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Abstract: Using box-counting and spatial regression, this paper analyzes the 

morphological characteristics of coastal settlement patterns and their spatial determinants, 

with a case of the Wen-Tai region on the Chinese eastern coast. Coastal settlement patterns, 

which reflect the interactions between people and the surrounding environment, can 

indicate the anthropogenic pressure sustained in the coastal zones. Characterization of 

settlement patterns in coastal zones is definitely needed for coastal management. Results 

indicate that coastal settlement patterns in the Wen-Tai region present significant fractal 

characteristics, and exhibit obvious spatial variations. The morphological characteristics 

of settlement patterns are significantly correlated with the standard deviation value of 

elevation and slope, as well as percentage of loam soils. In particular, cities with greater 

relief amplitude, higher slope variability, and higher percentage of loam soils would 

present more complexity in form. Proximity to roads and rivers are insignificant 

determinants. Our study contributes to the understanding of the spatial determinants of the 

morphological characteristics of settlement patterns in coastal zones. We argue that fractal 

dimension provides a useful tool to facilitate the identification of vulnerability hotspots for 

coastal studies. 
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1. Introduction 

In geography, settlements are hamlets, towns, villages, and other agglomerations of buildings in 

which people live. They can range in size from a small number of dwellings grouped together to large 

cities. Settlement patterns act as one of the most fundamental link between people and the Earth, and 

reflect the interactions between people with the surrounding environment. Scientists, therefore, always 

characterize human pressure by analyzing the spatial characteristics of settlement patterns. Settlements 

are consequently influenced by various environmental factors such as topography, water accessibility, 

transportation proximity, and so forth [1–3]. Given the significant spatial heterogeneity of these 

environmental factors, human settlements exhibit great spatial variations across space at various spatial 

scales [4]. Characterization of settlement patterns and their spatial variations across space in coastal 

zones can contribute to understanding of the anthropogenic pressure sustained by the coastal zones. 

Though literature of human settlements patterns is on the rise [5,6], detailed cases of coastal 

settlements are quite few. Previous studies mostly focused on certain aspects of settlement spatial 

characteristics like distribution, density, and size [7,8]. However, the morphological characteristics of 

human settlements, which indicate the dense or complex degree of population distribution, were not 

given enough attention. Morphological measurement of human settlements is important for land use 

planning [7,9–12], since it can provide a systemic analysis to describe spatial form of human 

settlements. Human settlements usually have complex morphological characteristics at different scales [9,10]. 

Fractal geometry provides an effective solution to describe the disorder and irregularity of complex 

systems [7,10,13–16]. Fractal geometry has been explored in interdisciplinary research and applied to 

analyze problems in ecology [17,18], geology [19], and physics [20]. Additionally, fractal geometry has 

gradually emerged as a basic tool in characterizing the morphological features in geospatial science, 

including urban growth [21–23], urban boundary [24], and urban landscape patterns [25–27]. Few 

studies applied fractal geometry to characterize the morphological features of settlements. In addition, 

rare studies have been conducted to analyze the spatial determinants of the morphological characteristics 

of human settlements [28]. 

Considering the above issues, the primary objective of this paper is to examine the fractal 

characteristics of human settlements and their spatial determinants in coastal zones. The study was 

facilitated by data collected from the Wen-Tai region, a typical part of the Chinese eastern coast. 

Specifically, this study aims to (1) analyze the fractal characteristics of human settlements and 

their spatial variations in 15 cities across the Wen-Tai region; (2) identify the spatial determinants 

of the morphological characteristics of human settlements; and (3) discuss some implications for 

coastal management. 
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2. Study Area 

The Wen-Tai region, with a spatial extent of 27°03′–29°08′N and 119°37′–121°26′E, belongs to 

Zhejiang province, lies in the southeastern part of eastern coastal China (Figure 1). Constituted by 15 cities, 

it covers approximately 21,000 km2 and has a population of 13.7 million in 2008 [29]. With moderate 

temperatures and abundant precipitation, the region has traditional monsoons, distinct seasons, and 

changeable climates. High mountains are generally located in the southern part, with the highest value of 

1611 meters. The western areas are mostly covered by plains with complex river and road networks.  

 

Figure 1. Location of the Wen-Tai region, China. 

Since China initiated the economic reform and opening-up policy in 1978, China has focused on the 

development of the eastern coastal area [30]. The Wen-Tai region witnessed explosive socioeconomic 

development as other regions in coastal China. For the last twenty years the population in Wen-Tai 

increased by 16%, and GDP increased by 3475% [29]. Such rapid socioeconomic development can 

adequately represent the conditions of most coastal regions in China and other parts of the world. The 

Wen-Tai region, therefore, provides a typical case to analyze the spatial characteristics of coastal 

settlement patterns. 
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3. Materials and Method 

3.1. Fractal Dimension 

3.1.1. Fractal and Fractal Dimension 

Fractals are self-similar patterns, in which a fragmented or rough geometric shape is subdivided into 

parts, and each of the parts is a reduced-size copy of the whole [31], so it can repeat itself on an 

increasingly smaller scale. Fractal dimension is able to measure fractals by identifying the self-similar 

characteristics of irregular objectives in different aspects, such as form, function, information and so on, 

through changing scales. Objects have dimension 0 (points), dimension 1 (line segments), 2 (squares), 

and 3 (cubes), respectively. Fractal dimension represents its characteristics as the form of a point, a line, 

or an area feature increases more geometrically complex [32]. Fractal dimensions can be calculated in a 

variety of ways, including the Calliper method, the box-counting method, the pixel-dilation method, the 

mass-radius method, and so on [33]. All of these methods are able to analyze spatial objects for a range 

of scales [9]. Moreover, in spatial pattern analysis, the box-counting method is usually used in computing 

fractal dimensions [9]. 

3.1.2. Box-Counting Dimension 

Box counting is a data gathering process that analyzes complex patterns. Suppose we have a number 

of boxes with the same side length r to cover an object in Rn. Let N(r) denotes the number of such boxes. 

These boxes have area rn, and they are scaled by a factor of (1/r)n. If we take a simple square of length s 

and cover it with boxes of area rn, we can determine N(r) as follows: 
2 ( ) nS N r r= ×  (1)

2( ) / nN r S r=  (2)

2( ) (1/ )nN r S r= ×  (3)

Since s2 is a constant, we can denote it by C, thus: 

( ) (1/ )nN r C r= ×  (4)

Solving for n yields: 

ln ( ) ln( )

ln(1 / )

N r c
n

r

−=  (5)

n is the dimension of our object. Since C is a constant, we can ignore it for our purposes. If we take the 

limit of this formula as r approaches zero, we get the formula for box dimension:  

0

ln ( )
( ) lim

ln(1/ )B
r

N r
D S

r→
=  (6)

A graph of log(N(r)) versus log(r) is plotted and a linear regression is modeled. If the human 

settlements have a fractal distribution, the plot gives a straight line with a slope D. In all cases, the largest 
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box size was ignored because the size of the study area can determine its side length r [34]. A random 

distribution of human settlements points would produce a D value of 2, and as the points become more 

clustered, the value of D approaches zero. However, this method does not describe how clustering may 

vary within the study area [35].  

In this study, fractal dimensions were calculated on a 50 km grid across the Wen-Tai region. The box 

sizes used in the four-level box count are 50, 25, 10, 5, 2.5, and 1 km. The 50 km grid spacing is 

appropriate for the level of geological details in the 1:50,000-scale map of the Wen-Tai region, based on 

the methodology of Gillespie et al. [36], Walsh and Watterson [37] and Raines [38]. The log-log 

approach was used to find the box counting fractal dimension[33]. In order to obtain a good trend line, 

it is important to decide the crossover point and which points are useful to model a good function [34]. 

We selected a cell-size interval that maximizes the R2 to find trend lines interactively [39]. Typically, 

the R2 value close to 0.99 is able to be obtained, thus in our research all the R2, both before and after the 

crossover point are higher than 0.99. Then, the model functions are obtained. We used Origin 8 software 

to calculate FD (Fractal Dimension value) and plot the figures. 

3.2. GIS Analysis 

Point vector data of settlements (1: 50,000 scale; year 2012) (Figure 2) and digital maps (1:50,000) 

of road/river networks were obtained from the National Surveying and Mapping Bureau. The centroid 

coordinate of each village was used to represent its location as a form of points for all villages recorded 

in the original settlement vector map. We clipped the corresponding data for the Wen-Tai region from 

the national point data of settlements in ArcGIS 9.3, and it was also used to calculate the box-counting 

dimension by converting the vector to raster in different appropriate cell sizes to determine the number 

of cells. Preliminary experiments were carried out for many times, we chose the intervals as 600, 700, 

800, 900, 1000, 2500, 5000, 10,000, 25,000, and 50,000 meters. After calculating the different number 

of boxes at different scales we obtained the log-log plot. Then Origin software was used to model the 

curves and two straight-line segments to indicate the fractal domain. 

Geographic factors were selected to interpret the influences of surrounding environmental situation 

on the fractal dimension of human settlement patterns. These spatial determinants included mean and 

standard deviation values of elevation (elevation_mean, elevation_std), slope (slope_mean, slope_std), 

distance to rivers (river_mean, river_std), distance to roads (road_mean, road_std), and percentage of 

soil texture (sand%, loam%, clay-loam%, clay%). They were selected because they usually significantly 

affect the choice of human settlement locations [4,40]. To calculate the distance to roads and rivers for 

every settlement point, we first generated a set of distance raster surfaces using the Euclidean Distance 

module in ArcGIS 9.3, and then extracted variable values for each point from the generated distance 

raster surfaces. In addition, we extracted slope and aspect information from a 30 m digital elevation 

model (DEM). Through neighborhood statistics operations in ArcGIS 9.3, we generated raster surfaces, 

and their values were extracted from the generated raster surfaces for all settlement points. 
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Figure 2. Spatial patterns of settlement locations, roads, and rivers across the Wen-Tai 

region, China. 

3.3. Spatial Regression 

Spatial lag/error regression was used to determine the relationships between fractal dimensions of 

settlement patterns and spatial determinants. The equation of the spatial lag model is given by Anselin [41]: 

yi = ρ∑wijyi + xiβ + εi (7)

where i represents spatial units at different scales, yi is a vector of observations on the dependent variable, 

wij is an element of a spatial weights matrix W, xi is a matrix of observations on the explanatory variables, 

εi is a vector of error terms, and ρ and β are parameters. 

The equation of spatial error model is given by Anselin [41]: 

yi = xiβ + εi (8)

yi = λ∑Wijεi + μi (9)
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where yi is a vector of observations on the dependent variable, wij is the spatial weights matrix, xi is a 

matrix of observations on the explanatory variables, εi is a vector of spatially auto-correlated error terms, 

μi is a vector of error terms, and λ and β are parameters.  

Based on the Lagrange Multiplier diagnostics Anselin [42], application of an appropriate algorithm 

for spatial regression (error or lag) was performed using GeoDa 0.9.5-i (Beta) software by Anselin [42]. 

All regression models were performed using the fractal dimension as the dependent variable and spatial 

determinants as independent variables. 

4. Results and discussion 

4.1. Fractal Dimension of Human Settlement Patterns 

Figure 3 shows the modeling regression of the 15 cities. The slope of each regression function was 

the fractal dimension value of each city. The linear log-log plots and high R2 values indicated that 

settlement pattern in the Wen-Tai region presented significant fractal characteristics. In particular, th 

ebox-counting dimension was represented by a piecewise function in the log-log plot. All the curves had 

a crossover point which formed two linear functions and two slopes. The linear function before the 

crossover point had a smaller slope, which denoted a smaller value of fractal dimension. The linear 

function after the crossover point had a larger slope, suggesting that at these scales the change of side 

length of the box had more significant influence on the number of boxes.  

The sharp change of human settlements’ spatial occupation before and after the crossover point 

indicated the scale variations and aggregated level in spatial patterns. Fractal dimensions identified 

the two-dimensional spatial occupation extent of human settlement as an integrated unit, with fractal 

dimension values ranging from 1 to 2; while fractal dimensions at the small scale represented the 

two-dimensional spatial occupation extent of points, with fractal dimension value ranging from 0 to 1. 

Considering these, we focused on the fractal dimensions at large scales.  

Table 1 displayed the fractal dimension values of each city. Fractal dimensions ranged from 1.3727 

to 1.6177, indicating variations in the clustering of the occurrences. Xianju had the highest fractal 

dimension value and Yuhuan the lowest value. The fractal dimension of a city can be taken as an 

indicator of the complexity or dispersion of this city from Cai et al. [43]. Based on the results of Tannier 

and Thomas [21], higher values suggested more complex of fractal dimension. Therefore, the most 

complex form existed in Xianju, and the most regular form existed in Yuhuan.  

A city with a larger number of settlement points usually had higher fractal dimensions, given that 

human settlements were more space filling and, consequently, had higher dimensions [44]. However, 

the situation is opposite in our research. For example, Taizhou had more settlement points than Xianju 

and Taishun, but presented a lower fractal dimension. In addition, Ruian had a lower number of 

settlement points than Yongjia and Cangnan, but presented higher fractal dimension. This implied that 

the number of settlements is not the dominant factor of calculating FD. 
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Figure 3. Graphs of number of boxes N(r) against box side length (in meters) on logarithmic scales for each city across the Wen-Tai region, 

China. (FD = Fractal Dimension value).
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Table 1. Fractal dimension values of each city across the Wen-Tai region, China. 

Study Area N DB R2 Crossover Point (m)

Wenzhou 1330 1.5205 0.9998 995.7264 
Yongjia 2152 1.5452 0.9975 1081.909 

Pingyang 2096 1.5426 0.9964 665.9738 
Cangnan 2709 1.5195 0.9945 535.1751 

Wencheng 1925 1.5277 0.9936 841.997 
Taishun 2433 1.6048 0.9986 950.6467 
Ruian 1805 1.5735 0.9991 940.769 
Leqing 1917 1.5408 0.9961 924.269 
Taizhou 3568 1.5808 0.9982 845.5723 
Yuhuan 905 1.3727 0.9938 526.7021 
Sanmen 1050 1.4837 0.9984 995.5408 
Tiantai 2217 1.5363 0.9958 897.9551 
Xianju 2243 1.6177 0.9989 1020.453 

Wenling 2689 1.5379 0.9957 433.6554 
Linhai 3371 1.5617 0.9968 925.4678 

N is the number of residential points; DB denotes the line slope 

4.2. Spatial Determinants of Settlement Fractal Dimensions 

As shown in Table 2, fractal dimensions were significantly associated with elevation_std and 

slope_std. Such results implied that the city with greater relief amplitude and higher slope variability 

always exhibited more complex form. Most settlements were aggregated within the plain areas, while 

those distributed in higher and steeper mountains were quite scattered and disorderly. Therefore, when 

a city has more steep mountainous lands, human settlements would become more isolated and scattered, 

and the city pattern would be more complex. 

Table 2. Relationships between settlement fractal dimensions and geographical 

determinants across the Wen-Tai region. 

Y X Model R2 Sig

Fractal dimension 

elevation_mean NSc 
elevation_std Y b = 0.0007 × X + 1.42 (LAMBDA = −0.33) 0.52 ** 

slope_mean NSc 

slope_std Y a = −0.95 × WY + 0.055 × X + 2.74 0.63 ** 

road_mean NSc 

road_std NSc 
river_mean NSc 
river_std NSc 

sand% NSc 

loam% Y a = 0.07 × WY + 0.22 × X + 1.44 0.56 ** 

clay-loam% NSc 
clay% NSc 

** Significant at 99% confidence level. a. Spatial lag models; WY = weighted mean of fractal dimension for 

adjacent stations. b. Spatial error models. NSc. No significant relationships were identified by spatial regression. 
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Table 2 also shows that loam% displayed positive relation with fractal dimension. This means that a 

higher percentage of loam soils in these cities would lead to more complexity of urban forms. Loam 

soils can retain water and nutrients and can also filter excess water, which indicates that loam soils are 

suitable for gardening and agricultural uses. Some studies pointed out that human settlements usually 

displayed scattered patterns among agricultural patches in eastern coastal China [4]. Therefore, when 

loam soils become dominant, the patterns of human settlements across these soils may become more 

random and dispersed. Considering R2, this showed that slope and percentage of loam can explain more 

than 50% of the variations.  

Previous studies demonstrated that proximity to road or river had significant impacts on the distribution, 

density, and size of human settlements. Our results showed that proximity to road or river were insignificant 

indicators for the morphological characteristics of settlement patterns. Specifically, the spatial lag model was 

suitable for slope_std and loam%. Such results suggested that settlement fractal dimensions not only 

depended on slope and soil texture, but also on settlement fractal dimensions of neighboring cities. The 

spatial error model was suitable for elevation_std. It implied that some environmental factors that were not 

incorporated in the regression would be auto-correlated over space [45,46]. 

4.3. Management Implications 

Coastal zones are vulnerable to human activities. Disproportionately distributed across the coast, 

human settlement patterns lead to vulnerability hotspots through interacting with the surrounding 

resources [47]. Managers are eager to develop tools to facilitate the identification of vulnerability 

hotspots. Fractal analysis meets management needs, since it can produce results of practical significance. 

For example, fractal dimension indicates the dispersion and complexity of human settlement patterns. 

Dispersed settlements are prone to making the adjacent natural area to be consumed, degraded, isolated, 

and fragmented [48], threatening biodiversity and sustainability [49]. Additionally, complexly-formed 

settlements are unstable and, therefore, have higher probability to sprawl, increasing more opportunity 

of adverse ecological effects, such as urban heat island and soil sealing [50]. Variability of fractal 

dimension, therefore, can indicate the spatial distribution of potential pressure on coastal vulnerability 

for the Wen-Tai region. In addition, the identified environmental factors governing settlement fractal 

dimensions can also be employed to map hotspots of vulnerability pressure. For example, cities with 

higher slope variability and greater relief amplitude are more likely to be vulnerability hotspots along 

the coast. We consequently argue that fractal dimension provides a useful tool to facilitate the 

identification of vulnerability hotspots for coastal management. 

5. Conclusions 

This study employed the fractal theory and spatial regression to analyze the morphological 

characteristics of human settlement patterns and their spatial determinants in a coastal zone. The main 

findings were summarized as follows: 

1. Settlement patterns in the Wen-Tai region presented significant fractal characteristics and 

exhibited obvious spatial variations. The pattern of settlements, rather than the number of 

settlements, was more influential factor for the fractal dimension.  
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2. Elevation, slope, and percentage of loam soils were the primary spatial determinants of 

settlement fractal dimensions. Especially, cities with greater relief amplitude and higher slope 

variability always exhibit more complex form, and cities with a higher percentage of loam 

soils have more complicated patterns.  

3. Proximity to road or river were insignificant indicators for the morphological characteristics 

of settlement patterns.  

4. Settlement fractal dimensions not only depended on slope and soil texture, but also on 

settlement fractal dimensions of neighboring cities.  
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