is an implementation

of the algorithm for moving objects in the main memory and requires considerable resources for its

intensive calculations. A Result Aggregation Bolt then obtains the global solution through

aggregation and calculation of the result set from each partition. It obtains the tuples from the MOABs

via FieldsGrouping based on the QueryID field. A range query then requires only adding the results

from each relevant partition. The iSEE algorithm is implemented for continuous KNN (CKNN)

queries [17]. Initially, TopK is calculated for each partition. When a MOAB receives an update

message, according to the obtained tuple and the local critical distance, it is determined whether

expansion or contraction operations are needed. If a new local critical distance is generated, further

comparisons with the global critical distance are performed at the Result Aggregation Bolt.

From the above topology, we can see that for spatial queries within a single dataset, the data

structure is distributed from a single executor to multiple executors on one or more work nodes.

Update messages for spatial information are allocated to these executors based on point IDs, thereby

alleviating the pressure of frequent updates and real-time computations and analyses of a large

number of moving objects. For spatial analyses of two or more datasets, however, stream groups

based on point ID cannot guarantee that spatially correlated points will flow into the same MOAB.

Therefore, we usually establish spatial index partitions as the basis of stream grouping.

Moving Objects

Algorithm

 Bolt

Update SpoutQuery Spout

Query
Message
Tuple

Update
Message
Tuple

Result

Aggregation Bolt

Moving Objects

Algorithm

 Bolt

Moving Objects

Algorithm

 Bolt

Moving Objects

Algorithm

 Bolt

Result

Aggregation Bolt

Result

Aggregation Bolt

AllGrouping

FieldGrouping

Result Set Of Each Partition

Figure 2. Storm topology for a single dataset.

From the above topology, we can see that for spatial queries within a single dataset, the data
structure is distributed from a single executor to multiple executors on one or more work nodes.
Update messages for spatial information are allocated to these executors based on point IDs,
thereby alleviating the pressure of frequent updates and real-time computations and analyses of a large
number of moving objects. For spatial analyses of two or more datasets, however, stream groups based
on point ID cannot guarantee that spatially correlated points will flow into the same MOAB. Therefore,
we usually establish spatial index partitions as the basis of stream grouping.

4.2. Spatial Joins for Moving Objects in a Storm Topology

In this section, we describe how to build a distributed index in a Storm topology for range
spatial join queries on moving objects. As mentioned above, the data cannot be grouped by point
ID in this case. If no index is available, pairwise computations should be performed for points from
the two datasets. For improved computational efficiency, a grid index is built for data partitioning.
The Storm topology for spatial joins is depicted in Figure 3.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 8 of 19

ISPRS Int. J. Geo-Inf. 2016, 5, 178 8 of 19

4.2. Spatial Joins for Moving Objects in a Storm Topology

In this section, we describe how to build a distributed index in a Storm topology for range spatial

join queries on moving objects. As mentioned above, the data cannot be grouped by point ID in this

case. If no index is available, pairwise computations should be performed for points from the two

datasets. For improved computational efficiency, a grid index is built for data partitioning. The Storm

topology for spatial joins is depicted in Figure 3.

Query Spout

Query Partition

Bolt

Update Spout

Update Partition

Bolt

Distributed

Spatial Index

Bolt

Results

Aggregation Bolt

< OID, NewPoint,
OldPoint >

< QID,Rectangle >

FieldGrouping

ShuffleGrouping

Figure 3. Storm topology for spatial joins.

4.2.1. Data Structure

For moving objects, the frequency of data updates is usually much greater than the query

frequency. Using a tree structure to organize the data will increase the time complexity of the

updating process. In some special cases, the entire tree structure will change, from bottom to top.

Consequently, a uniform grid index or hierarchical grid index is designed for spatial partitioning [21].

Similar to U-Grid, the proposed distributed grid spatial index consists of two parts. The grid-

partition index is used as the primary index, and all points in each cell are further stored in different

bolt instances, as indicated by a secondary index.

P
l2

l1

Figure 4. Grid cell partitioning.

Because different instances of the same bolt cannot communicate with each other, each cell stores

not only all of the points within that cell but also the points that are related to that cell. As shown in

Figure 4, the shortest distance between a point P and a cell C is denoted by DistMin (P, C). When the

Figure 3. Storm topology for spatial joins.

4.2.1. Data Structure

For moving objects, the frequency of data updates is usually much greater than the query
frequency. Using a tree structure to organize the data will increase the time complexity of the updating
process. In some special cases, the entire tree structure will change, from bottom to top. Consequently,
a uniform grid index or hierarchical grid index is designed for spatial partitioning [21].

Similar to U-Grid, the proposed distributed grid spatial index consists of two parts. The grid-partition
index is used as the primary index, and all points in each cell are further stored in different bolt
instances, as indicated by a secondary index.

Because different instances of the same bolt cannot communicate with each other, each cell stores
not only all of the points within that cell but also the points that are related to that cell. As shown in
Figure 4, the shortest distance between a point P and a cell C is denoted by DistMin (P, C). When the
point is contained in the grid cell, DistMin (P, C) = 0. It is tempting to conclude that DistMin (P, C)
is the vertical distance from the cell edge or the linear distance from one of the cell’s vertexes.
When DistMin (P, C) < JD, the cell and the point are deemed to be spatially correlated. All cells that are
spatially correlated with a given point are defined as the affected cells (ACs) of that point. The circle
with a radius of JD and point P as its center is defined as the critical circle (CC) of P. Because a point
located near a cell vertex may have multiple ACs, replicas of these points are stored in multiple
different cells.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 8 of 19

4.2. Spatial Joins for Moving Objects in a Storm Topology

In this section, we describe how to build a distributed index in a Storm topology for range spatial

join queries on moving objects. As mentioned above, the data cannot be grouped by point ID in this

case. If no index is available, pairwise computations should be performed for points from the two

datasets. For improved computational efficiency, a grid index is built for data partitioning. The Storm

topology for spatial joins is depicted in Figure 3.

Query Spout

Query Partition

Bolt

Update Spout

Update Partition

Bolt

Distributed

Spatial Index

Bolt

Results

Aggregation Bolt

< OID, NewPoint,
OldPoint >

< QID,Rectangle >

FieldGrouping

ShuffleGrouping

Figure 3. Storm topology for spatial joins.

4.2.1. Data Structure

For moving objects, the frequency of data updates is usually much greater than the query

frequency. Using a tree structure to organize the data will increase the time complexity of the

updating process. In some special cases, the entire tree structure will change, from bottom to top.

Consequently, a uniform grid index or hierarchical grid index is designed for spatial partitioning [21].

Similar to U-Grid, the proposed distributed grid spatial index consists of two parts. The grid-

partition index is used as the primary index, and all points in each cell are further stored in different

bolt instances, as indicated by a secondary index.

P
l2

l1

Figure 4. Grid cell partitioning.

Because different instances of the same bolt cannot communicate with each other, each cell stores

not only all of the points within that cell but also the points that are related to that cell. As shown in

Figure 4, the shortest distance between a point P and a cell C is denoted by DistMin (P, C). When the

Figure 4. Grid cell partitioning.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 9 of 19

As shown in Figure 5, the data structure in each grid cell consists of two sets of secondary indexes
and a result table. The secondary indexes are used to individually organize the spatial data from
the two datasets. The result set (RS) is used to store the spatial join results. If the secondary index
is an R-tree, then the entire data structure is referred to as D-Rtree (Distributed R-Tree); similarly,
secondary indexes based on hash table and quadtree structures correspond to D-HashTable and
D-QuadTree. If RS is a two-dimensional array, A[Lm][Rn] represents two pointers to two entities,
one from each of the two secondary indexes. A null value in this two-dimensional array indicates that
the two points corresponding to the indexes do not conform to a spatial join relationship. By taking
advantage of the two-dimensional array, we can navigate the point entities with a time complexity
of O(1). However, in practice, considering that only a small portion of all pairs of points from the
two datasets in the same cell will satisfy a spatial join relationship, the high incidence of null values
in the two-dimensional array is expected to result in storage waste. Therefore, an element table is
proposed to replace the two-dimensional array when there are few spatial join tuple pairs. For a given
pair, both their OIDs and the pointers to them are stored in a row of the element table. The time
complexity of querying a specific pair by their OIDs is O(M*N), where M and N are the numbers
of spatially joined points from each of the two layers. When M and N are not excessively large,
this data structure can effectively decrease the required storage space while maintaining an acceptable
query efficiency.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 9 of 19

point is contained in the grid cell, DistMin (P, C) = 0. It is tempting to conclude that DistMin (P, C) is

the vertical distance from the cell edge or the linear distance from one of the cell’s vertexes. When

DistMin (P,C) < JD, the cell and the point are deemed to be spatially correlated. All cells that are

spatially correlated with a given point are defined as the affected cells (ACs) of that point. The circle

with a radius of JD and point P as its center is defined as the critical circle (CC) of P. Because a point

located near a cell vertex may have multiple ACs, replicas of these points are stored in multiple

different cells.

Grid

Y

X

Secondary Index (L)

Secondary Index (R)

OID Ptr1 ptr2

Loid,Roid

Element Table

Figure 5. Distributed index.

As shown in Figure 5, the data structure in each grid cell consists of two sets of secondary

indexes and a result table. The secondary indexes are used to individually organize the spatial data

from the two datasets. The result set (RS) is used to store the spatial join results. If the secondary

index is an R-tree, then the entire data structure is referred to as D-Rtree (Distributed R-Tree);

similarly, secondary indexes based on hash table and quadtree structures correspond to D-HashTable

and D-QuadTree. If RS is a two-dimensional array, A[Lm][Rn] represents two pointers to two entities,

one from each of the two secondary indexes. A null value in this two-dimensional array indicates that

the two points corresponding to the indexes do not conform to a spatial join relationship. By taking

advantage of the two-dimensional array, we can navigate the point entities with a time complexity of

O(1). However, in practice, considering that only a small portion of all pairs of points from the two

datasets in the same cell will satisfy a spatial join relationship, the high incidence of null values in the

two-dimensional array is expected to result in storage waste. Therefore, an element table is proposed

to replace the two-dimensional array when there are few spatial join tuple pairs. For a given pair, both

their OIDs and the pointers to them are stored in a row of the element table. The time complexity of

querying a specific pair by their OIDs is O(M*N), where M and N are the numbers of spatially joined

points from each of the two layers. When M and N are not excessively large, this data structure can

effectively decrease the required storage space while maintaining an acceptable query efficiency.

4.2.2. Update Partition Bolt

The process of data updating using the proposed distributed index is performed by two bolts—

the Update Partition Bolt and the Distributed Spatial Index Bolt. The Update Spout sends data update

messages to the Update Partition Bolt as tuples of the form (Id, oldX, oldY, newX, newY), which contain

the information on the coordinates before and after the update. Similar to the local and non-local

update operations in U-Grid, the proposed distributed spatial index has the equivalent operations of

equivalent and discrepant AC updates. When the affected cells of a point are exactly equal before and

after the point update, the update is an equivalent AC update; otherwise, the update is a discrepant

Figure 5. Distributed index.

4.2.2. Update Partition Bolt

The process of data updating using the proposed distributed index is performed by two bolts—the
Update Partition Bolt and the Distributed Spatial Index Bolt. The Update Spout sends data update
messages to the Update Partition Bolt as tuples of the form (Id, oldX, oldY, newX, newY), which contain
the information on the coordinates before and after the update. Similar to the local and non-local
update operations in U-Grid, the proposed distributed spatial index has the equivalent operations of
equivalent and discrepant AC updates. When the affected cells of a point are exactly equal before and
after the point update, the update is an equivalent AC update; otherwise, the update is a discrepant
AC update. The Update Partition Bolt judges the update type based on the incoming tuple. If it is
an equivalent AC update, the Update Partition Bolt needs only to emit tuples contain the calculated
cell ID, Update Operation and point entity to the Spatial Index Bolt via FieldsGrouping based on the
CellId field. If it is a discrepant AC update, then the Spatial Index Bolt must compare the different ACs
before and after the update.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 10 of 19

Algorithm 1: UpdatePartBolt (Tuple UpdateMessage)

1. OldCC←GetOldCC(JoinDistance, UpdateMessage.OldPoint)
2. NewCC←GetOldCC(JoinDistance, UpdateMessage.NewPoint)
3. OldACList←GetOldACList(Grid, oldCC)
4. NewACList←GetNewACList(Grid, newCC)
5. foreach Cell in OldACList
6. if Cell In NewACList then
7. emit(CellId, UpdateOperation, Point)
8. else
9. emit(CellId, DeleteOperation, Point)
10. end if-then
11. end-foreach
12. foreach Cell in NewACList then
13. if not in OldACList then
14. emit(CellID, DeleteOperation,Point)
15. end if-then
16. end-foreach

4.2.3. Query Partition Bolt

The algorithm for the Query Partition Bolt is relatively simple. First, the extent of the query rectangle
is obtained, and the relevant cells (intersected or contained by the query rectangle) are computed. Then,
the Query Partition Bolt emits the CellIDs and the corresponding spatial relationships (SRs) with the
query rectangle to the Distributed Spatial Index Bolt via FieldsGrouping based on the CellId field.

Algorithm 2: QueryPartBolt (Tuple QueryMessage)

1. AffectQueryCellList←CalculateByRange(QueryMessage.Range)
2. foreach Cell in AffectQueryCellList
3. if cell PartialCovered by Range then
4. emit (CellID, SR:Intersect)
5. end-if
6. if Cell TotalCovered by Range then
7. emit(CellID, SR:Contain)
8. end-if
9. end-foreach

4.2.4. Distributed Spatial Index Bolt

The Distributed Spatial Index Bolt is the core of this topology for spatial join queries. It operates
based on the concept of global shared execution [45,46], and the streams generated by the Query
Partition Bolt and the Update Partition Bolt are aggregated in this bolt. The data structures, including
the various cells with their corresponding secondary indexes and spatial join result tables, are stored
in an element table with a hash index in the bolt instances. All of the above data structures run in
memory; consequently, the data query and update efficiencies are relatively high because no I/O
operations are involved.

A distributed index data update actually consists of three processes [44]: 1. Perform add,
update or delete operations on the secondary indexes where the point to be updated is stored;
2. Perform query operations on the other secondary indexes; 3. Update the spatial join results.
From the above description, we can see that both the update efficiency and the query efficiency

ISPRS Int. J. Geo-Inf. 2016, 5, 178 11 of 19

should be considered with regard to the secondary indexes. As demonstrated by the experimental
comparison presented in Section 5, when a quadtree is used as the secondary index, it outperforms
secondary indexes based on the hash table and R-tree structures. For a given query tuple, we must
determine the relevant cells according to the tuple identifier. If a cell is contained by the query
rectangle, then all pairs in RS are emitted as tuples to the next bolt. If a cell intersects with
the query rectangle, then further judgment is needed to determine whether a pair is emitted.

Algorithm 3: SpatialIndexBolt(Tuple Message)

1. Cell←FindCellByID(Message.CellId)
2. if Message from QueryPartBolt then
3. if Message.SR = contain then
4. foreach Pair in Cell.RS
5. emit Pair
6. end-foreach
7. end if-then
8. if Message.SR = Intersect then
9. foreach Pair in Cell.RS
10. if Pair.Point1∈Message.Range&Pair.Point2∈Message.Range then
11. emit Pair
12. end if-then
13. end-foreach
14. if Message from UpdatePartBolt then
15. foreach SpatialIndex In cell.SI
16. if Message.Point∈SpatialIndex then
17. SpatialIndex.Operate(Message.Point, Message.Operate)
18. else
19. PairList←SpatialIndex(Message.Point, JoinDistance)
20. update Cell.RS by PairList
21. end if-then
22. end-foreach
23. end if-then

4.2.5. Results Aggregation Bolt

In the Results Aggregation Bolt, the final global results are aggregated from the results of each
distributed index query. Because multiple copies are stored of point entities located near grid vertexes,
duplicate tuple pairs must be removed in this bolt.

5. Experimental Study

In this section, we present experiments using the topology described above and analyze its
performance results in terms of data updating and querying. In Section 5.1, we describe the software
and hardware environment, the workload and other preparations involved in the experiments. Of the
experiments presented Section 5.2, Study 1 is an experiment conducted to investigate the design of
the distributed index for a single dataset. U-Grid, U-R-tree, R-tree and Grid were chosen, and this
experiment was performed to compare their efficiency in spatial querying and updating with different
numbers of Storm worker processes. Studies 2–4 are range spatial join query experiments in which
D-Rtree, D-HashTable and D-QuadTree were chosen as the distributed index.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 12 of 19

5.1. Experimental Setting and Workloads

All experiments were performed using seven servers as work nodes, each of which had a 6-Core
Intel Xeon(R) 2.6 GHz CPU with 24 hardware threads and 8 GB of RAM. All seven nodes used
a 64-bit Linux operating system (Suse Enterprise Server SP2), with Apache Kafka, an open-source
distributed publish/subscribe messaging system, serving as the DMOM. Three of the nodes also had
Apache ZooKeeper installed to coordinate the distributed systems.

The workloads were produced by a modified version of an open-source network-based moving
object trace generator based on Brinkhoff’s algorithm [47]. The network data were obtained from
Jiangsu Province, China (see Figures 6 and 7). In the single-dataset experiment, 1 million dynamic
points were sent to Kafka at an update rate of 0.7 m/s, and the Storm spout pulled tuples from
Kafka into the Storm topology. The four indexes mentioned above were compared with regard to
their performance for continuous range queries, CKNN queries and update rates. In the spatial join
experiments, we compared the spatial update ratios for different numbers of grid cells and different
numbers of moving objects. For the range spatial join queries, instead of using pure query tuples,
we mixed update tuples and query tuples in different proportions as inputs to the Storm topology.
For these workloads, searches with various scopes were performed. Table 2 shows the parameters
of the workloads for the single-dataset spatial queries. The workloads for the range spatial join
queries included two sets of moving objects produced using the same parameters presented in Table 3.
The preparation time is not included in the results for any experiment.ISPRS Int. J. Geo-Inf. 2016, 5, 178 13 of 19

Figure 6. Road network in Jiangsu Province.

Figure 7. Moving objects in the road network.

Figure 6. Road network in Jiangsu Province.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 13 of 19

ISPRS Int. J. Geo-Inf. 2016, 5, 178 13 of 19

Figure 6. Road network in Jiangsu Province.

Figure 7. Moving objects in the road network. Figure 7. Moving objects in the road network.

Table 2. Workload configuration for single-dataset spatial queries.

Parameter Value

Number of objects, 106 1
Update ratio, M/S 0.7
Query selectivity 0.5%

K in nearest neighbor analysis 100
Nodes 232237895

Monitored region (km2) Jiangsu Province, 511 × 494

Table 3. Workload configuration for range spatial join queries.

Parameter Value

Number of objects, 106 0.25, 0.5, 0.75, 1
Query/update ratio 5%, 10%, 15%, 20%

Query selectivity 0.01%, 0.04%, 0.16%, 0.64%
Monitored region (km2) Jiangsu Province, 511 × 494

Nodes 232237895
Update ratio, M/S 0.7

5.2. Experimental Results

• Study 1: Influence of the Storm bolt parallelism on spatial queries for a single dataset

In Figure 8a, the update efficiencies of the indexes are plotted versus the number of parallel bolts.
Figure 8b,c depict the efficiencies of range queries and CKNN queries, respectively. From Figure 8a,
we can conclude that all four indexes exhibit a trend of an increasing update rate with an increasing

ISPRS Int. J. Geo-Inf. 2016, 5, 178 14 of 19

degree of parallelism. Once the index has saturated, however, the update efficiency no longer increases
and even starts to decrease. This is because the number of different update processes entering different
work nodes will increase as the parallelism increases and the transmission of information between work
nodes requires considerable time. Figure 8b,c suggest that increasing the parallelism has a relatively
small effect on spatial query performance. Increasing the parallelism will reduce the number of
moving objects in each Distributed Spatial Index Bolt executor while giving rise to more inter-node
communications. Consequently, whether increasing the degree of parallelism has a positive or negative
impact depends on which factor dominates.

ISPRS Int. J. Geo-Inf. 2016, 5, x FOR PEER 14 of 19

5.2. Experimental Results

 Study 1: Influence of the Storm bolt parallelism on spatial queries for a single dataset

In Figure 8a, the update efficiencies of the indexes are plotted versus the number of parallel

bolts. Figure 8b,c depict the efficiencies of range queries and CKNN queries, respectively. From

Figure 8a, we can conclude that all four indexes exhibit a trend of an increasing update rate with an

increasing degree of parallelism. Once the index has saturated, however, the update efficiency no

longer increases and even starts to decrease. This is because the number of different update processes

entering different work nodes will increase as the parallelism increases and the transmission of

information between work nodes requires considerable time. Figure 8b,c suggest that increasing the

parallelism has a relatively small effect on spatial query performance. Increasing the parallelism will

reduce the number of moving objects in each Distributed Spatial Index Bolt executor while giving

rise to more inter-node communications. Consequently, whether increasing the degree of parallelism

has a positive or negative impact depends on which factor dominates.

(a) (b) (c)

Figure 8. Single-dataset performance with different degrees of parallelism. (a) Update rate of spatial

index; (b) query rate of range query; (c) query rate of KNN query.

The following three experiments demonstrate the potential factors affecting the spatial join

performance. Studies 2 and 3 investigate the update performance of the proposed distributed spatial

index for different numbers of grid cells over different periods of time. Study 4 addresses how the

percentage of query tuples in the workload influences the total throughput of spatial join queries. To

ensure reliability, the workloads imported into Kafka for the different experiments were exactly the

same. The rate of workload input was 0.7 m/s, which was sufficiently fast to ensure that the data read

rate would not become a bottleneck.

 Study 2：Influence of the number of moving objects on the spatial join performance

From Figure 9a–c, we can conclude that the update efficiency of D-Quadtree is significantly

higher than those of the other indexes. In general, the update rates of the three indexes increase over

time, initially rapidly and then more gradually. Because the secondary index does not initially store

any data, the query step of the spatial join updating process described in Section 4.2 initially

consumes less time. However, as an increasing amount of data becomes stored in the secondary

index, the update efficiency decreases. The number of moving objects has a small effect on D-

Quadtree index and a greater effect on D-Hashtable. When the number of objects is 1m, the update

efficiency is quite slow. For D-Rtree, the update efficiency is initially rapid and then slows with an

increasing number of objects. The update speed is the fastest when the number of objects is 50 m–75 m.

R-Tree Grid U−R−tree U−Grid

0

250

500

1 15 30

U
p

d
a
te

 R
a
te

(/
m

s
)

Number of parallelism

Update

0

10

20

1 4 7

Q
u

e
ry

 R
a
te

(/
m

s
)

Number of parallelism

Range query

3.5

5.5

7.5

1 4 7

Q
u

e
ry

 R
a
te

 (
/m

s
)

Number of parallelism

KNN query

Figure 8. Single-dataset performance with different degrees of parallelism. (a) Update rate of spatial
index; (b) query rate of range query; (c) query rate of KNN query.

The following three experiments demonstrate the potential factors affecting the spatial join
performance. Studies 2 and 3 investigate the update performance of the proposed distributed spatial
index for different numbers of grid cells over different periods of time. Study 4 addresses how the
percentage of query tuples in the workload influences the total throughput of spatial join queries.
To ensure reliability, the workloads imported into Kafka for the different experiments were exactly the
same. The rate of workload input was 0.7 m/s, which was sufficiently fast to ensure that the data read
rate would not become a bottleneck.

• Study 2: Influence of the number of moving objects on the spatial join performance

From Figure 9a–c, we can conclude that the update efficiency of D-Quadtree is significantly higher
than those of the other indexes. In general, the update rates of the three indexes increase over time,
initially rapidly and then more gradually. Because the secondary index does not initially store any data,
the query step of the spatial join updating process described in Section 4.2 initially consumes less time.
However, as an increasing amount of data becomes stored in the secondary index, the update efficiency
decreases. The number of moving objects has a small effect on D-Quadtree index and a greater effect
on D-Hashtable. When the number of objects is 1m, the update efficiency is quite slow. For D-Rtree,
the update efficiency is initially rapid and then slows with an increasing number of objects. The update
speed is the fastest when the number of objects is 50 m–75 m.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 15 of 19ISPRS Int. J. Geo-Inf. 2016, 5, x FOR PEER 15 of 19

(a) (b) (c)

Figure 9. Effect of the number of objects on the spatial join update throughput. (a) Update throughput

of D-Hahtable; (b) update throughput of D-Rtree; (c) update throughput of D-Quadtree.

 Study 3：Influence of the number of grid cells on the spatial join performance

The effect of the number of grid cells on the spatial join performance has two main

characteristics: (a) For a specific point, the number of cells into which the grid is partitioned and the

number of ACs are directly related, that is, a more finely partitioned grid leads to more ACs, which

increases the replication of points and reduces the update efficiency. (b) A grid with larger partitions

will lead to an imbalance in the numbers of moving objects in different grid cells. Cells in denser regions

of the road network will store more points. As Figure 10a–c show, for D-Rtree, the first factor dominates,

whereas for D-HashTable, the second dominates. Both factors have some impact on D-Quadtree.

(a) (b) (c)

Figure 10. Effect on the update throughput of different partition sizes over time. (a) Update

throughput of D-Rtree; (b) update throughput of D-Hahtable; (c) update throughput of D-Quadtree.

 Study 4: Influence of the query range size on the spatial join performance

Number of Objects (104)

25 50 75 100

0

4

8

12

16

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-HashTable

0

4

8

12

16

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-Rtree

0

40

80

120

160

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-QuadTree

Number of Grid Cells

25 50 100 200

0

4

8

12

0.5 1 1.5 2 2.5 3

U
p

d
a
te

 T
h

ro
u

g
h

p
u

t

×105

Time（min）

D-Rtree

0

12.5

25

37.5

50

0.5 1 1.5 2 2.5 3

U
p

d
a
te

 T
h

ro
u

g
h

p
u

t

×105

Time（min）

D-HashTable

0

75

150

225

300

0.5 1 1.5 2 2.5 3

U
p

d
a
te

 T
h

ro
u

g
h

p
u

t

×105

Time （min）

D-Quadtree

Figure 9. Effect of the number of objects on the spatial join update throughput. (a) Update throughput
of D-Hahtable; (b) update throughput of D-Rtree; (c) update throughput of D-Quadtree.

• Study 3: Influence of the number of grid cells on the spatial join performance

The effect of the number of grid cells on the spatial join performance has two main characteristics:
(a) For a specific point, the number of cells into which the grid is partitioned and the number of ACs
are directly related, that is, a more finely partitioned grid leads to more ACs, which increases the
replication of points and reduces the update efficiency; (b) A grid with larger partitions will lead to
an imbalance in the numbers of moving objects in different grid cells. Cells in denser regions of the
road network will store more points. As Figure 10a–c show, for D-Rtree, the first factor dominates,
whereas for D-HashTable, the second dominates. Both factors have some impact on D-Quadtree.

ISPRS Int. J. Geo-Inf. 2016, 5, x FOR PEER 15 of 19

(a) (b) (c)

Figure 9. Effect of the number of objects on the spatial join update throughput. (a) Update throughput

of D-Hahtable; (b) update throughput of D-Rtree; (c) update throughput of D-Quadtree.

 Study 3：Influence of the number of grid cells on the spatial join performance

The effect of the number of grid cells on the spatial join performance has two main

characteristics: (a) For a specific point, the number of cells into which the grid is partitioned and the

number of ACs are directly related, that is, a more finely partitioned grid leads to more ACs, which

increases the replication of points and reduces the update efficiency. (b) A grid with larger partitions

will lead to an imbalance in the numbers of moving objects in different grid cells. Cells in denser regions

of the road network will store more points. As Figure 10a–c show, for D-Rtree, the first factor dominates,

whereas for D-HashTable, the second dominates. Both factors have some impact on D-Quadtree.

(a) (b) (c)

Figure 10. Effect on the update throughput of different partition sizes over time. (a) Update

throughput of D-Rtree; (b) update throughput of D-Hahtable; (c) update throughput of D-Quadtree.

 Study 4: Influence of the query range size on the spatial join performance

Number of Objects (104)

25 50 75 100

0

4

8

12

16

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-HashTable

0

4

8

12

16

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-Rtree

0

40

80

120

160

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-QuadTree

Number of Grid Cells

25 50 100 200

0

4

8

12

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-Rtree

0

12.5

25

37.5

50

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time（min）

D-HashTable

0

75

150

225

300

0.5 1 1.5 2 2.5 3

U
p

d
a

te
 T

h
ro

u
g

h
p

u
t

×105

Time （min）

D-Quadtree

Figure 10. Effect on the update throughput of different partition sizes over time. (a) Update throughput
of D-Rtree; (b) update throughput of D-Hahtable; (c) update throughput of D-Quadtree.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 16 of 19

• Study 4: Influence of the query range size on the spatial join performance

Figure 11a–c show that an increase in the update/query message ratio will cause an increase in
the total spatial join throughput, especially for D-Quadtree and D-HashTable. This suggests that the
query process has a lower latency than the update process. In addition, a larger query range size has
a smaller but also positive influence on throughput. This is because Storm sends a query message to
each bolt instance for execution. When the query scope is large, the number of working executors
is greater.

ISPRS Int. J. Geo-Inf. 2016, 5, 178 16 of 19

smaller but also positive influence on throughput. This is because Storm sends a query message to each

bolt instance for execution. When the query scope is large, the number of working executors is greater.

(a) (b) (c)

Figure 11. Effects of different query range sizes for various query ratios under a mixed workload. The

search area is accessed in a spatially random manner. (a) Update and query throughput of D-Hahtable;

(b) update and query throughput of D-Quadtree; (c) update and query throughput of D-Rtree.

6. Conclusion and Applications

The mobility of people and vehicles in motion is a basic element of human society. Exploring the

patterns and trends of human and vehicle mobility can advance the understanding of regional and

urban dynamics and reveal the underlying socioeconomic driving forces at work [1]. In this paper,

we develop distributed spatial indexes for storing rapidly changing SFD for moving objects based on

Apache Storm. In particular, two different solutions are proposed, one for spatial queries on a single

dataset and one for range spatial join queries between two datasets. Several factors that may affect

the efficiency of the distributed index were explored through experiments. The experiments show

that a quadtree index offers better computational efficiency regardless of the number of moving

objects, the number of grid partitions or the query range size. For such an evaluation, we should

consider not only the query efficiency but also the update efficiency of the secondary index. A

quadtree index shows the best performance for the following reasons: 1. The add and delete

operations in an R-tree may lead to the merging or splitting of leaf nodes. In some special cases, the

height of the tree will increase or decrease, which will lead to low efficiency in the updating of an R-

tree. 2. A spatial query must iterate through the all elements in a hash table. Consequently, the spatial

query efficiency of a hash table index is relatively low. Compared with these two index structures,

the quadtree structure offers better computational efficiency in both query operations and update

operations and thus exhibits better performance.

Theoretically, for more rapidly changing spatial data, we can increase the number of work nodes

to provide more computing resources. However, each tuple message will stream to a single executor

when all kinematic points are assigned to the same grid partition. Therefore, in the future, we will

investigate how to address hyper-skewed workloads in the proposed Storm-based method. In

addition, emerging distributed streaming frameworks, such as Apache Flink, are showing strong

vitality and excellent development prospects (in particular, Apache Flink offers much better throughput

than Apache Storm with relatively low latency). Our future research work will focus on comparing these

frameworks with Storm and selecting the best distributed platforms for GIS applications.

This spatial query approach is an important server-side component in our web information

system for real-time traffic monitoring. This system has been successfully applied for traffic

monitoring and vehicle scheduling and provides traffic decision support for the government (see

Figure 12). Our tool has facilitated the easy exploration of big trajectory data. The developed method

will enable advancements in a broad spectrum of applications by assisting researchers in tackling the

challenges posed by big data.

Query Range Size

0.01% 0.04% 0.16% 0.64%

0

0.5

1

1.5

2

5 10 15 20

T
h

ro
u

g
h

p
u

t

×107

update/query ratio

D-HashTable

0

3

6

9

12

5 10 15 20

T
h

ro
u

g
h

p
u

t

×107

update/query ratio

D-Quadtree

0

0.3

0.6

5 10 15 20

T
h

ro
u

g
h

p
u

t

×107

update/query ratio

D-Rtree

Figure 11. Effects of different query range sizes for various query ratios under a mixed workload.
The search area is accessed in a spatially random manner. (a) Update and query throughput of D-Hahtable;
(b) update and query throughput of D-Quadtree; (c) update and query throughput of D-Rtree.

6. Conclusions and Applications

The mobility of people and vehicles in motion is a basic element of human society. Exploring the
patterns and trends of human and vehicle mobility can advance the understanding of regional and
urban dynamics and reveal the underlying socioeconomic driving forces at work [1]. In this paper,
we develop distributed spatial indexes for storing rapidly changing SFD for moving objects based on
Apache Storm. In particular, two different solutions are proposed, one for spatial queries on a single
dataset and one for range spatial join queries between two datasets. Several factors that may affect the
efficiency of the distributed index were explored through experiments. The experiments show that
a quadtree index offers better computational efficiency regardless of the number of moving objects,
the number of grid partitions or the query range size. For such an evaluation, we should consider not
only the query efficiency but also the update efficiency of the secondary index. A quadtree index shows
the best performance for the following reasons: 1. The add and delete operations in an R-tree may
lead to the merging or splitting of leaf nodes. In some special cases, the height of the tree will increase
or decrease, which will lead to low efficiency in the updating of an R-tree; 2. A spatial query must
iterate through the all elements in a hash table. Consequently, the spatial query efficiency of a hash
table index is relatively low. Compared with these two index structures, the quadtree structure offers
better computational efficiency in both query operations and update operations and thus exhibits
better performance.

Theoretically, for more rapidly changing spatial data, we can increase the number of work nodes
to provide more computing resources. However, each tuple message will stream to a single executor
when all kinematic points are assigned to the same grid partition. Therefore, in the future, we will
investigate how to address hyper-skewed workloads in the proposed Storm-based method. In addition,
emerging distributed streaming frameworks, such as Apache Flink, are showing strong vitality and
excellent development prospects (in particular, Apache Flink offers much better throughput than

ISPRS Int. J. Geo-Inf. 2016, 5, 178 17 of 19

Apache Storm with relatively low latency). Our future research work will focus on comparing these
frameworks with Storm and selecting the best distributed platforms for GIS applications.

This spatial query approach is an important server-side component in our web information system
for real-time traffic monitoring. This system has been successfully applied for traffic monitoring
and vehicle scheduling and provides traffic decision support for the government (see Figure 12).
Our tool has facilitated the easy exploration of big trajectory data. The developed method will enable
advancements in a broad spectrum of applications by assisting researchers in tackling the challenges
posed by big data.ISPRS Int. J. Geo-Inf. 2016, 5, 178 17 of 19

(a) (b)

Figure 12. The web interface of our real-time traffic monitoring system, which shows a visualization

of moving objects that updates every minute, while the spatial index is updated every second. (a)

Real-time traffic monitoring; (b) nearest neighbor search.

Acknowledgments: This research was funded by the National Natural Science Foundation of China (41471313,

41671391), the Science and Technology Project of Zhejiang Province (2014C33G20), the Public Science and

Technology Research Funds Projects (2015418003), and the National Science Foundation (ACI-1535031, 1535081).

Author Contributions: Feng Zhang conceived and designed the study and also provided the funding; Ye Zheng

contributed to the study design, made improvements to the algorithm and drafted the manuscript; Dengping

Xu contributed to the data acquisition and experimental study; Zhenhong Du was involved in data acquisition

and revision of the manuscript; Yingzhi Wang was involved in data acquisition and analysis, worked on aspects

of the experiment evaluation, and drafted the manuscript; Renyi Liu edited the manuscript; and Xinyue Ye improved

the conceptual framework and updated the manuscript. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huang, X.; Zhao, Y.; Yang, J.; Zhang, C.; Ma, C.; Ye, X. TrajGraph: A graph-based visual analytics approach

to studying urban network centralities using taxi trajectory data. Vis. Comput. Graphics 2016, 22, 160–169.

2. Wang, Y.; Liu, Z.; Liao, H. Improving the performance of GIS polygon overlay computation with

MapReduce for spatial big data processing. Clust. Comput. 2015, 18, 507–516.

3. You, S.J.; Zhang, L.G. Large-scale spatial join query processing in cloud. In Proceedings of the IEEE

International Conference on Data Engineering Workshops, Seoul, Korea, 13–17 April 2015.

4. Fast Data: The Next Step after Big Data. Available online: http://www.infoworld.com/article/2608040, 2014

(accessed on 13 September 2016).

5. Stojanović, D.N.; Turanjanin, J. Processing big trajectory and Twitter data streams using Apache STORM

In Proceedings of the 12th International Conference on Telecommunication in Modern Satellite, Cable and

Broadcasting Services (TELSIKS), Niš, Serbia, 14–17 October 2015.

6. Zhao, S.; Chandrashekar, M.; Lee, Y. Real-time network anomaly detection system using machine learning.

In Proceedings of the 11th International Conference on the Design of Reliable Communication Networks,

Kansas City, MO, USA, 24–27 March 2015.

7. Iwerks, G.S.; Samet, H.; Smith, K.P. Maintenance of K-nn and spatial join queries on continuously moving

points. ACM Trans. Database Syst. 2006, 31, 485–536.

8. Park, K. An efficient scalable spatial data search for location-aware mobile services. J. Inf. Sci. Eng. 2015, 31,

165–178.

9. Kwon, D.; Lee, S. Indexing the current positions of moving objects using the lazy update R-tree. In

Proceedings of the Third International Conference on Mobile Data Management, Singapore, Singapore, 8–10

January 2002.

10. Pfoser, D.; Jensen, C.S.; Theodoridis. Y. Novel approaches to the indexing of moving object trajectories. In

Proceedings of the 26th VLDB Conference, Cairo, Egypt, 10–14 September 2000.

11. Xu, J.; Guting, R.H.; Zheng, Y. The TM-RTree an index on generic moving objects for range queries.

Geoinformatica 2015, 19, 487–524.

Figure 12. The web interface of our real-time traffic monitoring system, which shows a visualization
of moving objects that updates every minute, while the spatial index is updated every second.
(a) Real-time traffic monitoring; (b) nearest neighbor search.

Acknowledgments: This research was funded by the National Natural Science Foundation of China (41471313,
41671391), the Science and Technology Project of Zhejiang Province (2014C33G20), the Public Science and
Technology Research Funds Projects (2015418003), and the National Science Foundation (ACI-1535031, 1535081).

Author Contributions: Feng Zhang conceived and designed the study and also provided the funding; Ye Zheng
contributed to the study design, made improvements to the algorithm and drafted the manuscript; Dengping Xu
contributed to the data acquisition and experimental study; Zhenhong Du was involved in data acquisition and
revision of the manuscript; Yingzhi Wang was involved in data acquisition and analysis, worked on aspects of the
experiment evaluation, and drafted the manuscript; Renyi Liu edited the manuscript; and Xinyue Ye improved
the conceptual framework and updated the manuscript. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huang, X.; Zhao, Y.; Yang, J.; Zhang, C.; Ma, C.; Ye, X. TrajGraph: A graph-based visual analytics approach
to studying urban network centralities using taxi trajectory data. Vis. Comput. Graph. 2016, 22, 160–169.
[CrossRef] [PubMed]

2. Wang, Y.; Liu, Z.; Liao, H. Improving the performance of GIS polygon overlay computation with MapReduce
for spatial big data processing. Clust. Comput. 2015, 18, 507–516. [CrossRef]

3. You, S.J.; Zhang, L.G. Large-scale spatial join query processing in cloud. In Proceedings of the IEEE
International Conference on Data Engineering Workshops, Seoul, Korea, 13–17 April 2015.

4. Fast Data: The Next Step after Big Data. Available online: http://www.infoworld.com/article/2608040
(accessed on 13 September 2016).

5. Stojanović, D.N.; Turanjanin, J. Processing big trajectory and Twitter data streams using Apache STORM.
In Proceedings of the 12th International Conference on Telecommunication in Modern Satellite, Cable and
Broadcasting Services (TELSIKS), Niš, Serbia, 14–17 October 2015.

6. Zhao, S.; Chandrashekar, M.; Lee, Y. Real-time network anomaly detection system using machine learning.
In Proceedings of the 11th International Conference on the Design of Reliable Communication Networks,
Kansas City, MO, USA, 24–27 March 2015.

http://dx.doi.org/10.1109/TVCG.2015.2467771
http://www.ncbi.nlm.nih.gov/pubmed/26529696
http://dx.doi.org/10.1007/s10586-015-0428-x
http://www.infoworld.com/article/2608040

ISPRS Int. J. Geo-Inf. 2016, 5, 178 18 of 19

7. Iwerks, G.S.; Samet, H.; Smith, K.P. Maintenance of K-nn and spatial join queries on continuously moving
points. ACM Trans. Database Syst. 2006, 31, 485–536. [CrossRef]

8. Park, K. An efficient scalable spatial data search for location-aware mobile services. J. Inf. Sci. Eng. 2015, 31,
165–178.

9. Kwon, D.; Lee, S. Indexing the current positions of moving objects using the lazy update R-tree.
In Proceedings of the Third International Conference on Mobile Data Management, Singapore, Singapore,
8–10 January 2002.

10. Pfoser, D.; Jensen, C.S.; Theodoridis, Y. Novel approaches to the indexing of moving object trajectories.
In Proceedings of the 26th VLDB Conference, Cairo, Egypt, 10–14 September 2000.

11. Xu, J.; Guting, R.H.; Zheng, Y. The TM-RTree an index on generic moving objects for range queries.
Geoinformatica 2015, 19, 487–524. [CrossRef]

12. Tao, Y.; Papadias, D.; Sun, J. The TPR-tree: An optimized spatio-temporal access method for predictive
queries. In Proceedings of the 29th International Conference on Very Large Data Bases, Berlin, Germany,
9–12 September 2003.

13. Tao, Y.; Papadiasa, D. MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries Dept;
Hong Kong University: Hong Kong, China, 2000.

14. Jensen, C.S.; Lin, D.; Ooi, B.C. Query and update efficient B ± Tree based indexing of moving objects.
In Proceedings of the 30th VLDB Conference, Toronto, ON, Canada, 31 August–3 September 2004.

15. Šaltenis, S.; Jense, C.S.; Leutenegger, S.T. Indexing the positions of continuously moving objects.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, New York, NY,
USA, 16–18 May 2000.

16. Chen, N.; Shou, L.D.; Chen, G. Adaptive indexing of moving objects with highly variable update frequencies.
J. Comput. Sci. Technol. 2008, 23, 998–1014. [CrossRef]

17. Wu, W.; Tan, K. ISEE: Efficient continuous K-nearest-neighbor monitoring over moving objects.
In Proceedings of the 19th International Conference on Scientific and Statistical Database Management,
Banff, AB, Canada, 9–11 July 2007.

18. Šidlauskas, D.; Ross, K.A.; Jensen, C.S. Thread-level parallel indexing of update intensive moving-object
workloads. In Proceedings of the 12th International Symposium on Spatial and Temporal Databases,
Minneapolis, MN, USA, 24–26 August 2011.

19. Deng, Z.; Wu, X.; Wang, L. Parallel processing of dynamic continuous queries over streaming data flows.
IEEE Trans. Parallel Distrib. Syst. 2015, 82, 834–846. [CrossRef]

20. Xiong, D.; Marble, D.F. Strategies for real-time spatial analysis using massively parallel SIMD computers:
An application to urban traffic flow analysis. Int. J. Geogr. Inf. Syst. 1996, 10, 769–789. [CrossRef]

21. Šidlauskas, D.; Šaltenis, S.; Jensen, C.S. Trees or grids? Indexing moving objects in main memory.
In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Seattle, WA, USA, 4–6 November 2009.

22. Lee, M.L.; Hsu, W.; Jense, C.S. Supporting frequent updates in R-trees: A bottom-up approach. In Proceedings
of the 29th International Conference on Very Large Data Bases, Berlin, Germany, 12–13 September 2003.

23. Šidlauskas, D.; Šaltenis, S.; Jensen, C.S. Processing of extreme moving-object update and query workloads in
main memory. VLDB J. 2014, 23, 817–841. [CrossRef]

24. You, S.; Zhang, J.; Le, G. Spatial join query processing in cloud: Analyzing design choices and performance
comparisons. In Proceedings of the International Conference on Parallel Processing Workshops, Beijing,
China, 16–19 August 2015.

25. Zhang, S.; Han, J.; Liu, Z. SJMR: Parallelizing spatial join with MapReduce on clusters. In Proceedings
of the IEEE International Conference on Cluster Computing & Workshops, New Orleans, LA, USA,
31 August–4 September 2009.

26. Lu, W.; Shen, Y.; Chen, S. Efficient processing of k nearest neighbor joins using MapReduce.
Proc. VLDB Endow. 2012. [CrossRef]

27. Akdogan, A.; Demiryurek, U.; Banaeikashani, F.; Shahabi, C. Voronoi-based geospatial query processing with
MapReduce. In Proceedings of the IEEE Second International Conference on Cloud Computing Technology &
Science, Indianapolis, Indiana, IN, USA, 15–19 November 2010.

http://dx.doi.org/10.1145/1138394.1138396
http://dx.doi.org/10.1007/s10707-014-0218-2
http://dx.doi.org/10.1007/s11390-008-9185-0
http://dx.doi.org/10.1109/TPDS.2014.2311811
http://dx.doi.org/10.1080/02693799608902109
http://dx.doi.org/10.1007/s00778-014-0353-2
http://dx.doi.org/10.14778/2336664.2336674

ISPRS Int. J. Geo-Inf. 2016, 5, 178 19 of 19

28. Zhong, Y.Q.; Han, J.Z.; Zhang, T.Y. Towards parallel spatial query processing for big spatial data.
In Proceedings of the Parallel & Distributed Processing Symposium Workshops & PhD Forum, Shanghai,
China, 21–25 May 2012.

29. Aji, A.; Wang, F.; Vo, H. Hadoop-GIS: A high performance spatial data warehousing system over MapReduce.
Proc. VLDB Endow. 2013. [CrossRef]

30. Eldawy, A.; Mokbel, M.F. A demonstration of SpatialHadoop: An efficient MapReduce framework for spatial
data. Proc. VLDB Endow. 2013. [CrossRef]

31. Yu, J.; Wu, J.; Sarwat, M. A demonstration of GeoSpark: A cluster computing framework for processing big
spatial data. In Proceedings of the IEEE International Conference on Data Engineering, Helsinki, Finland,
16–25 May 2016.

32. Baig, F.; Mehrotra, M.; Wang, F. SparkGIS: Efficient comparison and evaluation of algorithm results in tissue
image analysis studies. In VLDB Workshops; Big-O(Q) and DMAH: Waikoloa, HI, USA, 2015; pp. 134–146.

33. Xie, D.; Li, F.; Li, G. Simba: Efficient in memory spatial analytics. In Proceedings of the 2016 International
Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016.

34. Allen, S.T.; Jankowski, M.; Pathirana, P. Basic Storm concepts. In Storm Applied: Strategies for Real-Time Event
Processing; Manning Publications: Shelter Island, NY, USA, 2015; pp. 17–29.

35. MouRatidis, K.; Papadias, D.; Hadjieleftheriou, M. Conceptual partitioning: An efficient method for
continuous nearest neighbor monitoring. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, New York, USA, 13–16 June 2005.

36. Dittrich, J.; Blunschi, L.; Salles, M.A. Movies: Indexing moving objects by shooting index images.
Geoinformatica 2011, 15, 727–767. [CrossRef]

37. Bentley, J.L.; Friedman, J.H. Data structures for range searching. ACM Comput. Surv. 1979, 11, 397–409.
[CrossRef]

38. Wang, H.; Zimmermann, R. Processing of continuous location-based range queries on moving objects in
road networks. IEEE Trans. Knowl. Data Eng. 2011, 23, 1065–1078. [CrossRef]

39. Tauheed, F.; Heinis, T.; Ailamaki, A. Thermal-join: A scalable spatial join for dynamic workloads.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, Melbourne,
Australia, 9–16 July 2015.

40. Corral, A.; Torres, M.; Vassilakopoulos, M. Predictive join processing between regions and moving object.
In Proceedings of the 12th East European Conference, Pori, Finland, 5–9 September 2008.

41. Ward, G.D.; He, Z.; Zhang, R. Real-time continuous intersection joins over large sets of moving objects using
graphic processing units. VLDB J. 2014, 23, 965–985. [CrossRef]

42. Kalashnikov, D.V.; Prabhakar, S.; Hamrusch, S.E. Main memory evaluation of monitoring queries over
moving objects. Distrib. Parallel Databases 2004, 15, 117–135. [CrossRef]

43. Gedik, B.; Liu, L. MobiEyes: Distributed processing of continuously moving queries on moving objects in
a mobile system. In Advances in Database Technology—EDBT 2004; Springer: Philadelphia, PA, USA, 2004;
Volume 2992, pp. 67–87.

44. Zhang, R.; Qi, J.Z.; Lin, D. A highly optimized algorithm for continuous intersection join queries over moving
objects. VLDB J. 2012, 21, 561–586. [CrossRef]

45. Mokbel, M.F.; Xiong, X.; Aref, W.G. PLACE: A query processor for handling real-time spatio-temporal data
streams. In Proceedings of the 30th International Conference on Very Large Data Bases, Toronto, ON, Canada,
29 August–3 September 2004.

46. Xiong, X.P.; Mokbel, M.F.; Aref, W.G. SEA-CNN: Scalable processing of continuous k-nearest neighbor queries
in spatio-temporal databases. In Proceedings of the 21st International Conference on Data Engineering,
Tokyo, Japan, 5–8 April 2005.

47. Brinkhoff, T. A framework for generating network-based moving objects. Geoinformatica 2002, 6, 153–180.
[CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14778/2536222.2536227
http://dx.doi.org/10.14778/2536274.2536283
http://dx.doi.org/10.1007/s10707-011-0122-y
http://dx.doi.org/10.1145/356789.356797
http://dx.doi.org/10.1109/TKDE.2010.171
http://dx.doi.org/10.1007/s00778-014-0358-x
http://dx.doi.org/10.1023/B:DAPD.0000013068.25976.88
http://dx.doi.org/10.1007/s00778-011-0259-1
http://dx.doi.org/10.1023/A:1015231126594
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Background
	Related Work
	Spatial Index for Moving Objects
	U-Grid and P-Grid
	Spatial Querying on a Distributed Platform

	Technological Background
	Distributed Streaming Processing Framework
	Storm Topology Programming Paradigm

	Problem Setting and Semantic Information
	Problem Setting
	Semantic Information

	Structure and Algorithms for Spatial Data in a Storm Topology
	Storm Topology Algorithm for a Single Dataset
	Spatial Joins for Moving Objects in a Storm Topology
	Data Structure
	Update Partition Bolt
	Query Partition Bolt
	Distributed Spatial Index Bolt
	Results Aggregation Bolt

	Experimental Study
	Experimental Setting and Workloads
	Experimental Results

	Conclusions and Applications

