
 International Journal of

Geo-Information

Article

Top-k Spatial Preference Queries in Directed
Road Networks
Muhammad Attique 1, Hyung-Ju Cho 2, Rize Jin 1 and Tae-Sun Chung 1,*

1 Department of Software, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon 16499, Korea;
attique@ajou.ac.kr (M.A.); rizejin@ajou.ac.kr (R.J.)

2 Department of Software, Kyungpook National University, Gyeongsang-daero 2559, Sangju-si 37224, Korea;
hyungju@knu.ac.kr

* Correspondence: tschung@ajou.ac.kr; Tel.: +82-31-219-2547

Academic Editors: Georg Gartner, Haosheng Huang and Wolfgang Kainz
Received: 27 June 2016; Accepted: 18 September 2016; Published: 23 September 2016

Abstract: Top-k spatial preference queries rank objects based on the score of feature objects in their
spatial neighborhood. Top-k preference queries are crucial for a wide range of location based services
such as hotel browsing and apartment searching. In recent years, a lot of research has been conducted
on processing of top-k spatial preference queries in Euclidean space. While few algorithms study
top-k preference queries in road networks, they all focus on undirected road networks. In this
paper, we investigate the problem of processing the top-k spatial preference queries in directed road
networks where each road segment has a particular orientation. Computation of data object scores
requires examining the scores of each feature object in its spatial neighborhood. This may cause the
computational delay, thus resulting in a high query processing time. In this paper, we address this
problem by proposing a pruning and grouping of feature objects to reduce the number of feature
objects. Furthermore, we present an efficient algorithm called TOPS that can process top-k spatial
preference queries in directed road networks. Experimental results indicate that our algorithm
significantly reduces the query processing time compared to period solution for a wide range of
problem settings.

Keywords: top-k spatial preference query; directed road networks; spatial databases; location based
services; ranking of data objects

1. Introduction

Due to the exponential growth of hand held devices, the widespread availability of maps and
inexpensive network bandwidths have popularized location based services. According to Skyhook,
the number of location-based applications being developed each month is increasing exponentially.
Thus, spatial queries such as k nearest neighbor, range queries and reverse nearest neighbor [1–5] have
received a significant amount of attention from the research community. However, most of the existing
applications are limited to traditional spatial queries, which return objects based on their distances
from the query point.

In this paper, we study the top-k spatial preference query, which returns a ranked list of k best
spatial objects based on the neighborhood facilities. Given a set of data objects {d1, d2, . . . , dn} ∈ D,
a top-k spatial preference query retrieves a set of k objects in D based on the quality of the facilities
(the quality is calculated by aggregating the distance score and non-spatial score) in its neighborhood.
Many real-life scenarios exist to illustrate the useful-ness of preference queries. Thus, if we consider a
scenario in which a real estate agency office maintains a database of available apartments, a customer
may want to rank the apartments based on neighboring facilities (e.g., market, hospitals, and school).

ISPRS Int. J. Geo-Inf. 2016, 5, 170; doi:10.3390/ijgi5100170 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2016, 5, 170 2 of 26

In another example, a tourist may be looking for hotels, where he may be interested in hotels
located near some good quality restaurants, cafes or tourist spots. Figure 1 illustrates the data objects
(i.e., hotels) as triangles, and two distinct feature datasets: solid rectangles denote cafes while hollow
rectangles denote restaurants. The number on each edge denotes the cost of traveling on that edge,
where the cost of an edge can be considered as the amount of time required to travel along it e.g.,

dist(
→

d1, a1) = 2, dist(d3, b2) = 1. The numbers in parentheses over the feature objects denote the score
of that particular feature object e.g., the score of feature object b2 is 0.5. Now, let us consider a tourist
looking for a hotel near to cafes and restaurants. The tourist can restrict the range of the query so
we assume that range is 3 (i.e., r = 3) in this example. The score of the hotels can be determined
according to the following criteria (1) the maximum quality for each feature in the neighborhood
region; and (2) the aggregate of these qualities. For instance, if the hotels are ranked based on the
scores of cafes only, the top hotel would be d1 because the score of d1, d2 and d3 are 0.7, 0 and 0.5,
respectively. It should be noted that the score of d2 is 0 although a1 is within its range, because it is a
directed road network and no path connects d2 to a1. On the contrary, if the hotels are ranked based
only on the scores of restaurants, the top hotel would be d2 because the score of d1, d2 and d3 are 0, 0.8
and 0.5, respectively. Finally, if the hotels are ranked based on the summed scores of restaurants and
cafes, then the top hotel would be d3 because the score of d1, d2 and d3 are 0.7, 0.8 and 1, respectively.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 2 of 25

In another example, a tourist may be looking for hotels, where he may be interested in hotels

located near some good quality restaurants, cafes or tourist spots. Figure 1 illustrates the data objects

(i.e., hotels) as triangles, and two distinct feature datasets: solid rectangles denote cafes while hollow

rectangles denote restaurants. The number on each edge denotes the cost of traveling on that edge,

where the cost of an edge can be considered as the amount of time required to travel along it e.g.,

𝑑𝑖𝑠𝑡(𝑑1, 𝑎1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) = 2, 𝑑𝑖𝑠𝑡(𝑑3, 𝑏2

̅̅ ̅̅ ̅̅ ̅) = 1. The numbers in parentheses over the feature objects denote the

score of that particular feature object e.g., the score of feature object 𝑏2 is 0.5. Now, let us consider a

tourist looking for a hotel near to cafes and restaurants. The tourist can restrict the range of the query

so we assume that range is 3 (i.e., 𝑟 = 3) in this example. The score of the hotels can be determined

according to the following criteria (1) the maximum quality for each feature in the neighborhood

region; and (2) the aggregate of these qualities. For instance, if the hotels are ranked based on the

scores of cafes only, the top hotel would be 𝑑1 because the score of 𝑑1, 𝑑2 and 𝑑3 are 0.7, 0 and 0.5,

respectively. It should be noted that the score of 𝑑2 is 0 although 𝑎1 is within its range, because it is

a directed road network and no path connects 𝑑2 to 𝑎1. On the contrary, if the hotels are ranked

based only on the scores of restaurants, the top hotel would be 𝑑2 because the score of 𝑑1, 𝑑2 and

𝑑3 are 0, 0.8 and 0.5, respectively. Finally, if the hotels are ranked based on the summed scores of

restaurants and cafes, then the top hotel would be 𝑑3 because the score of 𝑑1, 𝑑2 and 𝑑3 are 0.7, 0.8

and 1, respectively.

Figure 1. Example of top-k spatial preference queries in a directed road network.

Two basic factors are considered when ranking objects: (1) the spatial ranking, which is the

distance and (2) the non-spatial ranking, which ranks the objects based on the quality of the feature

objects. Our top-k spatial preference query algorithm efficiently integrates these two factors to

retrieve a list of data objects with the highest score.

Unlike traditional top-k queries [6,7], top-k spatial preference queries require that the score of a

data object is defined by the feature objects that satisfies a spatial neighborhood condition such as the

range, nearest neighbor, or influence [8–11]. Therefore, a pair comprising a data object and a feature

objects needs to be examined in order to determine the score of the corresponding data object. In

addition, processing top-k spatial preference queries in road networks is more complex than in

Euclidean space, because the former requires the exploration of the spatial neighborhood along the

given road network.

Top-𝑘 spatial preference queries are intuitive and they have several useful applications such as

hotel browsing. Unfortunately, most of the existing algorithms are focused on the Euclidean space

and little attention has been given to road networks. Indeed, although few algorithms exist for the

preference queries in road networks, they all consider undirected road networks. Motivated by

aforementioned reasons, we propose a new approach to process top-𝑘 spatial preference queries in

directed road networks, where each road segment has a particular orientation (i.e., either directed or

undirected). In our method, the feature objects in the road network are grouped together in order to

reduce the number of pairs that need to be examined to find the top-𝑘 data objects. We propose a

method for grouping feature objects based on pivot nodes; as described in detail in Section 4.2.1. All

Figure 1. Example of top-k spatial preference queries in a directed road network.

Two basic factors are considered when ranking objects: (1) the spatial ranking, which is the
distance and (2) the non-spatial ranking, which ranks the objects based on the quality of the feature
objects. Our top-k spatial preference query algorithm efficiently integrates these two factors to retrieve
a list of data objects with the highest score.

Unlike traditional top-k queries [6,7], top-k spatial preference queries require that the score of
a data object is defined by the feature objects that satisfies a spatial neighborhood condition such
as the range, nearest neighbor, or influence [8–11]. Therefore, a pair comprising a data object and a
feature objects needs to be examined in order to determine the score of the corresponding data object.
In addition, processing top-k spatial preference queries in road networks is more complex than in
Euclidean space, because the former requires the exploration of the spatial neighborhood along the
given road network.

Top-k spatial preference queries are intuitive and they have several useful applications such as
hotel browsing. Unfortunately, most of the existing algorithms are focused on the Euclidean space
and little attention has been given to road networks. Indeed, although few algorithms exist for
the preference queries in road networks, they all consider undirected road networks. Motivated by
aforementioned reasons, we propose a new approach to process top-k spatial preference queries in
directed road networks, where each road segment has a particular orientation (i.e., either directed or
undirected). In our method, the feature objects in the road network are grouped together in order
to reduce the number of pairs that need to be examined to find the top-k data objects. We propose

ISPRS Int. J. Geo-Inf. 2016, 5, 170 3 of 26

a method for grouping feature objects based on pivot nodes; as described in detail in Section 4.2.1.
All of the pairs of data objects and feature groups are mapped onto a distance-score space, and a
subset of pairs is identified that is sufficient to answer spatial preference queries. In order to map
the pairs, we describe a mathematical formula for computing the minimum and maximum distances
in directed road networks between data objects and feature groups. Finally, we present our Top-k
Spatial Preference Query Algorithm (TOPS), which can efficiently compute the top-k data objects using
these pairs.

This study is an extended version of our previous investigation of top-k spatial preference queries
in directed road networks [12]. However, we present four new extensions that we did not consider in
our preliminary study [12]. The first extension is an enhanced grouping technique which can efficiently
obtain multiple feature groups associated with a single pivot node (Section 4.2.1). The second extension
studies adaptations of the proposed algorithms to deal with neighborhood conditions other than range
score, e.g., nearest neighbor score and influence score (Section 5). In the third extension, we present
an efficient incremental maintenance method for materialized skyline sets (Section 5). In the fourth
extension, we conduct an extensive experimental study in which we increase the number of parameters
to evaluate the performance of TOPS; as well as implementing two versions of TOPS: TOPSgr and
TOPSin where we compared their performance with the Period approach (Section 6). In addition to
these major extensions, we also present a Lemma to prove that the materialized skyline set is sufficient
for determining the partial score of a data object d ∈ D. Furthermore, we also discuss the limitations
of undirected road networks based algorithms in a directed road networks (Section 4.4).

The contributions of this paper are summarized as follows:

• We propose an efficient algorithm called TOPS for processing top-k preference queries in directed
road networks. To the best of our knowledge, this is the first study to address this problem.

• We present a method for grouping feature objects based on a pivot node. We show the mapping
of data objects and feature groups in a distance-score space to generate a skyline set.

• We state lemmas for computing the minimum and maximum distances between the data object
and the feature group.

• In addition, we propose a cost-efficient method for the incremental maintenance of materialized
skyline sets.

• Based on experimental evaluations, we study the effects of applying our proposed algorithm with
various parameters using real-life road dataset.

The remainder of this paper is organized as follows. We discuss related research in Section 2.
In Section 3, we define the primary terms and notation used in this study, as well as formulating the
problem. In Section 4, we explain the pruning and grouping of feature objects, as well as mapping
of pairs of data objects and feature groups to a distance-score space. Section 5 presents our proposed
algorithm for processing top-k spatial preference queries in directed road networks. Our extensive
experimental evaluations are presented in Section 6. Finally, we give our conclusion in Section 7.

2. Related Work

In this section, we review the previous algorithms proposed for ranking spatial data objects.
Object ranking is a popular retrieval task in various applications. As found in most relational database
applications, we often want to rank the tuples using an aggregate score of attribute values. For example,
a rental car agency maintains a database that contains information about cars available for rent.
A potential customer wishes to view the top 10 options among the latest models with the lowest prices.
In this case, the score of each car is expressed by the sum of two qualities: model and price. In spatial
databases, the rankings are often associated with nearest neighbor queries. Thus, given a query point q,
we are mainly interested in finding the set of nearest objects to it that meet a specific condition. Many
algorithms [1,13–15] have been proposed to retrieve the nearest neighbor objects both in Euclidean
space and road networks.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 4 of 26

In the following subsections, we survey the skyline queries in Section 2.1, as well as briefly review
the feature-based spatial queries in Section 2.2, and top-k spatial preference queries in Section 2.3.

2.1. Skyline Queries

In recent years, skyline query processing [16–21] has attracted much of attention due to its
suitability for decision-making applications such as top-k spatial preference queries. Lin et al. [16]
studied the general spatial skyline (GSSKY) problem, which generates a minimal candidate set
comprising the optimal solutions for any monotonic distance-based spatial preference query.
They proposed an efficient progressive algorithm called P-GSSKY, which considerably reduces the
number of non-promising objects during computation. Lee et al. [17] proposed two index-based
approaches, called the augmented R-tree and dominance diagram for various skyline queries in
Euclidean space, e.g., location-dependent skyline queries and reverse location-dependent skyline
queries. Liu et al. [18] presented an algorithm for traditional top-k queries in road networks, which
considers multiple attributes of data objects, including the data object’s location. For example, when a
user wants to find a hotel, they often consider several factors such as the distance to the hotel, the hotel
rating, and the service quality. However, their method does not consider the relationship between a
data object and a feature object; therefore, it cannot be applied to top-k spatial preference queries in
road networks. Deng et al. [19] was the first to consider the problem of multi-source skyline queries in
road networks. Recently, Cheema et al. [22] addressed skyline queries for moving queries, where they
proposed a safe zone based algorithm for continuously monitoring a skyline query.

2.2. Feature-Based Spatial Queries

Xia et al. [23] proposed a novel algorithm for retrieving the top-t most influential spatial sites
(e.g., residential apartments) based on their influence on the feature points (e.g., market). The influence
of each site p is determined by the sum of the scores of all the feature objects with p as their closest site.
Yang et al. [24,25] studied the problem of finding optimal location queries, however, unlike [23] the
optimal location query retrieves any point in the data space and it is not necessarily an object in the
dataset; although the score computation method is similar [23]. These algorithms [23–25] are specific to
the particular query types mentioned above and they cannot be applied to the top-k spatial preference
queries. In addition, they only deal with the single feature dataset whereas preference query considers
a multiple feature dataset.

2.3. Top-k Spatial Preference Queries

Several algorithms have been proposed for top-k spatial preference queries in Euclidean space.
Yiu el al. [8,9] first considered computing the score of data object p based on the set of multiple feature
objects in its spatial neighborhood rather than a single feature object set as studied previously [21–23].
We know that the score of a data object can be defined by three different spatial scores, i.e., the range,
nearest neighbor, and nearest score; thus, Yiu et al. [8,9] designed several algorithms according to
three categories (Probing Algorithms, Branch and Bound Algorithms, and Feature Join Algorithms)
for evaluating the top-k spatial preference queries for these scores. In contrast to Yiu et al. [8,9],
Rocha-Junior et al. [10] proposed a materialization technique which yields significant computational
and I/O cost savings during query processing. They introduced a mapping of pairs of the data object
and the feature object to a distance-score space. The minimal subset of the pairs is materialized and it
is sufficient to answer any spatial preference query in an efficient manner. However, these Euclidean
space based algorithms [8–10] are not suitable for evaluating top-k spatial preference queries in road
networks because the distance between objects is determined by the shortest path connecting them in
road networks.

Cho et al. [11] proposed a novel algorithm called ALPS for processing top-k preference queries in
road networks, where they extended the materialization technique [10] based on the distance-score
space for road networks. To minimize the number of data objects, their methodology groups a set of

ISPRS Int. J. Geo-Inf. 2016, 5, 170 5 of 26

data objects in a road segment and then converts grouped data objects into a data segment. ALPS [11]
can efficiently process the top-k spatial preference queries in road networks, but it only works for
undirected road networks.

This study distinguishes itself from existing studies in several aspects. Firstly, we study top-k
spatial preference queries in a directed road network where each road segment has a particular
orientation whereas the previous studies they either focus on Euclidean space [8–10] or an undirected
road network [11]. Secondly, our approach is based on the grouping of feature objects, which
reduces the computation cost. Lastly, we devise a mathematical formula to quickly calculate the
minimum and maximum distances between the data object and the feature group in the road network.
In recent years, different variations of preference queries have been studied in spatial road networks.
Mouratidis et al. [26] studies preference queries in multi-cost transportation network where each road
segment is associated with multiple cost values. Lin et al. [27] studies k multi-preference queries to
retrieve top-k groups of facilities that minimizes the traveling distance in the road network. These
studies have different problem scenarios from those in our study and their solutions are not appropriate
in our problem domain. Furthermore, we present detailed limitations of undirected based algorithms
in directed road networks in Section 4.4.

3. Preliminaries

Section 3.1 defines the terms and notations used in this paper. Section 3.2 formulates the problem
using an example to illustrate the results obtained from top-k spatial preference queries.

3.1. Definition of Terms and Notations

Road Network: A road network is represented by a weighted directed graph (G = N, E, W) where
N, E, and W denote the node set, edge set, and edge distance matrix, respectively. Each edge is also
assigned an orientation, which is either undirected or directed. An undirected edge is represented by
e = ninj, where ni and nj are adjacent nodes, whereas a directed edge is represented as

→
ninj or

←
ninj.

Naturally, the arrows above the edges denote their associated directions.

Segment s(pi, pj) is the part of an edge between two points p1 and p2 on the edge. An edge
comprises one or more segments. An edge is also considered to be a segment where the nodes are the
end points of the edge. To simplify the presentation, Table 1 lists the notations used in this study.

Table 1. Summary of notations used in this study.

Notation Definition

G = (N, E,W) Graph model of a road network
dist(p1, p2) Length of the shortest path connecting two points’ p1 and p2
len(p1, p2) Length of a segment connecting two points p1 and p2 both of which lie in the same sequence
ni A node in the road network
ei = ninj An edge in the edge set E where ni and nj are adjacent nodes
W(ei) Weight of an edge ei
k Number of data objects to be retrieved
m Number of feature datasets.
mindist(p1, p2) Minimum distance between p1 and p2
maxdist(p1, p2) Maximum distance between p1 and p2

3.2. Problem Formulation

Given a set of data objects D = {d1, d2, . . . , dn} and a set of m feature dataset
Fi = { f1, f2, . . . , fm} (1 ≤ i ≤ m) the top-k spatial preference query returns the k data objects with
the highest scores. The score of a data object d ∈ D is defined by the scores of the feature objects f ∈ Fi

ISPRS Int. J. Geo-Inf. 2016, 5, 170 6 of 26

in the spatial neighborhood of the data object. Each feature object f has a non-spatial score, denoted as
s(f), which indicates the quality (goodness) of f and it is graded in the range [0,1].

The score γθ(d) of a data object d is determined by aggregating the partial scores
γθ

i (d) (1 ≤ i ≤ m) with respect to a neighborhood condition θ and the ith feature dataset Fi.
The aggregation function ‘agg’ can be any monotone function (sum, max, min), but in this study
we use the sum to simplify the discussion. We consider the range (rng), nearest neighbor (nn), and
influence (inf) constraints as the neighborhood condition θ. In particular, the score γθ(d) is defined as,
γθ(d) = agg{γθ

i (d)| 1 ≤ i ≤ m}, where θ ∈ {rng, nn, in f } and agg ∈ {sum, max, min}.
The partial score γθ

i is determined by the feature objects that belongs to the ith feature dataset
Fi only and that satisfy the neighborhood condition θ. In other words γθ

i is defined by the highest
score s(f) for a single feature object f ∈ Fi that satisfies the spatial constraint θ. Similar to previous
studies [9–11], the partial scores γθ

i for different neighborhood conditions θ are defined as follows:

• Range(rng) score of d: γ
rng
i (d) = max{s(f)| f ∈ Fi : dist(d, f) ≤ r}

• Nearest neighbor (nn) score of d:γnn
i (d) = max{s(f)| f ε Fi, ∀ f j ∈ Fi : dist(d, f) ≤ dist(d, f j)}

• Influence(inf) score of d: γ
in f
i (d) = max

{
s(f)× 2−

dist(d, f)
r | f ∈ Fi

}
Next, we evaluate the scores of data objects d1, d2 and d3 in Figure 1. We consider the range

constraint value r = 3. Table 2 summarizes the scores obtained of d1, d2 and d3 using the aforementioned
definitions of the neighborhood conditions {rng, nn, inf }.

Table 2. Computation of the scores of data objects d1, d2, and d3.

Data Object θ = rng θ = nn θ = inf

d1 0.7 1.5 0.64
d2 0.8 1.3 0.598
d3 1.0 1.0 0.711

The score of data object d is the sum of the partial score of each feature set. The range score of d1

is calculated as γrng(d1) = γ
rng
1 (d1) + γ

rng
2 (d1) = 0.7. The ith partial range score of a data object d is

the maximum non-spatial score of the feature objects f ∈ Fi which are within the range r. Therefore,
the first partial score γ

rng
1 (d1) = 0.7, because s(a1) = 0.7 and dist(d1, a1) ≤ r. However, γ

rng
2 (d1) = 0

because there is no restaurant located within the defined range r. Similarly, the range scores of d2 and
d3 are γrng(d2) = 0 + 0.8 = 0.8 and γrng(d3) = 0.5 + 0.5 = 1.0, respectively.

The nearest neighbor score of d1 is calculated as γnn(d1) = γnn
1 (d1) + γnn

2 (d1) = 1.5. The ith
partial nearest neighbor score of a data object d is the score of the nearest feature object f ∈ Fi
to d. Therefore, the first partial score γnn

1 (d1) = 0.7, because a1 is the closest feature object of
d1 and s(a1) = 0.7, whereas γnn

2 (d1) = 0.8 because b1 is the closest feature object of d1 and
s(b1) = 0.8. Similarly, the nearest neighbor score of d2 and d3 are γnn(d2) = 0.5 + 0.8 = 1.3 and
γnn(d3) = 0.5 + 0.5 = 1.0, respectively.

The influence score of d1 is calculated as γin f (d1) = γ
in f
1 (d1) + γ

in f
2 (d1) = 0.64.

The ith partial influence score of a data object d is calculated using the score of the feature
object f ∈ Fi and its distance to the data object. Specifically, the influence score is inversely
proportional to the distance between d and f. Therefore, the influence score decreases rapidly
as the distance between the feature object f and data object d increases. The first partial score
γ

in f
1 (d1) = max

{
0.7× 2−

2
3 , 0.5× 2−

9
3

}
= 0.44, because s(a1) = 0.7, dist(d1, a1) = 2, s(a2) = 0.5,

and dist(d1, a2) = 9, whereas γ
in f
2 (d1) = max

{
0.8× 2−

6
3 , 0.5× 2−

10
3

}
= 0.2, because s(b1) = 0.8,

dist(d1, b1) = 6, s(b2) = 0.5, and dist(d1, a2) = 10. Similarly, the influence score of d2 and d3 are
γin f (d2) = 0.198 + 0.4 = 0.598 and γin f (d3) = 0.396 + 0.315 = 0.711, respectively.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 7 of 26

3.3. Finding Pivot Nodes

We now discuss the method used for computing the pivot nodes. In our approach, we group
the feature objects based on the pivot nodes. Each feature object is associated with one pivot node,
and thus feature objects sharing the same pivot node can be grouped together. It is obvious that the
performance of the proposed scheme will improve if the number of feature groups is small. Therefore,
the main objective is to retrieve the minimum number of pivot nodes. Computing the minimum
number of pivot nodes is a minimum vertex cover problem. The minimum vertex cover comprises a
set of nodes that can connect all the edges of the graph with the minimum number of nodes.

Definition 1: A vertex cover of a graph G = (V, E) is a subset S ⊂ V such that if (u, v) ∈ E then either
u ∈ S or v ∈ S or both. In other words, a vertex cover is a subset of nodes that contains at least one node on
each edge.

The minimum vertex cover is an NP-complete problem and it is also closely related to many other
hard graph problems. Therefore, numerous studies have been conducted to design optimization and
approximation techniques based on Branch and Bound Algorithm, Greedy Algorithm and Genetic
Algorithm. We employ the technique proposed by Hartmann [28] based on the Branch and bound
algorithm because it is a complete algorithm, thereby ensuring that we find the best solution or the
optimal solution of various optimization problems, including the minimum vertex cover. However,
the only tradeoff when using Branch and Bound algorithm is that the running time increases with
large graphs.

The Branch and Bound algorithm recursively explores the complete graph by determining the
presence or absence of one node in the cover during each step of the recursive process, and then
recursively solving the problem for the remaining nodes. The complete search space can be considered
as a tree where each level determines the presence or absence of one node, and there are two possible
branches to follow for each node; one corresponds to selecting the node for the cover whereas the
other corresponds to ignoring the node. Virtually a node that is covered and all of its adjacent edges
are removed from the graph. The algorithm does not need to descend further into the tree when a
cover has been found, i.e., when all of the edges are covered. Next, the backtracking process starts and
search continues to higher levels of the tree to identify a cover with a possibly smaller vertex cover.
During backtracking all of the covered nodes are reinserted in the graph. Subsets of the nodes are
determined that yield legitimate vertex covers and the smallest in size is the minimum vertex cover.

Let us consider an example in Figure 2, where we found that the set of nodes {n2, n6, n7} constructs
a minimum vertex cover, that connects all of the edges in a given road network.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 7 of 25

nodes is a minimum vertex cover problem. The minimum vertex cover comprises a set of nodes that

can connect all the edges of the graph with the minimum number of nodes.

Definition 1: A vertex cover of a graph 𝐺 = (𝑉, 𝐸) is a subset 𝑆 ⊂ 𝑉 such that if (𝑢, 𝑣) ∈ 𝐸 then either 𝑢 ∈

𝑆 or 𝑣 ∈ 𝑆 or both. In other words, a vertex cover is a subset of nodes that contains at least one node on each edge.

The minimum vertex cover is an NP-complete problem and it is also closely related to many

other hard graph problems. Therefore, numerous studies have been conducted to design

optimization and approximation techniques based on Branch and Bound Algorithm, Greedy

Algorithm and Genetic Algorithm. We employ the technique proposed by Hartmann [28] based on

the Branch and bound algorithm because it is a complete algorithm, thereby ensuring that we find

the best solution or the optimal solution of various optimization problems, including the minimum

vertex cover. However, the only tradeoff when using Branch and Bound algorithm is that the running

time increases with large graphs.

The Branch and Bound algorithm recursively explores the complete graph by determining the

presence or absence of one node in the cover during each step of the recursive process, and then

recursively solving the problem for the remaining nodes. The complete search space can be

considered as a tree where each level determines the presence or absence of one node, and there are

two possible branches to follow for each node; one corresponds to selecting the node for the cover

whereas the other corresponds to ignoring the node. Virtually a node that is covered and all of its

adjacent edges are removed from the graph. The algorithm does not need to descend further into the

tree when a cover has been found, i.e., when all of the edges are covered. Next, the backtracking

process starts and search continues to higher levels of the tree to identify a cover with a possibly

smaller vertex cover. During backtracking all of the covered nodes are reinserted in the graph.

Subsets of the nodes are determined that yield legitimate vertex covers and the smallest in size is the

minimum vertex cover.

Let us consider an example in Figure 2, where we found that the set of nodes {𝑛2, 𝑛6, 𝑛7}

constructs a minimum vertex cover, that connects all of the edges in a given road network.

Figure 2. Pruning and grouping example.

4. Pruning and Grouping

Top-k spatial preference queries return a ranked set of spatial data objects. Unlike traditional

top-k queries the rank of each data object is determined by the quality of the feature objects in its

spatial neighborhood. Thus, computing the partial score of a data object d based on the feature set Fi

requires the examination of every pair of objects (d, f). Therefore, for a large number of objects, the

search space that needs to be explored to determine the partial score is also significantly high, thereby

further increasing the challenges of efficiently processing top-k spatial queries in directed road

networks.

Figure 2. Pruning and grouping example.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 8 of 26

4. Pruning and Grouping

Top-k spatial preference queries return a ranked set of spatial data objects. Unlike traditional top-k
queries the rank of each data object is determined by the quality of the feature objects in its spatial
neighborhood. Thus, computing the partial score of a data object d based on the feature set Fi requires
the examination of every pair of objects (d, f). Therefore, for a large number of objects, the search
space that needs to be explored to determine the partial score is also significantly high, thereby further
increasing the challenges of efficiently processing top-k spatial queries in directed road networks.

In Section 4.1, we discuss the dominance relation and we then explain the pruning lemma.
Section 4.2 presents the grouping algorithm and the computation of the feature group score s(g),
as well as discussing the computation of the minimum and maximum distances between data objects
and feature groups. Section 4.3 describes the mapping of pairs of data objects and feature groups to
the distance-score space. Finally, we discuss the limitations of undirected based algorithms in directed
road networks in Section 4.4.

4.1. Pruning

In this section, we present a method for finding the dominant feature objects that contribute
only to the score of a data object. The feature objects that do not contribute to the score of a data
object will be pruned automatically. This dramatically reduces the search space, thereby significantly
decreasing the computational cost. In order to make the pruning step more efficient, we use the
pre-computed distances stored in a minimum distance table MDT. The MDT stores the pre-computed
distances between the pair of nodes ni and nj in a directed road network. Each tuple in a MDT is of the
form {(ni, nj), dist(ni, nj)}, where (ni, nj) is used as a search key for retrieving the value of dist(ni, nj).
It should be noted that the network distance between two nodes, ni and nj, is not symmetrical in a
directed road network (i.e., dist(ni, nj) 6= dist(nj, ni)). Therefore, we need to insert a separate entry to
retrieve the distance from nj to ni. Figure 2 shows an example of a directed road network, which we
employ throughout this section.

Before presenting the pruning lemma, let us define some useful terminologies:

Static Dimension: The static dimensions i (i.e., 1 ≤ i ≤ n) are fixed criteria that are not changed by
the motion of the query, such as the rank of any restaurant or price.

Static Equality: An object o is statically equal to object o′ if, for every static dimension i, o [i] = o′ [i].
We denote the static equality as o′ =s o.

Static Dominance: An object o is statically dominated by another object o′ if o′ is better than o in every
static dimension. We use o′s o to denote that object o′ statically dominates object o. We use o′ vs o to
denote that o′ either statically dominates o or is statically equivalent to o. In Figure 2, f1 s f2 because the
non-spatial score of f1 is better than that of f2 i.e., [s(f1) = 0.9] > [s(f2) = 0.7].

Complete Dominance: To explain the pruning lemma we need to define complete dominance.
An object o is completely dominated by another object o′ with respect to data object d, if o′s o as
well as dist(d, o′) < dist(d, o). In other words, o′ completely dominates o if o′ is equally good in terms
of its static dimensions and it is also closer to the data object d. In Figure 2, the feature object f1
completely dominates f2 with respect to d1 because f1<s f2 and dist(d1, f1) < dist(d1, f2). On the
other hand, f4 is not completely dominated by f1, although f1<s f4 but dist(d1, f1) ≮ dist(d1, f4).

Dominant Pair (DP): Given two pairs d ⊗ fa and d ⊗ fb, d ⊗ fa is said to dominate d ⊗ fb,
if dist(d, fa) < dist(d, fb) and fa<s fb. The set of pairs that are not dominated by any other pair
in d⊗ Fi are referred as dominant set DP(d, Fi).

Lemma 1: A feature object f ′ is a dominant object if and only if for any other feature object f for which f ′ vs f ,
dist(d, f ′) < dist(d, f).

ISPRS Int. J. Geo-Inf. 2016, 5, 170 9 of 26

Proof: The proof is straight forward and thus it is omitted. Intuitively, a Lemma 1 state that f ′ is a
dominant object if f ′ is closer to d than every other object f and it is at least as good as f in terms of its
static dimensions (i.e., f ′ vs f).

In Figure 2, f2 is not a dominant object of d1 because a feature object f1 exists such that f1<s f2 and
dist(d1, f1) < dist(d1, f2). Hence, f2 is completely dominated by f1, and thus it is pruned, whereas, f4
is a dominant object because it is closer to d1. Here, note that f3 cannot be a dominant object for data
object d1 because we are considering a directed road network and no path exists to f3 from d1.

Figure 3 depicts the mapping of D ⊗ Fi to the distance-score space M. We formally define the
distance-score space in Section 4.3. The black square shows the mapping of pairs d⊗ f where d ∈ D
and f ∈ Fi. Now, by applying the dominance relationship onto the mapping in Figure 3a, we find that
pair d1 ⊗ f2 is completely dominated by d1 ⊗ f1. Therefore, DP(d1, Fi) = d1 ⊗ f4, d1 ⊗ f1. Figure 3b
shows that d2 ⊗ f5, d2 ⊗ f7, d2 ⊗ f3 and d2 ⊗ f1 are dominated pairs. Similarly, Figure 3c shows the
mapping of d3 ⊗ Fi, and it is clear that both pairs d3 ⊗ f10 and d3 ⊗ f9 are not dominated by any
other pair.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 9 of 25

f4 is a dominant object because it is closer to d1. Here, note that f3 cannot be a dominant object for data

object d1 because we are considering a directed road network and no path exists to f3 from d1.

Figure 3 depicts the mapping of 𝐷⨂𝐹𝑖 to the distance-score space M. We formally define the

distance-score space in Section 4.3. The black square shows the mapping of pairs 𝑑⨂𝑓 where 𝑑 ∈ 𝐷

and 𝑓 ∈ 𝐹𝑖. Now, by applying the dominance relationship onto the mapping in Figure 3a, we find

that pair 𝑑1⨂𝑓2 is completely dominated by 𝑑1⨂𝑓1. Therefore, 𝐷𝑃(𝑑1, 𝐹𝑖) = 𝑑1⨂𝑓4, 𝑑1⨂𝑓1. Figure 3b

shows that 𝑑2⨂𝑓5, 𝑑2⨂𝑓7, 𝑑2⨂𝑓3 and 𝑑2⨂𝑓1 are dominated pairs. Similarly, Figure 3c shows the

mapping of 𝑑3⨂𝐹𝑖, and it is clear that both pairs 𝑑3⨂𝑓10 and 𝑑3⨂𝑓9 are not dominated by any other

pair.

Figure 3. Mapping of 𝐷⨂𝐹𝑖 to the distance-score space. (a) 𝑑1⨂𝐹𝑖; (b) 𝑑2⨂𝐹𝑖; (c) 𝑑3⨂𝐹𝑖.

4.2. Grouping

In this section, we describe our approach for grouping the feature objects. The pruning phase

reduces the number of feature objects, but this can be reduced further by merging them into a group.

In addition, the grouping technique reduces the size of skyline set and the entries in R-tree [29],

thereby enhancing the efficiency of algorithm by minimizing the memory consumption required. As

mentioned earlier, the score for data object d is computed from the score of the feature objects 𝑓 ∈ 𝐹𝑖

which requires that we examine every pair of objects (d, f). The performance of the algorithm will

decline dramatically if the number of feature objects is excessively high. Therefore, the main purpose

of grouping is to further reduce the number of feature objects by grouping them together, which

consequently reduces the number of pairs. Thus, instead of evaluating the individual pairs 𝑑 ⨂𝑓,

our algorithm evaluates evaluates 𝑑 ⨂𝑔, where g denotes a feature group and a set of feature groups

are represented as Gi. Grouping the feature objects has two main advantages as follows.

1. It is easy to compute the highest score of a data object.

Figure 3. Mapping of D⊗ Fi to the distance-score space. (a) d1 ⊗ Fi; (b) d2 ⊗ Fi; (c) d3 ⊗ Fi.

4.2. Grouping

In this section, we describe our approach for grouping the feature objects. The pruning phase
reduces the number of feature objects, but this can be reduced further by merging them into a group.
In addition, the grouping technique reduces the size of skyline set and the entries in R-tree [29], thereby
enhancing the efficiency of algorithm by minimizing the memory consumption required. As mentioned
earlier, the score for data object d is computed from the score of the feature objects f ∈ Fi which requires
that we examine every pair of objects (d, f). The performance of the algorithm will decline dramatically

ISPRS Int. J. Geo-Inf. 2016, 5, 170 10 of 26

if the number of feature objects is excessively high. Therefore, the main purpose of grouping is to
further reduce the number of feature objects by grouping them together, which consequently reduces
the number of pairs. Thus, instead of evaluating the individual pairs d⊗ f , our algorithm evaluates
evaluates d⊗ g, where g denotes a feature group and a set of feature groups are represented as Gi.
Grouping the feature objects has two main advantages as follows.

1. It is easy to compute the highest score of a data object.
2. The computational cost and memory consumption are decreased by reducing the number of pairs.

4.2.1. Grouping Method

We now discuss the method for grouping feature objects based on pivot nodes. We have described
the technique for finding the minimum pivot nodes in Section 3.3. For grouping, each feature object
is associated with one of a pivot node. In pruning phase, we find the dominant feature objects for
each data object. The dominant feature objects of each data object are grouped together if they are
associated with the same pivot node. In our previous study [12], we grouped all the feature objects
connected to one pivot node, thereby generating one feature group per pivot node. However, in some
cases, more than one feature group may be associated with a single pivot node if dominant feature
objects of multiple data objects share the same pivot node.

Let us consider the same example shown in Figure 2, where node n2 is the pivot node and the
feature objects f 1, f 2, f 3, and f 4 are connected to it. As mentioned in Section 4.1, for data object d1 the
dominant objects are f 1 and f 4 whereas feature object f 2 and f 3 are pruned. However, for data object d2;
f 1 and f 3 is dominant whereas f 2 and f 4 are pruned. Therefore, two groups are formed { f1, f4} ∈ g1

and { f1, f3} ∈ g2, which are associated with pivot node n2. Table 3 summarizes the grouping of
feature objects.

Table 3. Summary of the grouping of feature objects.

Pivot Node Groups

n2 { f1, f4} ∈ g1, { f1, f3} ∈ g2
n6 { f5, f7} ∈ g3
n7 { f9, f10} ∈ g4

4.2.2. Computation of the Group Score s(g)

Due to the separate score of each feature object, the computation of partial score γθ
i (d) becomes

costly for a large number of feature objects. We devised a new method for calculating the partial
scores based on the group score denoted as s(g). The group score is the highest score for any feature
object that belongs to a group such that it qualifies the neighborhood conditions. Table 3 shows that
{ f1, f4} ∈ g1, s(f1) = 0.9 and s(f4) = 0.5. Therefore, s(g1) = 0.9 which is the highest score of the
feature object belongs to g1. The score of other groups can be computed in a similar fashion.

The partial score γθ
i by using s(g) can be defined as follows:

• Range(rng) score of d: γ
rng
i (d) = max{s(g)|g ∈ Gi : maxdist(d, g) ≤ r}

• Nearest neighbor (nn) score of d:
γnn

i (d) = max{s(g)|g ∈ Gi, ∀Gj ∈ Gi : mindist(d, g) ≤ mindist(d, gj)}

• Influence(inf) score of d: γ
in f
i (d) = max

{
s(g)× 2−

maxdist(d,g)
r | g ∈ Gi

}
We modify the formulae presented in Section 3.2 to compute the partial score γθ

i by using the
group score s(g) instead of the feature score s(f). The only difference is maxdist(d, g) is used instead
of dist(d, f) for range and influence score whereas mindist(d, g) is used instead of dist(d, f) for nearest
neighbor score.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 11 of 26

4.2.3. Computation of the Distance between a Data Object and Feature Group

In this section, we present Lemmas for the computation of the minimum and maximum distances
between a data object and feature group. The subset of pairs d⊗ g retrieved in the grouping step is
indexed in an R-tree [17], where it is necessary to compute the minimum and maximum distances
between a data object and feature group. Lemma 2 presents the computation of mindist(d, g), while

Lemmas 3 and 4 describe the computation of maxdist(d, g) for d ∈
→
αβ and d /∈

→
αβ, respectively.

Lemma 2: Given a data object and a feature group g, mindist(d, g) is as follows:

mindist(d, g) =

{
0 i f d ∈ g

MIN{dist(d, β)|∀β ∈ g} otherwise

}

Proof: This lemma is self-evident, so the proof is omitted. Here, β denotes the boundary point of
feature group. For g2, { f1, f3} ∈ β, mindist(d2, g2) = MIN{dist(d2, f1), dist(d2, f3)}.

We consider a directed road network and thus to determine maxdist(d, g), it is necessary to

evaluate maxdist(d,
→
αβ) and maxdist(d, αβ), where,

→
αβ and αβ refer to directed and undirected

segments, respectively. To compute maxdist(d,
→
αβ), we consider the two cases separately: (1) d ∈

→
αβ

and (2) d /∈
→
αβ. For maxdist(d, αβ) we use the method proposed by Cho et al. in [11].

Lemma 3: If d ∈
→
αβ, then there are following two cases:

(Case 3a): If a path from β to α exists, maxdist(d,
→
αβ) = len(d, β) + dist(β, α) + len(α, d)

maxdist(d,
→
αβ) = len(α, β) + dist(β, α)

Proof: Let us suppose that α and β are the boundary points on the road segment that belongs

to a feature group and data object d is located between
→
αβ. As shown in Figure 5, there exists a

point p such that maxdist(d,
→
αβ) = MAX{dist(d, p)|∀p ∈

→
αβ}. According to Figure 5, it is obvious

that dist(d, p) = len(d, β) + dist(β, α) + len(α, p). From the equation above, we can observe that
the distance value will increase with the value of len(α, p), so to obtain the maximum distance
value, the point p must be very close to d, and thus we can say that d ∼= p. Therefore, we can

rewrite the equation above as maxdist(d,
→
αβ) = len(d, β) + dist(β, α) + len(α, d) which is equal to

maxdist(d,
→
αβ) = len(α, β) + dist(β, α).

(Case 3b): If no path exists from β to α, maxdist(d,
→
αβ) = len(d, β)

Proof: This lemma is self-evident, so the proof is omitted.

Lemma 4: If d /∈
→
αβ, then maxdist(d,

→
αβ) is as follows:

maxdist(d,
→
αβ) = MAX{dist(d, α) + len(α, β), dist(d, β)}

Proof: According to the definition maxdist(d,
→
αβ) = MAX{dist(d, p)|∀p ∈

→
αβ}. As shown in Figure 4,

it is obvious that we obtain the maximum distance from d to p when point p is located very close
to β, and thus we can say that β ∼= p. Two paths exist from d to β: d→ α→ β and d→ β ,
and thus dist(d, β) = dist(d, α) + len(α, β) or dist(d, β) = dist(d, β). Therefore, we can say that

maxdist(d,
→
αβ) = MAX{dist(d, α) + len(α, β), dist(d, β)}.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 12 of 26

Table 4 summarizes the minimum and maximum distances along with the score for the d⊗ g
in Figure 2.

Table 4. Summary of d⊗ g in Figure 2.

Data Object Feature Group d⊗ g

d1 g1 d1 ⊗ g1 = {[0, 3] , 0.9}
d2 g2 d2 ⊗ g2 = {[5, 7] , 0.9}
d2 g3 d2 ⊗ g3 = {[0, 3] , 0.7}
d3 g4 d3 ⊗ g4 = {[0, 4] , 0.8}

ISPRS Int. J. Geo-Inf. 2016, 5, 170 11 of 25

Lemma 2: Given a data object and a feature group g, 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔)is as follows:

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔) = {
0 𝑖𝑓 𝑑 ∈ 𝑔

𝑀𝐼𝑁{𝑑𝑖𝑠𝑡(𝑑, 𝛽)|∀𝛽 ∈ 𝑔} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

Proof: This lemma is self-evident, so the proof is omitted. Here, 𝛽 denotes the boundary point of

feature group. For 𝑔2, {𝑓1, 𝑓3} ∈ 𝛽, 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑2, 𝑔2) = 𝑀𝐼𝑁{𝑑𝑖𝑠𝑡(𝑑2, 𝑓1), 𝑑𝑖𝑠𝑡(𝑑2, 𝑓3)}.

We consider a directed road network and thus to determine 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝑔), it is necessary to

evaluate 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) and 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽), where, 𝛼𝛽⃗⃗⃗⃗ ⃗ and 𝛼𝛽 refer to directed and

undirected segments, respectively. To compute 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) , we consider the two cases

separately: (1) 𝑑 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗ and (2) 𝑑 ∉ 𝛼𝛽⃗⃗⃗⃗ ⃗. For 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽) we use the method proposed by Cho et

al. in [11].

Lemma 3: If 𝑑 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗, then there are following two cases:

(Case 3a): If a path from 𝛽 to 𝛼 exists, 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝑑, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝑑)

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝛼, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼)

Proof: Let us suppose that 𝛼 and β are the boundary points on the road segment that belongs to a

feature group and data object d is located between 𝛼𝛽⃗⃗⃗⃗ ⃗. As shown in Figure 4, there exists a point p

such that 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝑝)|∀𝑝 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗} . According to Figure 4, it is obvious

that 𝑑𝑖𝑠𝑡(𝑑, 𝑝) = 𝑙𝑒𝑛(𝑑, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝑝). From the equation above, we can observe that the

distance value will increase with the value of 𝑙𝑒𝑛(𝛼, 𝑝), so to obtain the maximum distance value, the

point p must be very close to d, and thus we can say that 𝑑 ≅ 𝑝. Therefore, we can rewrite the equation

above as 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝑑, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝑑) which is equal to 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) =

𝑙𝑒𝑛(𝛼, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼).

(Case 3b): If no path exists from 𝛽 to 𝛼, 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝑑, 𝛽)

Proof: This lemma is self-evident, so the proof is omitted.

Lemma 4: If 𝑑 ∉ 𝛼𝛽⃗⃗⃗⃗ ⃗, then 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) is as follows:

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝛽), 𝑑𝑖𝑠𝑡(𝑑, 𝛽)}

Proof: According to the definition 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝑝)|∀𝑝 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗}. As shown in Figure 5,

it is obvious that we obtain the maximum distance from d to p when point p is located very close to 𝛽,

and thus we can say that 𝛽 ≅ 𝑝. Two paths exist from d to 𝛽 : 𝑑 → 𝛼 → 𝛽 and 𝑑 → 𝛽 , and thus

𝑑𝑖𝑠𝑡(𝑑, 𝛽) = 𝑑𝑖𝑠𝑡(𝑑, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝛽) or 𝑑𝑖𝑠𝑡(𝑑, 𝛽) = 𝑑𝑖𝑠𝑡(𝑑, 𝛽). Therefore, we can say that

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝛽), 𝑑𝑖𝑠𝑡(𝑑, 𝛽)}.

Table 4 summarizes the minimum and maximum distances along with the score for the 𝑑 ⨂𝑔 in

Figure 2.

Figure 4. Determination of 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) when 𝑑 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗.

Figure 4. Determination of maxdist(d,
→
αβ) when d /∈

→
αβ.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 11 of 25

Lemma 2: Given a data object and a feature group g, 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔)is as follows:

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔) = {
0 𝑖𝑓 𝑑 ∈ 𝑔

𝑀𝐼𝑁{𝑑𝑖𝑠𝑡(𝑑, 𝛽)|∀𝛽 ∈ 𝑔} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

Proof: This lemma is self-evident, so the proof is omitted. Here, 𝛽 denotes the boundary point of

feature group. For 𝑔2, {𝑓1, 𝑓3} ∈ 𝛽, 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑2, 𝑔2) = 𝑀𝐼𝑁{𝑑𝑖𝑠𝑡(𝑑2, 𝑓1), 𝑑𝑖𝑠𝑡(𝑑2, 𝑓3)}.

We consider a directed road network and thus to determine 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝑔), it is necessary to

evaluate 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) and 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽), where, 𝛼𝛽⃗⃗⃗⃗ ⃗ and 𝛼𝛽 refer to directed and

undirected segments, respectively. To compute 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) , we consider the two cases

separately: (1) 𝑑 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗ and (2) 𝑑 ∉ 𝛼𝛽⃗⃗⃗⃗ ⃗. For 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽) we use the method proposed by Cho et

al. in [11].

Lemma 3: If 𝑑 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗, then there are following two cases:

(Case 3a): If a path from 𝛽 to 𝛼 exists, 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝑑, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝑑)

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝛼, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼)

Proof: Let us suppose that 𝛼 and β are the boundary points on the road segment that belongs to a

feature group and data object d is located between 𝛼𝛽⃗⃗⃗⃗ ⃗. As shown in Figure 4, there exists a point p

such that 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝑝)|∀𝑝 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗} . According to Figure 4, it is obvious

that 𝑑𝑖𝑠𝑡(𝑑, 𝑝) = 𝑙𝑒𝑛(𝑑, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝑝). From the equation above, we can observe that the

distance value will increase with the value of 𝑙𝑒𝑛(𝛼, 𝑝), so to obtain the maximum distance value, the

point p must be very close to d, and thus we can say that 𝑑 ≅ 𝑝. Therefore, we can rewrite the equation

above as 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝑑, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝑑) which is equal to 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) =

𝑙𝑒𝑛(𝛼, 𝛽) + 𝑑𝑖𝑠𝑡(𝛽, 𝛼).

(Case 3b): If no path exists from 𝛽 to 𝛼, 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑙𝑒𝑛(𝑑, 𝛽)

Proof: This lemma is self-evident, so the proof is omitted.

Lemma 4: If 𝑑 ∉ 𝛼𝛽⃗⃗⃗⃗ ⃗, then 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) is as follows:

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝛽), 𝑑𝑖𝑠𝑡(𝑑, 𝛽)}

Proof: According to the definition 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝑝)|∀𝑝 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗}. As shown in Figure 5,

it is obvious that we obtain the maximum distance from d to p when point p is located very close to 𝛽,

and thus we can say that 𝛽 ≅ 𝑝. Two paths exist from d to 𝛽 : 𝑑 → 𝛼 → 𝛽 and 𝑑 → 𝛽 , and thus

𝑑𝑖𝑠𝑡(𝑑, 𝛽) = 𝑑𝑖𝑠𝑡(𝑑, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝛽) or 𝑑𝑖𝑠𝑡(𝑑, 𝛽) = 𝑑𝑖𝑠𝑡(𝑑, 𝛽). Therefore, we can say that

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) = 𝑀𝐴𝑋{𝑑𝑖𝑠𝑡(𝑑, 𝛼) + 𝑙𝑒𝑛(𝛼, 𝛽), 𝑑𝑖𝑠𝑡(𝑑, 𝛽)}.

Table 4 summarizes the minimum and maximum distances along with the score for the 𝑑 ⨂𝑔 in

Figure 2.

Figure 4. Determination of 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝛼𝛽⃗⃗⃗⃗ ⃗) when 𝑑 ∈ 𝛼𝛽⃗⃗⃗⃗ ⃗.

Figure 5. Determination of maxdist(d,
→
αβ) when d ∈

→
αβ.

4.3. Mapping to Distance-Score Space

In this section, we formally define the search space of the top-k spatial preference queries by
defining a mapping of the data objects d and any feature group g to a distance-score space. Let d⊗ g
denote a pair comprising data object d ∈ D and a feature group g ∈ Gi, then d⊗ g is represented as
{[mindist(d, g), maxdist(d, g)] , s(g)}. Each d⊗ g pair is mapped to either a point or a line segment in
the distance-score space M, defined by the axes dist(d, g) and s(g), where dist(d, g) corresponds to the
distance between data object d and feature group g and s(g) corresponds to score of g.

Definition 2: (Mapping of D ⊗ Gi to M): The mapping of pairs d ⊗ g comprising a data object
d ∈ D and a feature group g ∈ Gi to the 2-dimensional space M (called distance-score space) is
D⊗ Gi = {d ⊗ g | d ∈ D, g ∈ Gi}.

In the following, we define the dominance relation which is the subset of pairs of M that comprise
the skyline set of M, denoted as S = SKY(M). The skyline set S is the set of pairs (d⊗ g) ∈ M which
are not dominated by any other pair d⊗ g′ ∈ M .

Definition 3: (Dominance M): Given two pairs (d⊗ g) ∈ M is said to dominate another pair
(d⊗ g′) ∈ M, denoted as (d⊗ g) M (d⊗ g′), if maxdist(d, g) ≤ mindist(d, g′) and s(g) > s(g′) or
if maxdist(d, g) < mindist(d, g′) and s(g) ≥ s(g′).

Let SKY(d⊗ Gi) be the set of all pairs that are not dominated by any other pair in d ⊗ Gi.
Figure 6 shows the mapping of D ⊗ Gi in Table 4 to the distance-score space M. Figure 6a shows

ISPRS Int. J. Geo-Inf. 2016, 5, 170 13 of 26

the mapping of d1 ⊗ Gi, Figure 6b shows the mapping of d2 ⊗ Gi and Figure 6c shows the
mapping of d3 ⊗Gi. The skyline sets of d1 ⊗ Gi, d2 ⊗ Gi and d3 ⊗ Gi are SKY(d1,Gi) = {d1 ⊗ g1},
SKY(d2,Gi) = {d2 ⊗ g2, d2 ⊗ g3} and SKY(d3,Gi) = {d3 ⊗ g4}, respectively. The pairs related to
different data objects (e.g., d1 ⊗ Gi and d2 ⊗ Gi) are definitely incomparable. Finally, the skyline set for
D⊗ Gi is the union of the skyline sets of all the data objects d ∈ D. Thus, Figure 6d shows the skyline
set, SKY(D⊗ Gi) = SKY(d1,Gi) ∪ SKY(d2,Gi) ∪ SKY(d3,Gi) = {d1 ⊗ g1, d2 ⊗ g2, d2 ⊗ g3, d3 ⊗ g4}.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 13 of 25

Proof: Let us assume that 𝑆𝐾𝑌(𝑑⨂𝐺𝑖) is not sufficient for obtaining the partial score 𝛾𝑖
𝜃(𝑑) of a

data object 𝑑 ∈ 𝐷. This means that there is a feature group 𝑔𝑏that contributes to 𝛾𝑖
𝜃(𝑑). Now if 𝜃 =

𝑟𝑛𝑔 or 𝜃 = 𝑛𝑛, then 𝛾𝑖
𝜃(𝑑) = 𝑠(𝑔𝑏), and if 𝜃 = 𝑖𝑛𝑓, then 𝛾𝑖

𝜃(𝑑) = 𝑠(𝑔𝑏) × 2−
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑,𝑔𝑏)

𝑟 . However, a

pair (𝑑⨂𝑔𝑏) ∉ 𝑆𝐾𝑌(𝑑⨂𝐺𝑖) such that there is another pair 𝑑⨂𝑔𝑎 ⊏ 𝑑⨂𝑔𝑏 and (𝑑⨂𝑔𝑎) ∈

𝑆𝐾𝑌(𝑑⨂𝐺𝑖), which is equivalent to either 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑎) ≤ 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑏) and s(𝑔𝑎) > s(𝑔𝑏) or if

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑎) < 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑏) and 𝑠(𝑔𝑎) ≥ 𝑠(𝑔𝑏). Hence, the partial score of d is 𝛾𝑖
𝜃(𝑑) = 𝑠(𝑔𝑎)

if 𝜃 = 𝑟𝑛𝑔 or 𝜃 = 𝑛𝑛 , and 𝛾𝑖
𝜃(𝑑) = 𝑠(𝑔𝑎) × 2−

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑,𝑔𝑎)

𝑟 if 𝜃 = 𝑖𝑛𝑓 . This contradicts our

assumption that 𝑔𝑏 contributes to 𝛾𝑖
𝜃(𝑑) . Therefore, 𝑆𝐾𝑌(𝑑⨂𝐺𝑖) is sufficient for obtaining the

component score of a data object 𝑑 ∈ 𝐷.

Figure 6. Mapping 𝐷⨂𝐺𝑖 to distance-score space. (a) 𝑑1⨂𝐺𝑖; (b) 𝑑2⨂𝐺𝑖; (c) 𝑑3⨂𝐺𝑖; (d) 𝑆𝐾𝑌(𝐷⨂𝐺𝑖).

(a) (b)

Figure 7. Mapping 𝐷⨂𝐺𝑖 to distance-score space. (a) 𝑆𝐾𝑌(𝐷⨂𝐺𝑖) ; (b) R-tree representation for

𝑆𝐾𝑌(𝐷⨂𝐺𝑖).

Figure 6. Mapping D⊗Gi to distance-score space. (a) d1⊗Gi; (b) d2⊗Gi; (c) d3⊗Gi; (d) SKY(D⊗ Gi).

Observe that in Figure 6a, d1 ⊗ g1 is mapped at 0.9 because s(g1) = 0.9. It should be noted that
s(g) can be changed according to the neighborhood conditions. As explained earlier, s(g1) = 0.9
because { f1, f4} ∈ g1 and s(f1) = 0.9. Now, if we consider range condition r = 2, the s(g1) 6= 0.9,
because dist(d1, f1) = 3, which does not satisfy the neighborhood condition. In this scenario, the s(g1)

is changed to 0.5 which is the score of f4. Thus, d1 ⊗ g1 is mapped at 0.5.
Figure 7a shows the mapping of SKY(D⊗ Gi) to M. Figure 7b, on the other hand, shows an R-tree

that indexes the four pairs in SKY(D⊗ Gi), assuming that node capacity of R-tree is set to 3. Therefore,
index node R2 encloses d1 ⊗ g1 and d2 ⊗ g2, whereas index node R3, encloses d3 ⊗ g4 and d2 ⊗ g3.
Finally, we present Lemma 5, which proves that SKY(d⊗ Gi) is sufficient for determining the partial
score of each data object d ∈ D. Before presenting Lemma 5, recall that each feature object f ∈ g is a
dominant feature object and not dominated by any other feature object f ′.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 14 of 26

ISPRS Int. J. Geo-Inf. 2016, 5, 170 13 of 25

Proof: Let us assume that 𝑆𝐾𝑌(𝑑⨂𝐺𝑖) is not sufficient for obtaining the partial score 𝛾𝑖
𝜃(𝑑) of a

data object 𝑑 ∈ 𝐷. This means that there is a feature group 𝑔𝑏that contributes to 𝛾𝑖
𝜃(𝑑). Now if 𝜃 =

𝑟𝑛𝑔 or 𝜃 = 𝑛𝑛, then 𝛾𝑖
𝜃(𝑑) = 𝑠(𝑔𝑏), and if 𝜃 = 𝑖𝑛𝑓, then 𝛾𝑖

𝜃(𝑑) = 𝑠(𝑔𝑏) × 2−
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑,𝑔𝑏)

𝑟 . However, a

pair (𝑑⨂𝑔𝑏) ∉ 𝑆𝐾𝑌(𝑑⨂𝐺𝑖) such that there is another pair 𝑑⨂𝑔𝑎 ⊏ 𝑑⨂𝑔𝑏 and (𝑑⨂𝑔𝑎) ∈

𝑆𝐾𝑌(𝑑⨂𝐺𝑖), which is equivalent to either 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑎) ≤ 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑏) and s(𝑔𝑎) > s(𝑔𝑏) or if

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑎) < 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑, 𝑔𝑏) and 𝑠(𝑔𝑎) ≥ 𝑠(𝑔𝑏). Hence, the partial score of d is 𝛾𝑖
𝜃(𝑑) = 𝑠(𝑔𝑎)

if 𝜃 = 𝑟𝑛𝑔 or 𝜃 = 𝑛𝑛 , and 𝛾𝑖
𝜃(𝑑) = 𝑠(𝑔𝑎) × 2−

𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑑,𝑔𝑎)

𝑟 if 𝜃 = 𝑖𝑛𝑓 . This contradicts our

assumption that 𝑔𝑏 contributes to 𝛾𝑖
𝜃(𝑑) . Therefore, 𝑆𝐾𝑌(𝑑⨂𝐺𝑖) is sufficient for obtaining the

component score of a data object 𝑑 ∈ 𝐷.

Figure 6. Mapping 𝐷⨂𝐺𝑖 to distance-score space. (a) 𝑑1⨂𝐺𝑖; (b) 𝑑2⨂𝐺𝑖; (c) 𝑑3⨂𝐺𝑖; (d) 𝑆𝐾𝑌(𝐷⨂𝐺𝑖).

(a) (b)

Figure 7. Mapping 𝐷⨂𝐺𝑖 to distance-score space. (a) 𝑆𝐾𝑌(𝐷⨂𝐺𝑖) ; (b) R-tree representation for

𝑆𝐾𝑌(𝐷⨂𝐺𝑖).
Figure 7. Mapping D ⊗ Gi to distance-score space. (a) SKY(D⊗ Gi); (b) R-tree representation for
SKY(D⊗ Gi).

Lemma 5: For any spatial preference query, SKY(d⊗ Gi) is sufficient for determining the partial score γθ
i (d)

of a data object d ∈ D.

Proof: Let us assume that SKY(d⊗ Gi) is not sufficient for obtaining the partial score γθ
i (d) of a data

object d ∈ D. This means that there is a feature group gb that contributes to γθ
i (d). Now if θ = rng

or θ = nn, then γθ
i (d) = s(gb), and if θ = in f , then γθ

i (d) = s(gb)× 2−
maxdist(d,gb)

r . However, a pair
(d ⊗ gb) /∈ SKY(d⊗ Gi) such that there is another pair d ⊗ gad ⊗ gb and (d ⊗ ga) ∈ SKY(d⊗ Gi),
which is equivalent to either maxdist(d, ga) ≤ mindist(d, gb) and s(ga) > s(gb) or if maxdist(d, ga) <

mindist(d, gb) and s(ga) ≥ s(gb). Hence, the partial score of d is γθ
i (d) = s(ga) if θ = rng or θ = nn,

and γθ
i (d) = s(ga)× 2−

maxdist(d,ga)
r if θ = in f . This contradicts our assumption that gb contributes to

γθ
i (d). Therefore, SKY(d⊗ Gi) is sufficient for obtaining the component score of a data object d ∈ D.

4.4. Limitations of Undirected Algorithms in Directed Road Networks

In contrast to undirected road networks, the network distance between two nodes is not
symmetrical in directed road networks, i.e., dist(ni, nj) 6= dist(nj, ni). Figure 8a shows an undirected
road network, where there are two data objects d1 and d2, and two feature objects f 1 and f 2. To simplify
the presentation, we consider a single feature dataset Fi = { f1, 0.6, f2, 0.8}.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 14 of 25

4.4. Limitations of Undirected Algorithms in Directed Road Networks

In contrast to undirected road networks, the network distance between two nodes is not

symmetrical in directed road networks, i.e., 𝑑𝑖𝑠𝑡(𝑛𝑖 , 𝑛𝑗) ≠ 𝑑𝑖𝑠𝑡(𝑛𝑗 , 𝑛𝑖). Figure 8a shows an undirected

road network, where there are two data objects d1 and d2, and two feature objects f1 and f2. To simplify

the presentation, we consider a single feature dataset 𝐹𝑖 = {〈𝑓1, 0.6〉, 〈𝑓2, 0.8〉}.

Let us now evaluate the scores of the data objects. Suppose that the neighborhood condition is

the range and value of the range constraint r = 3. The range score of d1 is 0.8 because 𝑠(𝑓2) = 0.8 and

𝑑𝑖𝑠𝑡(𝑑1, 𝑓2) ≤ 𝑟 . Similarly, the range score of d2 is 0.6 because 𝑠(𝑓1) = 0.6 and 𝑑𝑖𝑠𝑡(𝑑2, 𝑓1) ≤ 𝑟 .

Therefore, d1 is the top-1 result with 𝛾𝑟𝑛𝑔(𝑑1) = 0.8.

Now, assume the directed road network as shown in Figure 8b. In this case, the range score of

d1 is 0 because no feature object exists within distance r. However, the range score of d2 remains the

same because f1 still exists within distance r. Therefore, in the directed road network, d2 is the top-1

result with 𝛾𝑟𝑛𝑔(𝑑2) = 0.6 . This example clearly demonstrates that an algorithm based on an

undirected road network cannot be applied to directed road networks.

The research study closest to our present work was presented by Cho et al. [11]. They proposed

an algorithm called ALPS for processing preference queries in undirected road networks, where the

data objects in a road sequence are grouped to form a data segment in their approach. The motivation

behind grouping data objects is that data objects in a sequence are close to each other, so it is more

efficient to process them together rather than handling each data object separately. However, ALPS

fall short in answering preference queries in directed road networks.

Now, we present why ALPS cannot process preference queries in directed road networks.

Consider a directed road in Figure 9 where there are four data objects d1, d2, d3 and d4 and two feature

objects f1 and f2 which are denoted as triangles and rectangles, respectively. The data objects d1 and d2

lies in a same sequence are grouped and converted to data segment 𝑑1𝑑2
̅̅ ̅̅ ̅̅ and data objects d3 and d4

are converted to 𝑑3𝑑4
̅̅ ̅̅ ̅̅ . Observe that, grouping of 𝑑3𝑑4

̅̅ ̅̅ ̅̅ is not valid because there is no path that exists

to connect d3 to d4, as shown in Figure 9.

(a) (b)

Figure 8. Examples (a) undirected road network; (b) directed road network.

Figure 9. Example of ALPS in directed road network.

Another issue is indexing of data segments and feature object pairs in R-tree for directed road

networks. Let 𝑑𝑠𝑒𝑔⨂𝑓 denote a pair that consists of a data segment dseg and feature object f. To

index a pair in R-tree it is necessary to compute minimum and maximum distances between data

segment dseg and a feature object f. In Figure 9, as per ALPS computation 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑1𝑑2
̅̅ ̅̅ ̅̅ , 𝑓1) = 2

Figure 8. Examples (a) undirected road network; (b) directed road network.

Let us now evaluate the scores of the data objects. Suppose that the neighborhood condition
is the range and value of the range constraint r = 3. The range score of d1 is 0.8 because s(f2) = 0.8
and dist(d1, f2) ≤ r. Similarly, the range score of d2 is 0.6 because s(f1) = 0.6 and dist(d2, f1) ≤ r.
Therefore, d1 is the top-1 result with γrng(d1) = 0.8.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 15 of 26

Now, assume the directed road network as shown in Figure 8b. In this case, the range score of d1

is 0 because no feature object exists within distance r. However, the range score of d2 remains the same
because f 1 still exists within distance r. Therefore, in the directed road network, d2 is the top-1 result
with γrng(d2) = 0.6. This example clearly demonstrates that an algorithm based on an undirected road
network cannot be applied to directed road networks.

The research study closest to our present work was presented by Cho et al. [11]. They proposed
an algorithm called ALPS for processing preference queries in undirected road networks, where the
data objects in a road sequence are grouped to form a data segment in their approach. The motivation
behind grouping data objects is that data objects in a sequence are close to each other, so it is more
efficient to process them together rather than handling each data object separately. However, ALPS fall
short in answering preference queries in directed road networks.

Now, we present why ALPS cannot process preference queries in directed road networks.
Consider a directed road in Figure 9 where there are four data objects d1, d2, d3 and d4 and two feature
objects f 1 and f 2 which are denoted as triangles and rectangles, respectively. The data objects d1 and d2

lies in a same sequence are grouped and converted to data segment d1d2 and data objects d3 and d4 are
converted to d3d4. Observe that, grouping of d3d4 is not valid because there is no path that exists to
connect d3 to d4, as shown in Figure 9.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 14 of 25

4.4. Limitations of Undirected Algorithms in Directed Road Networks

In contrast to undirected road networks, the network distance between two nodes is not

symmetrical in directed road networks, i.e., 𝑑𝑖𝑠𝑡(𝑛𝑖 , 𝑛𝑗) ≠ 𝑑𝑖𝑠𝑡(𝑛𝑗 , 𝑛𝑖). Figure 8a shows an undirected

road network, where there are two data objects d1 and d2, and two feature objects f1 and f2. To simplify

the presentation, we consider a single feature dataset 𝐹𝑖 = {〈𝑓1, 0.6〉, 〈𝑓2, 0.8〉}.

Let us now evaluate the scores of the data objects. Suppose that the neighborhood condition is

the range and value of the range constraint r = 3. The range score of d1 is 0.8 because 𝑠(𝑓2) = 0.8 and

𝑑𝑖𝑠𝑡(𝑑1, 𝑓2) ≤ 𝑟 . Similarly, the range score of d2 is 0.6 because 𝑠(𝑓1) = 0.6 and 𝑑𝑖𝑠𝑡(𝑑2, 𝑓1) ≤ 𝑟 .

Therefore, d1 is the top-1 result with 𝛾𝑟𝑛𝑔(𝑑1) = 0.8.

Now, assume the directed road network as shown in Figure 8b. In this case, the range score of

d1 is 0 because no feature object exists within distance r. However, the range score of d2 remains the

same because f1 still exists within distance r. Therefore, in the directed road network, d2 is the top-1

result with 𝛾𝑟𝑛𝑔(𝑑2) = 0.6 . This example clearly demonstrates that an algorithm based on an

undirected road network cannot be applied to directed road networks.

The research study closest to our present work was presented by Cho et al. [11]. They proposed

an algorithm called ALPS for processing preference queries in undirected road networks, where the

data objects in a road sequence are grouped to form a data segment in their approach. The motivation

behind grouping data objects is that data objects in a sequence are close to each other, so it is more

efficient to process them together rather than handling each data object separately. However, ALPS

fall short in answering preference queries in directed road networks.

Now, we present why ALPS cannot process preference queries in directed road networks.

Consider a directed road in Figure 9 where there are four data objects d1, d2, d3 and d4 and two feature

objects f1 and f2 which are denoted as triangles and rectangles, respectively. The data objects d1 and d2

lies in a same sequence are grouped and converted to data segment 𝑑1𝑑2
̅̅ ̅̅ ̅̅ and data objects d3 and d4

are converted to 𝑑3𝑑4
̅̅ ̅̅ ̅̅ . Observe that, grouping of 𝑑3𝑑4

̅̅ ̅̅ ̅̅ is not valid because there is no path that exists

to connect d3 to d4, as shown in Figure 9.

(a) (b)

Figure 8. Examples (a) undirected road network; (b) directed road network.

Figure 9. Example of ALPS in directed road network.

Another issue is indexing of data segments and feature object pairs in R-tree for directed road

networks. Let 𝑑𝑠𝑒𝑔⨂𝑓 denote a pair that consists of a data segment dseg and feature object f. To

index a pair in R-tree it is necessary to compute minimum and maximum distances between data

segment dseg and a feature object f. In Figure 9, as per ALPS computation 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑑1𝑑2
̅̅ ̅̅ ̅̅ , 𝑓1) = 2

Figure 9. Example of ALPS in directed road network.

Another issue is indexing of data segments and feature object pairs in R-tree for directed road
networks. Let dseg ⊗ f denote a pair that consists of a data segment dseg and feature object f.
To index a pair in R-tree it is necessary to compute minimum and maximum distances between
data segment dseg and a feature object f. In Figure 9, as per ALPS computation mindist(d1d2, f1) = 2
and maxdist(d1d2, f1) = 4. Conversely, the actual maxdist(d1d2, f1) = 6. ALPS computes the minimum
and maximum distances between the data segment and the feature object based on the assumption
that dist(d1, d2) = dist(d2, d1), but this assumption is not applicable in a directed road network where
dist(d1, d2) 6= dist(d2, d1). Thus, ALPS generates an erroneous R-tree which leads to incorrect results.
The above example demonstrates that ALPS do not work for directed road networks. For ALPS,
to answer preference queries in a directed road network, the method for grouping and computing
mindist(dseg, f) and maxdist(dseg, f) should be modified to consider the particular orientation of each
road segment.

Comparing ALPS and TOPS conceptually, ALPS adopts the grouping of data objects into data
segments whereas TOPS groups the feature objects. ALPS first groups the data objects to data segments
and then prunes the dominated pairs which may allow the redundant pairs in the R-tree. However,
TOPS first prune the pairs to avoid any redundant pair and then group them based on pivot nodes.
Therefore, query processing time can be high in ALPS. Similarly, due to a higher number of redundant
pairs, ALPS might utilize more disk size for indexing of skyline sets. However, the index construction
time of ALPS can be better than TOPS because a lower number of skyline sets needs to be generated
due to grouping of data objects.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 16 of 26

5. Top-k Spatial Preference Query Algorithm

In this section, we present the Top-k Spatial Preference Query Algorithm (TOPS), for top-k spatial
preference queries. TOPS is appropriate for all three neighborhood conditions (range, nearest neighbor
and influence), but we discuss the range constraint to simplify the explanation. We then present
the necessary modifications for supporting nearest neighbor and influence scores. Our algorithm
processes the top-k preference query by sequential accessing the data objects in descending order of
their partial score. In order to achieve this, TOPS retrieves qualifying data objects, one by one during
query processing in descending order based on their partial scores, which can rapidly produce a set of
k top data objects with the highest scores.

Algorithm 1 computes the top-k data objects with the highest score by aggregating the partial
scores of data objects retrieved from each max heap Hi. For each skyline set, SKY(D⊗ Gi), we employ
a max heap Hi to traverse the data objects in descending order of their component score. Whenever the
NextHighestRangeScoreObject(Hi, r) method is called, the data object dhigh with the highest component
score γθ

i (dhigh) is popped from the max heap Hi. Let Dk be the current top-k set and Ri is the recent
component score seen in Hi. In addition, TOPS maintains a list of candidate data objects Dc, which
may become top-k data objects. Ri is set to γθ

i (dhigh) (line 6) and the lower bound score rθ
lb(dhigh) is

also updated using the aggregate function (line 7). If the number of data objects in Dk is less than k or
rθ

lb(dhigh) is greater than the k-th highest score of data object in Dk, then dhigh is added to Dk. If dhigh is
already in Dc then it will be removed from the Dc list. If the number of data objects in Dk = k + 1, the
data object with the lowest rθ

lb is moved from Dk to Dc (line 8–12). Then, t is set to the lowest rθ
lb of the

data objects in Dk (line 13). The upper bound score γθ
ub(d) is computed for each data object d ∈ Dc.

Algorithm 1: TOPS(Hi,k,r)

Input: Hi: a max heap with entries in descending order of partial range score, k: number of requested data
objects with highest score, r: range constraint
Output: Top-k data objects with highest score
1: Dc ← ∅ /* set of candidate data objects */
2: Dk ← ∅ /* current Top-k set */
3: Ri ← o /* Recent partial score seen in Hi
4: while ∃Hi such that Hi 6= ∅ do
5: dhigh, |γθ

i (dhigh)← NextHighestRangeScoreObject(Hi, r)
6: Ri ← γθ

i (dhigh) /* pop data object with highest score from Hi*/
7: rθ

lb(dhigh)← rθ
lb(dhigh) + γθ

i (dhigh)

8: If number of data objects in Dk < k or rθ
lb(dhigh) > t then

9: Dk ← Dk ∪ dhigh
10: if dhigh ∈ Dc then Dc ← Dc − dhigh
11: if number of data objects in Dk = k + 1

then
12: Dk ← Dk − dk+1 and Dc ← Dc ∪ dk+1
13: t← min{rθ

lb(d)|d ∈ Dk}
14: else
15: Dc ← Dc ∪ dhigh /* If dhigh /∈ Dk then add it in Dc*/
16: for each data object d ∈ Dc do
17: rθ

ub(d)← rθ
lb(d) + sum{Ri|i = 1,, m}

18: If rθ
ub(d) < t then

Dc ← Dc − d
19:

u← max{rθ
ub(d)|d ∈ Dc}

20:
If t ≥ u and number of data objects in Dk = k then

21:
break while statement

22: Return Dk

Finally, for each candidate object in Dc, the upper bound score rθ
ub(d) is computed by

γθ
ub(d)← γθ

lb(d) + sum{Ri|i = 1, . . . , m s.t γθ
i (d)has not been seen so f ar} . The maximum γθ

ub(d) is
then set to u (lines 16–19). If t ≥ u then no newly observed data object will end up in Dk. Therefore,

ISPRS Int. J. Geo-Inf. 2016, 5, 170 17 of 26

the algorithm terminates and returns Dk if t ≥ u and the number of data objects in Dk = k, or if all the
heaps are exhausted (lines 20–22).

In order to illustrate our proposed algorithm, let us consider the example presented in Figure 7,
where the R-tree is shown to index the skyline set SKY(D⊗ Gi) that have been constructed using
the example in Figure 2. We recall that hotels correspond to the data objects D = {d1, d2, d3} and
cafes correspond to the feature objects F = { f1, f2, . . . , f10}. Let us consider that the client requested
the following query of the top-k spatial preference query: “Find two hotels that are associated with
a high-grade cafe which are located within a distance of 4”. We recall that in this query, k = 2
and r = 4. After pruning and grouping the final generated skyline set is shown in Figure 7a,
SKY(D⊗ G) = {d1 ⊗ g1, d2 ⊗ g2, d2 ⊗ g3, d3 ⊗ g4}. The algorithm checks all the qualifying pairs
based on the neighborhood condition r = 4. Three pairs µ1, µ3 and µ4 are retrieved one at a time from
R, and pushed onto a max heap H. Thus, H = {µ1, µ3, µ4} = {d, γrng(d)|d1, 0.9d3, 0.8d2, 0.7}. Finally,
d1 and d3 are selected as the Top-2 query result because they have scores of 0.9 and 0.8, respectively.

Algorithm 2 returns the data objects d ∈ Hi one by one in descending order based on their partial
score γ

rng
i (d). Initially, the heap Hi contains the root node of an R-tree. Hi comprises records rc, which

can be either the data object or the R-tree node. Each time the record rc with the highest partial score is
popped from Hi. If rc indicates an R-tree node (line 3), then the algorithm verifies if the feature group
satisfies the neighborhood condition maxdist(d, g) ≤ r. If entry s satisfies the neighborhood condition,
it is added into Hi (line 4, 5). If it does not satisfy neighborhood condition, which means a feature
object f ∈ g exists such that dist(d, f) > r. Therefore, each feature object f ∈ g needs to be examined
to verify that dist(d, f) ≤ r (line 8). All the qualifying records are inserted to Heap Hi and the highest
score of each feature object is assigned as a group score s(g) (lines 9, 10). Finally, when data object d is
found, it is returned as dhigh with the highest partial score (lines 15, 17).

Algorithm 2 can be adapted with minor modifications to the nearest neighbor and influence
scores. For the nearest neighbor score, the pairs d⊗ f are pruned such that f is not the nearest neighbor
of d. Thus, during the construction of SKY(d⊗ Gi), the data objects are flagged to indicate whether
or not f is the nearest neighbor of d (bit 1 if f is the nearest neighbor, and a 0 bit otherwise). For the
influence score, the radius r is only used to compute the score and the score of feature object is reduced
in proportion to the distance to a data object. Therefore, the verification conditions from Algorithm 2
(lines 4 and 8) are removed from the algorithm for the influence score. Thus, for each feature object
f ∈ g, the component influence score is computed with respect to feature object and a corresponding
entry is added to Hi.

Algorithm 2: NextHighestRangeScore(Hi,r)

Input: Hi: a max heap with entries in descending order of partial range score, r: range constraint
Output: The next data object in Hi with highest partial score
1: record rc ← pop record f rom Hi
2: while rc /∈ data object do
3: for each record s ∈ child of rc do
4: if maxdist(d, g) ≤ r then
5: Push record s to Hi
6: else
7: for each feature object f ∈ gdo
8: if dist(d, f) ≤ r then
9: Push record s to Hi
10: compute s(g)
11: end if
12: end for
13: end if
14: end for
15: rc ← pop record f rom Hi
16: end while
17: return rc

ISPRS Int. J. Geo-Inf. 2016, 5, 170 18 of 26

Incremental Maintenance

In this section, we discuss the incremental maintenance of the skyline set during the insertion,
deletion and updating processes of the data and feature objects. We use the adaptation of the
branch-and-bound skyline (BBS) the dynamic skyline algorithm for incremental maintenance of
the skyline set. First, we update DP(D, Fi) which is retrieved during the pruning phase and the
Skyline set SKY(D⊗ Gi) is then updated based on the updated DP(D, Fi) set. Once the dominant
set is updated, the update of group and SKY(D⊗ Gi) is simple and straight forward. Insertions and
deletions of data objects d ∈ D are fairly simple and cost-effective. When a new data object dnew is
inserted into D, all of the dominant pairs dnew ⊗ f are added to the DP(d, Fi) set and the feature objects
with the same pivot node form a feature group gnew. Next, the pairs (dnew ⊗ gnew) are inserted in
skyline set SKY(D ⊗ Gi). If a data object ddeleted is deleted, then the pairs (ddeleted ⊗ Gi) are deleted
from the skyline set SKY(D⊗ Gi) and all of the pairs ddeleted ⊗ f are deleted from the DP(d, Fi) set.
Updates to the spatial location of a data object d are processed as a deletion followed by an insertion.

Next, we discuss the insertion, deletion and update processes of feature objects. The scores of
feature objects are usually updated more frequently compared with the spatial location. Therefore,
the most frequent maintenance operation is updating the score of a feature object. Updating the
score of a feature object f ∈ Fi can potentially affect the score of a group g ∈ Gi which may affect
the materialized skyline set SKY(d⊗ Gi). However, the updating cost is not very high due to the
dominance relationship. Let us assume that the score of a feature object fupdated has been updated. As a
consequence, the following two cases may occur: (1) the dominant set is still valid, (2) the dominant
set is no longer valid. In the first case, if the DP(d, Fi) set is valid, this means that the materialized
skyline sets are also valid so there is no need for maintenance and the score of fupdated is simply
updated. If fupdated has the highest score in the group, then the score of the group is also updated. In the
second case, we check the dominance relationship. Only the score of the feature object is updated, so
the maintenance algorithm simply performs a static dominance relation to update the DP(d, Fi) set.
First, we check whether f s fupdated, and the pairs d⊗ fupdated are then removed from the DP(d, Fi) set.
Next, we check whether any feature object is dominated by fupdated. If fupdated s f ′, then the pairs d⊗ f ′

are removed from the DP(d, Fi) sets. Finally, the information regarding the groups (i.e., max/min
distance and s(g)) is modified based on updated DP(D, Fi) set and SKY(D⊗ Gi) is generated.

Let us consider the addition of a new feature object fnew to the feature object set Fi. First, we need
to execute the dominance check. If a pair d⊗ fnew is dominated by any other pair in DP(d, Fi) set, this
does not affect the dominant set, so it is simply discarded. However, if it is not dominated by any other
pair then the maintenance algorithm will issue a query to retrieve all of the pairs that are dominated
by d⊗ fnew. If no pair is retrieved then d⊗ fnew is simply added to the DP(d, Fi) set, otherwise, the
maintenance algorithm will remove all of the existing pairs from DP(d, Fi) that are dominated by
d⊗ fnew. Similarly, the information regarding groups is changed based on the updated DP(D, Fi) set
and SKY(D⊗ Gi) is generated.

Next, we explain the maintenance of the skyline set after the deletion of feature objects. First, we
need to check whether d⊗ fdeleted ∈ DP(d, Fi). If d⊗ fdeleted /∈ DP(d, Fi), then no further processing is
required; otherwise, the maintenance algorithm is called. For incremental maintenance, we need to
determine the set of pairs d⊗ f that are exclusively dominated by d⊗ fdeleted. If such pairs exist, then
the dominant pairs are computed for these pairs and added to DP(d, Fi) set; otherwise, d⊗ fdeleted
is simply removed from the DP(d, Fi) set. Finally, as mentioned earlier, the information regarding
groups is modified based on the updated DP(D, Fi) set and SKY(D⊗ Gi) is generated.

Finally, we analyze the time complexities of adding, deleting, and updating a data object and a
feature object. As mentioned earlier, incremental maintenance is performed on d⊗ f instead of d⊗ g;
therefore, we analyze the time complexity in terms of updating and maintaining DP(D, Fi). The time
complexity of adding a data object da is O(m|DP(da, Fi)||da ⊗ Fi|+ m|DP(da, Fi)|log|DP(D, Fi)|),
where m is the number of feature datasets. Specifically, the dominant set of da is generated for
each feature dataset m which has a time complexity of O(|DP(da, Fi)||da ⊗ Fi|). Then, the dominant

ISPRS Int. J. Geo-Inf. 2016, 5, 170 19 of 26

set DP(D, Fi) is updated which has a time complexity of O(|DP(da, Fi)|log|DP(D, Fi)|). The time
complexity of deleting a data object dd is m|DP(da, Fi)|log|DP(D, Fi)|. Thus, the time complexity
of updating a data object du is O(m|DP(du, Fi)||du ⊗ Fi|+ m|DP(du, Fi)|log|DP(D, Fi)|) because
updating a data object du can be handled by a deletion of data object du followed by an insertion.

The time complexity of adding a feature object fa is O|DP(D, Fi)|. This is because for each
pair d ⊗ fdominant ∈ DP(D, Fi)), the dominance check is performed to verify whether d ⊗ fa

dominates d⊗ fdominant or whether d⊗ fa is dominated by d⊗ fdominant. Next, we analyze the time
complexity of deleting a feature object fd. Let d ⊗ Fd

i be the set of d ⊗ f pairs that are exclusively
dominated by d ⊗ fd ∈ DP(D, Fi)). For each data object d ∈ D, the exclusive dominance region
for d ⊗ fd is determined, which has the time complexity of O(|DP(d, Fi)|). Then, the dominant
set for the pairs that are exclusively dominated by d ⊗ fd is determined which has the time
complexity of O(|DP(d, Fd

i)||d⊗ Fd
i |). Thus, the time complexity of deleting a feature object fd is

O(|D||DP(d, Fi)|+ |DP(d, Fd
i)||d⊗ Fd

i |+ |DP(d, Fd
i)|log|DP(D, Fi)|). Lastly, the time complexity of

updating a feature object fu is O(|D||DP(d, Fi)|+ |DP(d, Fu
i)||d⊗ Fu

i |+ |DP(d, Fu
i)|log|DP(D, Fi)|)

because the update (i.e., location or score update) of a feature object fu can be handled as a deletion
followed by an insertion.

6. Performance Evaluation

In this section, we describe the performance evaluation of our proposed algorithm TOPS based
on simulation experiments. In Section 6.1, we describe our experimental settings. Section 6.2 presents
the experimental results for query processing time. Section 6.3 studies the performance evaluation of
materialization and maintenance costs. Finally, in Section 6.4, we present the performance comparison
of TOPS and ALPS+.

6.1. Experimental Settings

All of our experiments are performed using a real road network [30] that comprises the main
roads of North America, with 175,812 nodes and 179,178 edges. According to the American Hotel
and Lodging Association [31], at the end of year 2014, there were 53,432 hotels in the United States,
which corresponds to the data objects in this study. All of the algorithms were implemented in Java
and run on a desktop PC with a Pentium 2.8 GHz processor and 4 GB memory. The datasets were
indexed by R-trees with a page size of 4 KB. Our results comprised the average values obtained from
20 experiments. In all of the experiments, we measured the total query processing time with respect to
various parameters, as shown in Table 5. In each experiment, we only varied one parameter whereas
the others remained fixed at the bold default values.

Table 5. Experimental parameter settings.

Parameter Range

Number of data objects (ND) 10, 20, 30, 40, 50 (k)
Number of feature objects in Fi (NF) 20, 40, 60, 80, 100 (k)

Number of feature datasets (m) 1, 2, 3, 4, 5
Spatial constraint (θ) range, nearest neighbor, influence

Query range (r) 2, 4, 6, 8, 10 (km)
Number of data objects to be retrieved (k) 5, 10, 15, 20, 25

We implement and evaluate two versions of TOPS: TOPSgr and TOPSin. TOPSgr groups the feature
objects and then generates and stores the skyline set SKY(D⊗ Gi), whereas, TOPSin does not group
the feature objects, but instead it generates and stores the skyline set for each data and feature object
pair SKY(D⊗ Fi). We compare both versions of TOPS with the Period approach, which computes
the score for every data object by using the incremental network expansion (INE) and range network
expansion (RNE) algorithms [32] to compute the nearest neighbor and range scores, respectively.
The INE algorithm finds k nearest neighbors in road networks using Dijkstra’s algorithm [33]. The RNE

ISPRS Int. J. Geo-Inf. 2016, 5, 170 20 of 26

algorithm is similar to the INE algorithm, except that it explores the network within a distance r from
a query point. We slightly modified the RNE algorithm in order to compute the influence scores of
data objects. The Period method does not use any materialization scheme.

6.2. Experimental Results for Query Processing Time

Figure 10 shows the query processing times for TOPSgr, TOPSin and the Period method for
the range condition. Figure 10a shows the query processing time as a function of the number k of
requested data objects with the highest score. The query processing time of the period method incurs a
constant query processing time regardless of the value of k because it explores all the feature objects
within the query range r of the data object. However, the query processing time of TOPSgr and
TOPSin increases slightly with the value of k. Nevertheless, TOPSgr and TOPSin outperform period
algorithm. Figure 10b shows the query processing time as a function of the number m of feature
datasets. The query processing time of all the algorithms increases with the value of m, but the query
processing time of the period method increases more rapidly with the value of m than TOPSgr and
TOPSin. This is mainly because TOPSgr and TOPSin use the materialized skyline sets, thereby reducing
the computational overheads and increasing the performance efficiency.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 20 of 25

all the three algorithms are sensitive towards the number of data objects, but TOPS𝑔𝑟 significantly

outperforms the Period, while TOPS𝑖𝑛 is comparable to TOPS𝑔𝑟 . Figure 11d compares the query

processing time of Period, TOPS𝑔𝑟 and TOPS𝑖𝑛 with different values of NF, which indicates that

both TOPS𝑔𝑟 and TOPS𝑖𝑛 scale better than Period.

(a) (b) (c)

(d) (e)

Figure 10. Comparison of the query processing time for 𝜃 = 𝑟𝑛𝑔. (a) Effect of k; (b) Effect of m; (c)

Effect of r; (d) Effect of 𝑁𝐷; (e) Effect of 𝑁𝐹.

(a) (b)

(c) (d)

Figure 11. Comparison of the query processing time for 𝜃 = 𝑛𝑛. (a) Effect of k; (b) Effect of m; (c)

Effect of 𝑁𝐷; (d) Effect of 𝑁𝐹.

Figure 10. Comparison of the query processing time for θ = rng. (a) Effect of k; (b) Effect of m; (c) Effect
of r; (d) Effect of ND; (e) Effect of NF.

Figure 10c shows the comparison of query processing time of Period, TOPSgr and TOPSin with
different values of r. Experimental results reveal that the computational time increases under all of the
algorithms as the range r increases. This is mainly because the search space increases in proportion to r.
Figure 10d,e demonstrate the performance of Period, TOPSgr and TOPSin with different values of ND

and NF, respectively, which indicate that the query processing time of Period increases with the value
of ND and NF because the Period method investigates all of the feature objects within the query range
of each data object. TOPSgr and TOPSin exhibited similar trends because both algorithms explore the
pairs sequentially in the skyline sets in descending order based on the range score. However, TOPSgr

scale better than TOPSin due to grouping, which allows fewer pairs to investigate. It should be noted
that according to Figure 10e, increasing NF has little impact on the performance of TOPSgr and TOPSin

ISPRS Int. J. Geo-Inf. 2016, 5, 170 21 of 26

because both TOPSgr and TOPSin materializes the pairs that are dominant, and thus the number of
pairs are not affected significantly by increasing NF.

Figure 11 shows the query processing time for TOPSgr, TOPSin and the Period method for the
nearest neighbor condition. Figure 11a illustrates the effect of various values of k on the query
processing time by all the algorithms, which shows that both TOPSgr and TOPSin clearly outperforms
the Period method, although the query processing time of Period is stable regardless of the k value.
This is mainly because the Period method continues network expansion until the closest feature
object is found for each data object. Figure 11b shows the query processing time as a function of
the m value. The query processing times increases rapidly for all of the methods with the m value.
However, TOPSgr and TOPSin perform better than Period in all cases. Figure 11c shows the effect of
the number of data objects on the query processing time of Period, TOPSgr and TOPSin. Observe that
all the three algorithms are sensitive towards the number of data objects, but TOPSgr significantly
outperforms the Period, while TOPSin is comparable to TOPSgr. Figure 11d compares the query
processing time of Period, TOPSgr and TOPSin with different values of NF, which indicates that both
TOPSgr and TOPSinscale better than Period.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 20 of 25

all the three algorithms are sensitive towards the number of data objects, but TOPS𝑔𝑟 significantly

outperforms the Period, while TOPS𝑖𝑛 is comparable to TOPS𝑔𝑟 . Figure 11d compares the query

processing time of Period, TOPS𝑔𝑟 and TOPS𝑖𝑛 with different values of NF, which indicates that

both TOPS𝑔𝑟 and TOPS𝑖𝑛 scale better than Period.

(a) (b) (c)

(d) (e)

Figure 10. Comparison of the query processing time for 𝜃 = 𝑟𝑛𝑔. (a) Effect of k; (b) Effect of m; (c)

Effect of r; (d) Effect of 𝑁𝐷; (e) Effect of 𝑁𝐹.

(a) (b)

(c) (d)

Figure 11. Comparison of the query processing time for 𝜃 = 𝑛𝑛. (a) Effect of k; (b) Effect of m; (c)

Effect of 𝑁𝐷; (d) Effect of 𝑁𝐹.
Figure 11. Comparison of the query processing time for θ = nn. (a) Effect of k; (b) Effect of m; (c) Effect
of ND; (d) Effect of NF.

Figure 12 shows the query processing times for TOPSgr, TOPSinand the Period method for the
influence condition. Figure 12a illustrates the query processing time as a function of the value of
k. According to Figure 11a, TOPSgr and TOPSin clearly outperforms Period regardless of the value
of k. As shown in Figure 12b, we varied the number of feature sets m, and the experimental results
demonstrates that the query processing times increases for all three methods as the value of m
increases. TOPSgr clearly outperforms TOPSin in each case. Figure 12c shows the effect of r on the
query processing time. Notice that the query processing times of all three algorithms are sensitive to
the increase in the range r, because the search space increased. In Figure 12d,e, we illustrate the effects
on the query processing time by varying ND and NF, respectively, which indicate that TOPSgr and

ISPRS Int. J. Geo-Inf. 2016, 5, 170 22 of 26

TOPSin are always faster than Period, irrespective of the values of ND and NF because both algorithms
employ materialized skyline sets.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 21 of 25

Figure 12 shows the query processing times for TOPS𝑔𝑟 , TOPS𝑖𝑛 and the Period method for the

influence condition. Figure 12a illustrates the query processing time as a function of the value of k.

According to Figure 11a, TOPS𝑔𝑟 and TOPS𝑖𝑛 clearly outperforms Period regardless of the value of

k. As shown in Figure 12b, we varied the number of feature sets m, and the experimental results

demonstrates that the query processing times increases for all three methods as the value of m

increases. TOPS𝑔𝑟 clearly outperforms TOPS𝑖𝑛 in each case. Figure 12c shows the effect of r on the

query processing time. Notice that the query processing times of all three algorithms are sensitive to

the increase in the range r, because the search space increased. In Figure 12d,e, we illustrate the effects

on the query processing time by varying ND and NF, respectively, which indicate that TOPS𝑔𝑟 and

TOPS𝑖𝑛 are always faster than Period, irrespective of the values of ND and NF because both algorithms

employ materialized skyline sets.

(a) (b) (c)

(d) (e)

Figure 12. Comparison of the query processing time for 𝜃 = 𝑖𝑛𝑓. (a) Effect of k; (b) Effect of m; (c)

Effect of r; (d) Effect of 𝑁𝐷; (e) Effect of 𝑁𝐹.

6.3. Experimental Results for Materialization and Incremental Maintenance Costs

In this section, we only present a performance comparison of 𝑇𝑂𝑃𝑆𝑔𝑟 and 𝑇𝑂𝑃𝑆𝑖𝑛 because the

baseline method does not use any materialization and incremental maintenance scheme. Figure 13

shows an index construction time for TOPS𝑔𝑟 and TOPS𝑖𝑛 for various cardinalities of data and

feature objects. The index construction time of both methods increased with the values of 𝑁D and

𝑁F. This is mainly because the number of pairs to be indexed increases with 𝑁D and 𝑁F. However,

due to the grouping technique TOPS𝑔𝑟 performs better for all cases.

In Figure 14, we study the effect of number of data objects and feature objects on the index size

of TOPS𝑔𝑟 and TOPS𝑖𝑛. As shown in Figure 14a,b, the index size increased by increasing number of

data and feature objects, respectively. However, TOPS𝑔𝑟 consumed much less space as compared to

TOPS𝑖𝑛 because of the grouping technique which reduces the number of pairs to index.

Figure 12. Comparison of the query processing time for θ = in f . (a) Effect of k; (b) Effect of m; (c) Effect
of r; (d) Effect of ND; (e) Effect of NF.

6.3. Experimental Results for Materialization and Incremental Maintenance Costs

In this section, we only present a performance comparison of TOPSgr and TOPSin because the
baseline method does not use any materialization and incremental maintenance scheme. Figure 13
shows an index construction time for TOPSgr and TOPSin for various cardinalities of data and feature
objects. The index construction time of both methods increased with the values of ND and NF. This is
mainly because the number of pairs to be indexed increases with ND and NF. However, due to the
grouping technique TOPSgr performs better for all cases.ISPRS Int. J. Geo-Inf. 2016, 5, 170 22 of 25

(a) (b)

Figure 13. Index construction time. (a) Effect of 𝑁𝐷; (b) Effect of 𝑁𝐹.

(a) (b)

Figure 14. Index size. (a) Effect of 𝑁𝐷; (b) Effect of 𝑁𝐹.

Figure 15 shows comparisons of the average elapsed times for inserting a data object and

deleting a feature object. In order to measure these times, both insertion of data objects and deletion

of feature objects have been conducted 500 times, during which all other parameters remain the same.

As shown in Figure 15, the maintenance time for TOPS𝑔𝑟 is slightly longer than TOPS𝑖𝑛 because, as

mentioned in Section 5.1, first 𝐷𝑃(𝐷, 𝐹𝑖) is updated and then 𝑆𝐾𝑌(𝐷⨂𝐺𝑖) is updated accordingly.

Experimental results in Figure 15a depict that insertion time for a data object is not significantly

affected by the number of data objects. This is because the leading factor for insertion time is

generation of a dominant pair of new data objects which are the same regardless of the number of

data objects. The only factor that causes the slight increase in insertion time is the update of the

materialized dominant set which increases with the value of 𝑁𝐷. Figure 15b shows that deletions of

feature objects are more expensive than insertions of data objects and the average deletion time of a

feature object is sensitive to the number of feature objects. This is mainly because the number of pairs

that are exclusively dominated by deleted feature object pairs increases with 𝑁𝐹 . Thus, the

dominance sets for more new pairs are determined resulting in an increase in time.

6.4. Comparison of TOPS and ALPS+

In this section, we present a performance comparison of TOPS and ALPS+. Note that in this

section TOPS𝑔𝑟 is referred as TOPS. As discussed earlier ALPS is originally designed for processing

preference queries in undirected road networks. To make a fair comparison, we modified ALPS to

process top-k spatial preference queries in directed road networks which we call ALPS+. Specifically,

we perform two major modifications; firstly, we assume that only data objects that resides in a

bidirectional adjacent edges can be grouped together to create a data segment, and, secondly, we

modified the technique for computing distance between data segments and feature objects.

Figure 13. Index construction time. (a) Effect of ND; (b) Effect of NF.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 23 of 26

In Figure 14, we study the effect of number of data objects and feature objects on the index size of
TOPSgr and TOPSin. As shown in Figure 14a,b, the index size increased by increasing number of data
and feature objects, respectively. However, TOPSgr consumed much less space as compared to TOPSin
because of the grouping technique which reduces the number of pairs to index.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 22 of 25

(a) (b)

Figure 13. Index construction time. (a) Effect of 𝑁𝐷; (b) Effect of 𝑁𝐹.

(a) (b)

Figure 14. Index size. (a) Effect of 𝑁𝐷; (b) Effect of 𝑁𝐹.

Figure 15 shows comparisons of the average elapsed times for inserting a data object and

deleting a feature object. In order to measure these times, both insertion of data objects and deletion

of feature objects have been conducted 500 times, during which all other parameters remain the same.

As shown in Figure 15, the maintenance time for TOPS𝑔𝑟 is slightly longer than TOPS𝑖𝑛 because, as

mentioned in Section 5.1, first 𝐷𝑃(𝐷, 𝐹𝑖) is updated and then 𝑆𝐾𝑌(𝐷⨂𝐺𝑖) is updated accordingly.

Experimental results in Figure 15a depict that insertion time for a data object is not significantly

affected by the number of data objects. This is because the leading factor for insertion time is

generation of a dominant pair of new data objects which are the same regardless of the number of

data objects. The only factor that causes the slight increase in insertion time is the update of the

materialized dominant set which increases with the value of 𝑁𝐷. Figure 15b shows that deletions of

feature objects are more expensive than insertions of data objects and the average deletion time of a

feature object is sensitive to the number of feature objects. This is mainly because the number of pairs

that are exclusively dominated by deleted feature object pairs increases with 𝑁𝐹 . Thus, the

dominance sets for more new pairs are determined resulting in an increase in time.

6.4. Comparison of TOPS and ALPS+

In this section, we present a performance comparison of TOPS and ALPS+. Note that in this

section TOPS𝑔𝑟 is referred as TOPS. As discussed earlier ALPS is originally designed for processing

preference queries in undirected road networks. To make a fair comparison, we modified ALPS to

process top-k spatial preference queries in directed road networks which we call ALPS+. Specifically,

we perform two major modifications; firstly, we assume that only data objects that resides in a

bidirectional adjacent edges can be grouped together to create a data segment, and, secondly, we

modified the technique for computing distance between data segments and feature objects.

Figure 14. Index size. (a) Effect of ND; (b) Effect of NF.

Figure 15 shows comparisons of the average elapsed times for inserting a data object and deleting
a feature object. In order to measure these times, both insertion of data objects and deletion of feature
objects have been conducted 500 times, during which all other parameters remain the same. As shown
in Figure 15, the maintenance time for TOPSgr is slightly longer than TOPSin because, as mentioned
in Section 5, first DP(D, Fi) is updated and then SKY(D⊗ Gi) is updated accordingly. Experimental
results in Figure 15a depict that insertion time for a data object is not significantly affected by the
number of data objects. This is because the leading factor for insertion time is generation of a dominant
pair of new data objects which are the same regardless of the number of data objects. The only factor
that causes the slight increase in insertion time is the update of the materialized dominant set which
increases with the value of ND. Figure 15b shows that deletions of feature objects are more expensive
than insertions of data objects and the average deletion time of a feature object is sensitive to the
number of feature objects. This is mainly because the number of pairs that are exclusively dominated
by deleted feature object pairs increases with NF. Thus, the dominance sets for more new pairs are
determined resulting in an increase in time.ISPRS Int. J. Geo-Inf. 2016, 5, 170 23 of 25

(a) (b)

Figure 15. Incremental maintenance cost. (a) Effect of 𝑁𝐷 on insertion time of data object; (b) Effect of

𝑁𝐹 on deletion time of feature object.

Figure 16 shows the performance of query processing times of TOPS and ALPS+ for the range

condition. Figure 16a studies the effect of k on query processing time of TOPS and ALPS+ whereas

Figure 16b shows the effect of r on performance of both algorithms. The experimental results reveal

that the query processing time of both methods increases with the value of k and r. However, TOPS

clearly outperforms ALPS+ in each case because the number of data and feature objects pairs in

ALPS+ is higher than TOPS. The main reason is that ALPS+ first groups the data objects then prunes

the pairs based on the dominance relation which may include the redundant pairs. Whereas, our

proposed method first prunes the dominated pairs and then groups them to remove any redundant

pairs.

(a) (b)

Figure 16. Comparison of TOPS and 𝐴𝐿𝑃𝑆+ for 𝜃 = 𝑟𝑛𝑔. (a) Effect of k on query processing time; (b)

Effect r on query processing time.

7. Conclusions

In this paper, we studied top-k spatial preference queries in directed road networks. We

proposed a new approach called TOPS to enhance the performance of top-k spatial preference queries

in directed road networks. Our approach is based on the pruning and grouping of feature objects,

thereby minimizing the number of subsets of pairs required to rank the data objects. Skyline pairs

that are not dominated by other pairs are mapped onto the distance-score space, and a skyline set is

then generated and indexed in an R-tree. To achieve this, we presented mathematical formulae for

determining the minimum and maximum distances between a data object and a feature group.

Figure 15. Incremental maintenance cost. (a) Effect of ND on insertion time of data object; (b) Effect of
NF on deletion time of feature object.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 24 of 26

6.4. Comparison of TOPS and ALPS+

In this section, we present a performance comparison of TOPS and ALPS+. Note that in this section
TOPSgr is referred as TOPS. As discussed earlier ALPS is originally designed for processing preference
queries in undirected road networks. To make a fair comparison, we modified ALPS to process top-k
spatial preference queries in directed road networks which we call ALPS+. Specifically, we perform two
major modifications; firstly, we assume that only data objects that resides in a bidirectional adjacent
edges can be grouped together to create a data segment, and, secondly, we modified the technique for
computing distance between data segments and feature objects.

Figure 16 shows the performance of query processing times of TOPS and ALPS+ for the range
condition. Figure 16a studies the effect of k on query processing time of TOPS and ALPS+ whereas
Figure 16b shows the effect of r on performance of both algorithms. The experimental results reveal
that the query processing time of both methods increases with the value of k and r. However, TOPS
clearly outperforms ALPS+ in each case because the number of data and feature objects pairs in ALPS+

is higher than TOPS. The main reason is that ALPS+ first groups the data objects then prunes the pairs
based on the dominance relation which may include the redundant pairs. Whereas, our proposed
method first prunes the dominated pairs and then groups them to remove any redundant pairs.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 23 of 25

(a) (b)

Figure 15. Incremental maintenance cost. (a) Effect of 𝑁𝐷 on insertion time of data object; (b) Effect of

𝑁𝐹 on deletion time of feature object.

Figure 16 shows the performance of query processing times of TOPS and ALPS+ for the range

condition. Figure 16a studies the effect of k on query processing time of TOPS and ALPS+ whereas

Figure 16b shows the effect of r on performance of both algorithms. The experimental results reveal

that the query processing time of both methods increases with the value of k and r. However, TOPS

clearly outperforms ALPS+ in each case because the number of data and feature objects pairs in

ALPS+ is higher than TOPS. The main reason is that ALPS+ first groups the data objects then prunes

the pairs based on the dominance relation which may include the redundant pairs. Whereas, our

proposed method first prunes the dominated pairs and then groups them to remove any redundant

pairs.

(a) (b)

Figure 16. Comparison of TOPS and 𝐴𝐿𝑃𝑆+ for 𝜃 = 𝑟𝑛𝑔. (a) Effect of k on query processing time; (b)

Effect r on query processing time.

7. Conclusions

In this paper, we studied top-k spatial preference queries in directed road networks. We

proposed a new approach called TOPS to enhance the performance of top-k spatial preference queries

in directed road networks. Our approach is based on the pruning and grouping of feature objects,

thereby minimizing the number of subsets of pairs required to rank the data objects. Skyline pairs

that are not dominated by other pairs are mapped onto the distance-score space, and a skyline set is

then generated and indexed in an R-tree. To achieve this, we presented mathematical formulae for

determining the minimum and maximum distances between a data object and a feature group.

Figure 16. Comparison of TOPS and ALPS+ for θ = rng. (a) Effect of k on query processing time; (b)
Effect r on query processing time.

7. Conclusions

In this paper, we studied top-k spatial preference queries in directed road networks. We proposed
a new approach called TOPS to enhance the performance of top-k spatial preference queries in directed
road networks. Our approach is based on the pruning and grouping of feature objects, thereby
minimizing the number of subsets of pairs required to rank the data objects. Skyline pairs that are not
dominated by other pairs are mapped onto the distance-score space, and a skyline set is then generated
and indexed in an R-tree. To achieve this, we presented mathematical formulae for determining
the minimum and maximum distances between a data object and a feature group. Furthermore,
we proposed an efficient algorithm for processing top-k spatial preference queries while ensuring
materialized information is updated.

For experimental evaluation, we implemented two versions of TOPS: TOPSgr and TOPSin and
compared them with the Period approach. To be precise, TOPSgr uses materialized data and feature
group pairs whereas TOPSin uses the materialized data and feature object sets. Based on our
experimental findings, both TOPSgr and TOPSin significantly outperform the Period approach in
terms of query processing time for various parameters. However, both TOPSgr and TOPSin are
comparable in terms of query processing time; but TOPSgr is superior in terms of materialization costs.

ISPRS Int. J. Geo-Inf. 2016, 5, 170 25 of 26

Acknowledgments: We thank anonymous reviewers for their valuable comments and suggestions.
Muhammad Attique, Rize Jin and Tae-Sun Chung were supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2A10012956 and
NRF-2012R1A1A2043422). Hyung-Ju Cho was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIP) (No. NRF-2016R1A2B4009793). Finally, this work was partially
supported by the Ajou University research fund.

Author Contributions: All authors significantly contributed to the manuscript. Muhammad Attique initiated
the idea, implemented the experiments and wrote the manuscript. Muhammad Attique and Hyung-Ju Cho
designed the solution and experiments. Hyung-Ju Cho critically reviewed the paper and revised the manuscript.
Tae-Sun Chung and Rize Jin reviewed the manuscript and supervised the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bao, J.; Chow, C.; Mokbel, M.; Ku, W. Efficient evaluation of k-range nearest neighbor queries in road
networks. In Proceedings of the Eleventh International Conference on Mobile Data Management (MDM),
Kansas City, MO, USA, 23–26 May 2010; pp. 115–124.

2. Cho, H.-J.; Ryu, K.-Y.; Chung, T.-S. An efficient algorithm for computing safe exit points of moving range
queries in directed road networks. Inf. Syst. 2014, 41, 1–19. [CrossRef]

3. Cheema, M.; Lin, X.; Zhang, Y.; Zhang, W.; Li, X. Continuous reverse k nearest neighbors queries in Euclidean
space and in spatial networks. VLDB J. 2012, 21, 69–95. [CrossRef]

4. Attique, M.; Hailu, Y.; Gudeta, S.; Cho, H.-J.; Chung, T.-S. A safe exit approach for continuous monitoring of
reverse k-nearest neighbors in road networks. Int. Arab J. Inf. Technol. 2015, 12, 540–549.

5. Wang, H.; Zimmermann, R. Processing of continuous location-based range queries on moving objects in
road networks. IEEE Trans. Knowl. Data Eng. 2011, 23, 1065–1078. [CrossRef]

6. Ilyas, I.; Beskales, G.; Soliman, M. A survey of Top-k query processing techniques in relational database
systems. ACM Comput. Surv. 2008, 40. [CrossRef]

7. Mamoulis, N.; Yiu, M.; Cheng, K.; Cheung, D. Efficient Top-k aggregation of ranked inputs. ACM Trans.
Database Syst. 2007, 32. [CrossRef]

8. Yiu, M.; Lu, H.; Mamoulis, N.; Vaitis, M. Ranking spatial data by quality preferences. IEEE Trans. Knowl.
Data Eng. 2011, 23, 433–446. [CrossRef]

9. Yiu, M.; Dai, X.; Mamoulis, N.; Vaitis, M. Top-k spatial preference queries. In Proceedings of the IEEE 23rd
International Conference on Data Engineering (ICDE 2007), Istanbul, Turkey, 15–20 April 2007.

10. Rocha-Junior, J.; Vlachou, A.; Doulkeridis, C.; Nørvag, K. Efficient processing of top-k spatial preference
queries. PVLDB 2010, 4, 93–104. [CrossRef]

11. Cho, H.-J.; Kwon, S.-J.; Chung, T.-S. ALPS: An efficient algorithm for top-k spatial preference search in road
networks. Knowl. Inf. Syst. 2015, 42, 599–631. [CrossRef]

12. Attique, M.; Qamar, R.; Cho, H.-J.; Chung, T.-S. A new approach to process top-k spatial preference queries in
a directed road network. In Proceedings of the Third ACM SIGSPATIAL International Workshop on Mobile
Geographic Information Systems, Dallas, TX, USA, 4–7 November 2014.

13. Kolahdouzan, M.; Shahabi, C. Voronoi-based k nearest neighbor search for spatial network databases.
In Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, ON, Canada,
31 August–3 September 2004.

14. Song, Z.; Roussopoulos, N. k-Nearest neighbor search for moving query point. In Proceedings of the
7th International Symposium on Advances in Spatial and Temporal Databases, Redondo Beach, CA, USA,
12–15 July 2001.

15. Sun, Y.; Yu, X.; Bie, R.; Song, H. Discovering time-dependent shortest path on traffic graph for drivers
towards green driving. J. Netw. Comput. Appl. 2016, in press. [CrossRef]

16. Lin, Q.; Zhang, Y.; Zhang, W.; Lin, X. Efficient general spatial skyline computation. World Wide Web 2013, 16,
247–270. [CrossRef]

17. Lee, K.; Zheng, B.; Chen, C.; Chow, C. Efficient Index-based approaches for skyline queries in location-based
applications. IEEE Trans. Knowl. Data Eng. 2013, 25, 2507–2520. [CrossRef]

18. Liu, W.; Jing, Y.; Chen, K.; Sun, W. Combining top-k query in road networks. In Web-Age Information
Management; Springer: Berlin, Germany, 2012; pp. 63–75.

http://dx.doi.org/10.1016/j.is.2013.10.008
http://dx.doi.org/10.1007/s00778-011-0235-9
http://dx.doi.org/10.1109/TKDE.2010.171
http://dx.doi.org/10.1145/1391729.1391730
http://dx.doi.org/10.1145/1272743.1272749
http://dx.doi.org/10.1109/TKDE.2010.119
http://dx.doi.org/10.14778/1921071.1921076
http://dx.doi.org/10.1007/s10115-013-0696-9
http://dx.doi.org/10.1016/j.jnca.2015.10.018
http://dx.doi.org/10.1007/s11280-012-0185-1
http://dx.doi.org/10.1109/TKDE.2012.216

ISPRS Int. J. Geo-Inf. 2016, 5, 170 26 of 26

19. Deng, K.; Zhou, X.; Shen, H. Multi-source skyline query processing in road networks. In Proceedings of the
IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, 15–20 April 2007.

20. Chen, J.; Huang, J.; Jiang, B.; Pei, J.; Yin, J. Recommendations for two-way selections using skyline view
queries. Knowl. Inf. Syst. 2013, 34, 397–424. [CrossRef]

21. Wang, Y.; Wei, W.; Deng, Q.; Liu, W.; Song, H. An energy-efficient skyline query for massively
multidimensional sensing data. Sensors 2016, 16. [CrossRef] [PubMed]

22. Cheema, M.; Lin, X.; Zhang, W.; Zhang, Y. A safe zone based approach for monitoring moving skyline
queries. In Proceedings of the 16th International Conference on Extending Database Technology, Genoa,
Italy, 18–22 March 2013; pp. 275–286.

23. Xia, T.; Zhang, D.; Kanoulas, E.; Du, Y. On computing top-t most influential spatial sites. In Proceedings of
the 31st International Conference on Very Large Data Bases, Trondheim, Norway, 30 August–2 September
2005.

24. Du, Y.; Zhang, D.; Xia, T. The optimal-location query. In Advances in Spatial and Temporal Databases; Springer:
Berlin, Germany, 2005; pp. 163–180.

25. Zhang, D.; Du, Y.; Xia, T.; Tao, Y. Progessive computation of the min-dist optimal-location query.
In Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, 12–15 September 2006.

26. Mouratidis, K.; Lin, Y.; Yiu, M. Preference queries in large multi-cost transportation networks. In Proceedings
of the 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), Long Beach, CA, USA,
1–6 March 2010.

27. Lin, P.; Yin, Y.; Nie, P. K-multi-preference query over road networks. Pers. Ubiquitous Comput. 2016, 20,
413–429. [CrossRef]

28. Hartmann, A. Phase Transitions and Clustering Properties of Optimization Problems; Lecture given at DPG
Physics School: Bad Honnef, Germany, 2012.

29. Guttman, A. R-Trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM
SIGMOD international conference on Management of data, Boston, MA, USA, 18–21 June 1984.

30. Real Datasets for Spatial Databases. Available online: http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
(accessed on 13 October 2014).

31. American Hotel & Lodging Association. Available online: http://www.ahla.com/ (accessed on 4 August 2015).
32. Papadias, D.; Zhang, J.; Mamoulis, N.; Tao, Y. Query processing in spatial network databases. In Proceedings

of the 29th International Conference on Very Large Data Bases, Berlin, Germany, 9–12 September 2003;
pp. 802–813.

33. Dijkstra, E. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10115-012-0489-6
http://dx.doi.org/10.3390/s16010083
http://www.ncbi.nlm.nih.gov/pubmed/26761010
http://dx.doi.org/10.1007/s00779-016-0913-0
http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://www.ahla.com/
http://dx.doi.org/10.1007/BF01386390
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Skyline Queries
	Feature-Based Spatial Queries
	Top-k Spatial Preference Queries

	Preliminaries
	Definition of Terms and Notations
	Problem Formulation
	Finding Pivot Nodes

	Pruning and Grouping
	Pruning
	Grouping
	Grouping Method
	Computation of the Group Score s(g)
	Computation of the Distance between a Data Object and Feature Group

	Mapping to Distance-Score Space
	Limitations of Undirected Algorithms in Directed Road Networks

	Top-k Spatial Preference Query Algorithm
	Performance Evaluation
	Experimental Settings
	Experimental Results for Query Processing Time
	Experimental Results for Materialization and Incremental Maintenance Costs
	Comparison of TOPS and ALPS+

	Conclusions

