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Abstract: Dengue disease incidence is related with the construction of a house roof, 

which is an Aedes mosquito habitat. This study was conducted to classify pitch roof (PR) 

and flat roof (FR) surfaces using pan-sharpened Worldview 2 to identify dengue disease 

patterns (DDPs) and their association with DDP. A Supervised Minimum Distance classifier 

was applied to 653 training data from image object segmentations: PR (81 polygons), FR 

(50), and non-roof (NR) class (522). Ground validation of 272 pixels (52 for PR, 51 for FR, 

and 169 for NR) was done using a global positioning system (GPS) tool. Getis-Ord score 

pattern analysis was applied to 1154 dengue disease incidence with address-approach-based 

data with weighted temporal value of 28 days within a 1194 m spatial radius. We used 

ordinary least squares (OLS) and geographically weighted regression (GWR) to assess 
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spatial association. Our findings showed 70.59% overall accuracy with a 0.51 Kappa 

coefficient of the roof classification images. Results show that DDPs were found in 

hotspot, random, and dispersed patterns. Smaller PR size and larger FR size showed some 

association with increasing DDP into more clusters (OLS: PR value = −0.27; FR = 0.04;  

R2 = 0.076; GWR: R2 = 0.76). The associations in hotspot patterns are stronger than in 

other patterns (GWR: R2 in hotspot = 0.39, random = 0.37, dispersed = 0.23). 

Keywords: dengue disease incidence; address-approach-based data; Getis-Ord score; 

segmentation; Supervised Minimum Distance; ordinary least squares (OLS); geographically 

weighted regression (GWR) 

 

1. Introduction 

Dengue is a disease caused by the dengue virus (DENV), which is transmitted human-to-human by 

a female Aedes species (sp.) mosquito, an anthropophilic mosquito that breeds around humans [1]. 

When a human is infected with DENV, then fever, headache, muscle and joint pain, and nausea 

appear in the first few days [2,3]. Conditions might worsen with subcutaneous or nasal and oral 

spontaneous bleeding as well as life-threatening internal severe bleeding and shock [3–5]. The 

mosquitoes bite humans mainly during the daytime but also at night [6]. Their life cycle begins when 

female Aedes sp. mosquitoes put their eggs (oviposition) on watery habitats. In 1–2 weeks, eggs 

become instar larva, pupae, and finally adult mosquitoes. During drought, adult mosquitoes and their 

eggs can also live; once the environment becomes moist, the eggs can hatch [7–9]. 

An excellent means of controlling dengue disease pandemics is to monitor and intervene in environmental 

conditions [10]. Environmental factors that have been mapped for dengue vector breeding habitats 

include vegetation, water bodies, and land cover [11]. Built-up surfaces of urban structures constitute  

a major factor because of their higher probability of becoming a breeding habitat [12]. Earlier studies 

have pointed out that, of urban structures, houses play a major role as a habitat for dengue vectors [13,14]. 

Roof construction presents a potential risk for Aedes mosquito breeding sites [15]. As part of roof 

construction, a flat roof (FR) made of waterproof material [16] presents a high probability for water to 

flow with lower velocity than a pitch roof (PR) [17]. The former harbors stagnant water when both 

gutters are blocked [8,18]. All outdoor oviposition showed a relation with indoor abundance of adult 

female mosquitoes and can engender higher rates of oviposition inside homes where water containers 

are most frequently found [15,19]. In Indonesia, issuance of government regulations related to cleaning 

roof areas is still uncommon. Accordingly, health promotion campaigns related to such issues are nonexistent. 

In a neighboring country (Australia), cleaning roof gutters is also uncommon, but one study has found 

them to be a productive habitat for Aedes mosquitoes [8]. We inferred that identifying pitched and flat 

roofs is a good approach to identify roof gutters, although not every house roof has a roof gutter. 

Many studies have used spatial analysis of dengue case patterns, but several studies have used 

temporal indices to conduct modelling approaches. Such studies primarily proceeded to use a coarser 

scale using Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

and Advanced Very High Resolution Radiometer (AVHRR) [9]. High spatial resolution (HSR) 
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imagery, pan-sharpened Worldview 2, has been applied for urban mapping because of its superiority 

of object-based analysis [20–22]. However, its applicability to a public health approach by integrating 

spatial and temporal to generate dengue risk maps using HSR imagery was lacking [11]. The use of 

HSR imagery for mosquito-borne diseases has become increasingly popular [10,11] with the use of 

Satellite Pour l’Observation de la Terre (SPOT) 5 [23], IKONOS [24], and QuickBird [25] for Malaria 

disease studies. For dengue disease studies, QuickBird [12,26], Geoeye-1 [27], and aerial images [28] 

have been used, although there is no mention of Worldview 2 in that body of literature [10]. The objectives 

of the present study were to identify the association of roof construction (PR or FR) with dengue 

disease patterns (DDPs) by demonstrating integration of HSR images with DDP spatiotemporally. We 

hypothesized that the association result is lower than in other studies because we only assessed the roof 

construction apart from other factors such as vegetation and shadowed areas [29]. Additionally, PR and 

FR classification quality assessment from a pan-sharpened Worldview 2 and DDP identification were 

demonstrated as a process to build the quality of association. 

2. Methods 

2.1. Study Area and Data 

The study area comprises a 48.66 km2 which encompasses 40 villages in northern Bandung city, 

located in West Java. Figure 1 presents the study area as a red, green, and blue (RGB) color composite. 

Its urban landscape presents heterogeneity, with elevations from highest altitude (1077 m above sea 

level) to the lowest (691 m), as well as various pitched and flat roofed houses. Data of the city census 

show inhabitants of this area as 748,561 people in 2012, by which the population density of the area 

was 15,383 per km2. Dengue cases were endemic in Bandung city Indonesia during the prior decade. 

Residents’ density of this city is high (about 2.5 million in 167 km2), presenting a high risk of endemicity. 

 

Figure 1. (a) Map of Indonesia showing the approximate location of northern Bandung 

city; (b) Bandung city and the white border of study area; (c) Pan-sharpened Worldview 2 

satellite image, red, green, blue (RGB) color composite showing the area depicted in high 

resolution satellite imagery. 



ISPRS Int. J. Geo-Inf. 2015, 4 2589 

 

 

To control the endemicity, chemical agents for controlling mosquitoes have been applied frequently 

over many years [1,30], even in Bandung city, in the form of spraying on households and placing 

larvacides into water chamber. Nonetheless, roof control for the mosquito breeding sites in the city 

remains insufficient. 

Figure 2 depicts data preparation and analytical procedures. An ortho-ready standard level-2A 

(ORS2A) archive pan-sharpened image of Worldview 2 (WV2) with 0.5 ground sample distance (GSD) 

and red, green, and blue (RGB) color composite was acquired on 2 July 2011 as three images covering 

the study area. The delivered product license was purchased by the district development plan government 

agency (BAPPEDA) in Bandung city, Indonesia. This image was only provided by the government in 

RGB band color composite, not in full 8-bands. Orthorectification was performed in ENVI 4.8 by 

application of a rational function model that was already included in the folder of the product. The 

imageries were then mosaicked in ArcGIS to obtain full imagery. A subset of the imagery was done in 

ENVI to obtain the only image covering the study area. This imagery (in ENVI image format) was loaded 

in the eCognition 64 software package (Trimble Geospatial Imaging) for the segmentation process. 

Multiresolution segmentation, an algorithm used for segmenting HSR imagery, has been used widely 

and has achieved good accuracy [20]. It is a bottom-up region-merging technique from pixel level into 

image object (IO) polygon level using three parameters: scale, shape, and compactness [20,31,32]. We 

set algorithm parameters to obtain the best polygons for each of the objects in the imagery by inserting 

parameters previously used for real-color composite of RGB color composite orthophotos on the pixel 

level: 10 on scale, 0.5 shape, and 0.9 compactness, into the software. This level was still in pixel level 

polygons, which did not convey meaningful IO. For the IO level, trial-and-error segmentation processing 

is necessarily performed to assure visual pure objects belonging to only one class [20,31,33]. Given 

this process, we continued to try several algorithm parameters scaled from 20 to 100. Then, we got  

a 20-scale parameter because that was the scale that showed pure objects according to our visual 

interpretation. Figure 3 presents an RGB color composite of a pan-sharpened image and the segmentation 

result. From eCognition, this result was saved as a shapefile. We used this segmentation to produce 

training data by choosing polygons from the segmentation, matching with the imagery to decide which 

is PR, FR, and non-roof (NR). We collected 653 training data from segmentation IO polygons of the 

WV2 imagery. From those, we made three region of interests (ROIs) polygons consisting of 81 

polygons belonging to the PR class, 50 FR; the rest (522) were NR class. Regarding the number of 

training data, previous reports described that the number of IO polygons used for training data varied 

between 18–63 polygons per class [20]. 

For use as reference data, we collected ground truth points in Bandung City using a Global 

Positioning System (GPS) 60 CSx including their pictures after informed consent was received from 

the home owners. House roofs were tagged by GPS in front of the house when ground truth was not 

possible to assess either because of difficult access or privacy inside of the house. An ethical clearance 

letter to conduct this study was issued by the health research ethics of the Faculty of Medicine, 

Padjadjaran University. A letter from the municipality giving information about this study was also 

issued to support the effort at informed consent along with the clearance letter. In all, 272 GPS points 

were collected. Of those, 52 were PR class, with 51 FR, and 169 NR points. We checked each GPS 

point photo by visual inspection and carefully matched each photo with IO of the imagery. Later, each 

point was moved to one of the pixels in the IO where it belonged. These steps were modified from the 



ISPRS Int. J. Geo-Inf. 2015, 4 2590 

 

 

process used by Aguilar et al., who produced reference data from polygons of a segmentation, not 

from pixels [20]. Earlier reports described that pixel-based analysis was preferred in HSR because of 

its higher accuracy than the IO-based accuracy [31]. 

 

Figure 2. Data preparation and analysis procedures. 

Dengue case data from 1 January–31 December 2012 were obtained from Bandung city health service. 

It has been a common problem that dengue surveillance data are reported in areal units [34]. However, 

we used dengue disease patient data in point units, which comprised addresses of patients, diagnoses, 

and dates of symptoms before hospital admission. As a preparation before analysis, the data quality 

was checked for better location information. To increase the quality, sub-district and village information 

were matched and corrected by the health service data manager. Later, at least one map of each  

sub-district that was derived from the WV2 imagery was printed with high-definition quality. The 

map(s) were then given to each dengue case manager of each primary health care (Puskesmas) in  

the study area on which they manually performed an address-approach to the patient locations and 

digitized them as points on the map. Each location of patient’s address was confirmed according to the 

case managers’ knowledge related to their working area coverage. When the case managers did not 

know where to point exactly, they approached the patient address based on household blocks. These 

data were labeled as corrected data, whereas unknown addresses were excluded and labeled as uncorrected. 

Each map was georeferenced on the WV2 imagery as the reference. Subsequently, all dengue patient points 
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were digitized in ArcGIS 10.1. Data quality was calculated by dividing corrected data (4172 addresses) 

by total data (5096), yielding 0.82 for the whole city of Bandung. Of these corrected data, only the 

northern part of Bandung city was extracted (1058 cases) for analyses. Census data of each village of 

year 2012 were obtained from the city population and civil registration service. 

 

Figure 3. (a) RGB color composite of pan-sharpened Worldview 2 and (b) segmentation. 

2.2. Analysis 

A Supervised Minimum Distance classifier method was used to produce a classification image based 

on the ROI polygons. This method is based on the mean vector for each class of training data. By 

considering these mean values, a pixel of unknown identity might be classified by computing the 

distance between the value of the unknown pixel and each of the training data means. After computing 

the distance, the unknown pixel is assigned to the closest class [31,35]. This method is extremely effective 

when applied using HSR imagery, perhaps because the Minimum Distance classifier is a non-parametric 

approach, which requires no assumption of normality. This method can be effective for HSR images 

because of its urban area feature complexity leading to non-normal distributions of data [31]. To 

differentiate PR and FR, the mean values of the R, G, B color composite digital number (DN) of the 

training data were used as shown in Table 1: DN description of PR and FR. The analysis was done in 

ENVI 4.8, which produced a classification image. Later, the accuracy assessment agreement of the 

roof classification image with the reference data was calculated. Explanatory variables refer to variables 

that measured model fitness association with the dependent variable using R-squared (R2) and adjusted 

R2 (0–1) [36]. The classification image showing PR, FR, and NR classes was converted from raster to 

vector data in ArcGIS, and was then included in the analysis as explanatory variables except for the 

NR class. 
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Table 1. Digital numbers description of Pitched and Flat Roof. 

Roof Pitched Roof Flat Roof 

Color composite (DN) R G B R G B 

Minimum 140 261 233 163 319 271 

Maximum 576 619 459 830 1079 716 

Mean 282.18 403.21 321.18 415.79 598.08 438.38 

Standard deviation 71.56 47.60 27.03 105.02 128.65 77.14 

Dengue disease pattern (DDPs) refer to a variable that we derived from the incidence of dengue 

disease and then analyzed in ArcGIS based on address-based disease locations and dates of disease 

symptoms. The incidence of dengue disease is a rate measurement of number of cases per number of 

population at-risk [37,38]. Populations at-risk were approached by dividing census data of each village 

by number of grids sized 75 m × 75 m on inhabited areas. The population in each grid was assumed  

as population at-risk because the size of the grid remained in the Aedes mosquito flight range [39]. 

The grid size was approached based on the approximate size of one rukun tetangga (RT) or block in 

Bandung city that consists of about 30–75 houses (each house estimated as about 72 m2) according  

to the city regulations. This method was a modification from that used by Kumar et al., who applied  

a 100 m × 100 m grid for built-up land density [34,40]. The incidence of the disease was then obtained 

and used for analyzing DDP using Hotspot analysis or Getis-Ord Gi (GiZ) in ArcGIS 10.1 toolbox that 

can output numeric continuous data and which can identify statistically significant hotspots, random 

and also dispersed patterns [1,41]. We used the dengue pattern of GiZ score as a hotspot or clustered 

pattern (GiZ Score > 1.65), random (−1.65 ≤ GiZ Score ≤ 1.65), and dispersed pattern (< −1.65) based 

on a previous study [1,41]. These DDP patterns were used as dependent variables for regression analysis. 

This analysis was the most common approach. It is most likely to require public health intervention [11]. 

The spatial autocorrelation coefficient Moran’s I (+1 to −1) analysis was measured to evaluate the 

independence of residuals. A positive value means that the adjacent values tend to be similar, whereas 

a negative value implies dissimilarity [36]. 

For the analysis, we applied the date of disease symptoms as a temporal factor for the 28-day 

duration approach, which is modified from the lifecycle of the larva to adult mosquito in urban areas 

and sub-urban areas (24 and 33 days, respectively) [18], and 30 days [7]. For spatial factors, several 

distance inputs were selected to cover the number of patients. We performed this analysis in ArcGIS 

toolbox using Spatial Weight Matrix (SWM) by which we included 1154 patients and excluded  

four patients. We also found the 1194 m distance as a minimum distance threshold to cover 1154 

patients. Subsequently, a buffer radius (m) was created by dividing 1194 m by 28 days assuming the 

flight distance of a mosquito per day. Therefore a 42.64-m buffer distance was created. The higher the 

density becomes, the shorter the flight range of the mosquito, and therefore the higher the endemicity 

becomes [42]. This buffer was in line with that reported by Muir and Kay, who measured the female 

flight distance, resulting in 5–69 m/day (maximum 160 m/week) [39]. The buffer was made with the 

dengue disease patient location as a centre point. The explanatory variables presented above were then 

overlaid with the buffer in ArcGIS. Duplication analysis was done to ensure the data quality. In each 

buffer, the size mean of the explanatory variable was measured. Previous studies measured the 

proportion of land cover in a buffer [29,43]. However, we used the size mean of PR and FR in one 
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buffer based on our assumption that a smaller roof is more difficult to reach, making it difficult for 

people to clean the roof gutter. 

For regression analysis, we used DDP as a dependent variable in ordinary least squares (OLS)  

and geographical weighted regression (GWR). We first applied OLS, a global regression model, in  

an attempt to determine the model performance, redundancy, stationarity and residuals normality. 

Model performance was measured using R2, adjusted R2 and the Akaike information criterion (AICc). 

Redundancy was assessed through a variance inflation factor (VIF). If VIF was more than 10, then  

it indicates redundancy/multicollinearity [36]. Koenker’s studentized Bruesch-Pagan (Koenker BP) 

statistic was used to assess stationarity. If p < 0.05, then we infer non-stationarity. Jarque-Bera statistics 

were used to determine the normality on the residuals when p < 0.05 implies a residual not in the 

normal distribution, suggesting a biased model. We first applied OLS regression in our attempt to 

explain a global regression between DDP as a dependent variable and the explanatory variable as  

an independent variable. The regression was set as DDP = β0 + β1PR + β2FR, where β0 is the intercept 

value, and where β1 and β2
 are estimated respectively as the values of PR and FR. However, the relation 

is not always stationary. In the normal distribution on residuals, a phenomenon in a relation is also 

influenced by the location that is localized and which might have a different relation (non-stationary) 

at each location. The GWR model is suggested for analysis if this phenomenon is found. Actually, 

GWR extends a universal model by allowing local variations (non-stationarity) and producing R2, 

adjusted R2, and AICc and a standardized residual map to measure the model results [36,44]. 

3. Results and Discussion 

The findings of this study include classification of accuracy assessment from WV2 imagery, classification 

image, DDP, and association between the roofs and the DDP. 

3.1. Accuracy Assessment of Roof Classification 

The classification accuracy was evaluated using a confusion matrix based on the classification result 

for the ROIs. Herewith, the Supervised Minimum Distance classifier was applied to the pan-sharpened 

WV2 imagery. Results in Table 2 suggest moderate agreement (0.4–0.8) on Kappa coefficient (KC) [45] 

with 70.59% overall accuracy (OA), less than the previous study, which also produced a confusion 

matrix for WV2 images and which found 87.87% user accuracy and 77.91% producer accuracy for  

the roof class [46]. However, 81.47% OA with 0.75 KC of their study is categorized as moderate 

agreement, which is in line with results of the present study. 

Figure 4 was produced to show the RGB color composite of the pan-sharpened image and the 

classification image. 

This classification image resulted only from the R, G, B color composite, whereas in another  

study that performed WV2 band of R, G, and B, the near-infra-red (NIR) and panchromatic (PAN) 

band found 71.3% OA and 0.59 KC, which suggests a similar manner with this study (70.59% OA  

and 0.51 KC) [20]. We did not use Google Earth image because it only provides visual representation 

of possible dengue breeding sites of an image and is lacking of automated extract feature as well as 

land cover analysis [43]. 



ISPRS Int. J. Geo-Inf. 2015, 4 2594 

 

 

Table 2. Confusion matrix for classification accuracy assessment. 

Classified Data 
Reference Data 

User Accuracy (%) 
Pitched Roof Flat Roof Non-Roof Total 

Pitched Roof 34 7 47 88 38.64 

Flat Roof 3 41 5 49 83.67 

Non-Roof 15 3 117 135 86.67 

Total 52 51 169 272  

Producer accuracy (%) 65.38 80.39 69.23   

Overall accuracy % 70.59     

Kappa coefficient 0.51     

 

Figure 4. (a) RGB color composite of pan-sharpened 2 and (b) PR, FR, and NR class image. 

3.2. Dengue Disease Patterns 

A description of variables of DDP is shown below in Table 3, which presents differences in the 

sizes and GiZ score of hotspot, random and dispersed patterns. The GiZ score of each point was found 

using ArcGIS 10.1. 

The image result of DDP is shown in Figure 5. Dense dengue disease hotspot patterns were found at 

the north part of the study area covered with vegetation. This result corresponds with those reported in 

an earlier study: dense DDP are associated with houses surrounded by dense vegetation. In addition, 

shadows under such vegetation are favorable for breeding mosquitoes [43,47,48]. 
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Table 3. Variables description of dengue disease patterns. 

Variables 
Dengue Disease Patterns 

Hotspot Random Dispersed 

Count (address-point) 184 555 415 

Pitched roof (m2)    

Minimum 0.33 0.25 0.32 

Maximum 14.41 13.59 15.72 

Mean 3.83 4.85 5.65 

Standard deviation 2.15 2.15 2.67 

Flat roof (m2)    

Minimum 0.38 0.23 0.34 

Maximum 20.45 39.2 15.38 

Mean 2.99 3.45 2.97 

Standard deviation 1.97 2.76 1.86 

GiZ Score    

Minimum 1.68 −1.64 −4.24 

Maximum 8.25 1.64 −1.65 

Mean 3.99 −0.28 −2.53 

Standard deviation 1.73 0.83 0.57 

 

Figure 5. Dengue disease patterns. 

3.3. OLS Regression and GWR Model 

The scatter plot of PR and FR to GiZ scores is depicted in Figure 6. Some FR plots are visible  

as outliers. We defined them as outliers after the scatter plot results shown, from which we observed 

which data were separated and suspected as outliers. We tested them by comparing R2, adjusted R2, 
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and AICc for all data, and the whole data minus the outliers. The criteria were that if R2, adjusted R2, 

and AICc of all data are higher than if without the suspected outliers, then they are not outliers; and  

if it is lower, then we designated them as outliers. From OLS regression analysis, we found positive 

autocorrelation (Moran’s Index = 0.67, p = 0.000). Table 4a shows that the data are not mutually 

redundant (VIF < 10) and non-stationary at all points (Koenker test = 0.00). From all DDP data, we 

found that smaller PR size and larger FR size were associated with increasing DDP into a more 

clustered trend or into positive directions of GiZ score (OLS: PR value = −0.27; FR= 0.04; R2 = 0.076; 

GWR: R2 = 0.76). We then divided all data into three groups: hotspot, random, and dispersed patterns, 

as shown respectively in Table 4. In the hotspot pattern, we excluded the outlier because it resulted in 

a higher measurement value on R2 and adjusted R2, and a lower value of AICc after the exclusion. 

However, we included the outliers of random patterns because, as presented in Table 4b, OLS regression 

measurement test results on R2 and adjusted R2 were higher with outliers than without outliers, even 

though AICc showed a lower value without outliers. In each pattern, we analyzed the association, which 

revealed that PR had more negative values and that FR had more positive values in hotspots than  

others (OLS: PR value = −0.17, FR = 0.14, R2 = 0.06 in hotspot pattern; PR value = −0.01, FR= 0.03, 

R2 = 0.01 in random pattern; and PR value = −0.04, FR = 0.02, R2 = 0.04 in dispersed pattern). 

  

(a) (b) 

Figure 6. (a) Scatter plot of PR with GiZ score and (b) scatter plot of FR with GiZ score. 

Of the OLS estimated values, PR was all in negative values. It corresponds with the observation 

that the smaller the size of the PR was, the higher the GiZ score or the higher the trend was in the 

higher clustered pattern. In contrast, FR was found in positive estimated values, implying that larger 

FR showed a stronger trend of becoming a higher clustered pattern. Assuming most of the PR were 

also with FR based on visual interpretation, this condition might result from lower water flow velocity 

on FR [17]. 

Moreover, stagnant water caused by blocked roof gutters makes a productive habitat for Aedes 

mosquito breeding [8,18]. Regarding the smaller size of PR, it might be associated with densely populated 

areas where most dengue disease incidence was found. Although many studies have done detailed mapping 

of homes, results are very rarely related to dengue incidence [43]. 
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Another potential explanation results from more difficult access to cleaning the gutters of smaller 

PR. Unfortunately, we were unable to find a report to refute or corroborate this explanation. An earlier 

study found that it was uncommon behavior to clean a roof gutter, but no mention of the difficulty of 

accessing smaller PR is forthcoming from the literature [8]. From a behavior perspective, untidy and 

poorly maintained houses, yard, and larger shade conditions present a high risk of dengue disease 

because female Aedes mosquitoes are more attracted to such houses where more breeding sites are 

often available [47,48]. 

Table 4. (a) Ordinary least squares (OLS) regression and geographically weighted 

regression (GWR) model: all and hotspot. (b) OLS regression and GWR model: random. 

(c) OLS regression and GWR model: dispersed. 

Parameter 

All Hotspot 

Estimated Value Std. Error p Value VIF Estimated Value Std. Error p Value VIF 

OLS GWR    OLS GWR OLS OLS OLS 

     Outlier Outlier Outlier Outlier Outlier 

     with without without with without with without with without 

Number of observations 1154 1154 1154 1154 1154 184 183 183 184 183 184 183 184 183 

Intercept 0.81  0.18 0.00  4.46 4.23  0.33 0.36 0.00 0.00   

Pitched roof −0.27  0.03 0.00 1.00 −0.16 −0.17  0.06 0.06 0.00 0.00 1.00 1.00 

Flat roof 0.04  0.03 0.00 1.00 0.05 0.14  0.06 0.08 0.52 0.12 1.00 1.00 

R2 0.076 0.76    0.04 0.06 0.39       

Adjusted R2 0.075 0.75    0.03 0.05 0.30       

AICc 5184.97 3709.59    723 717.7 670.30       

Koenker test 29.99   0.00  3.68 3.58    0.16 0.17   

Jarque-Bera 320.22   0.00  15.1 14.02    0.00 0.00   

(a) 

Parameter 

Random 

Estimated Value Std. Error p Value VIF 

OLS GWR OLS OLS OLS 

Outlier Outlier Outlier Outlier Outlier 

with without with with without with without with without 

Number of observations 555 554 555 555 554 555 554 555 554 

Intercept −0.30 −0.27  0.10 0.10 0.00 0.00   

Pitched roof −0.01 −0.01  0.02 0.02 0.36 0.36 1.00 1.00 

Flat roof 0.03 0.02  0.01 0.02 0.05 0.30 1.00 1.00 

R2 0.01 0.004 0.37       

Adjusted R2 0.01 0.000 0.32       

AICc 1376.14 1373.15 1179.64       

Koenker test 0.53 0.90    0.77 0.64   

Jarque-Bera 23.04 23.52    0.00 0.00   

(b) 



ISPRS Int. J. Geo-Inf. 2015, 4 2598 

 

 

Table 4. Cont. 

Parameter 

Dispersed 

Estimated Value Std. Error p Value VIF 

OLS GWR OLS OLS OLS 

Outlier Outlier Outlier Outlier Outlier 

with with with with with 

Number of observations 415 415 415 415 415 

Intercept −2.36  0.08 0.00  

Pitched roof  −0.04  0.01 0.00 1.00 

Flat roof 0.02  0.01 0.04 1.00 

R2 0.04 0.23    

Adjusted R2 0.04 0.18    

AICc 701.82 644.74    

Koenker test 10.40   0.006  

Jarque-Bera 18.22   0.00  

(c) 

The OLS assumes that relationship is in random (stationary) distribution whereas in this study was not 

in random manner because the relation was also influenced by location which might have a different 

relation at each location [36,44]. When this phenomenon is found, OLS regression results suggest the use 

of a GWR model to measure the association because the OLS indicated a not-normal residual distribution 

(p value of Jarque-Bera < 0.01). The summary results of GWR are presented in Table 4. From all DDP 

data, we found that the relationship was higher when using GWR model (R2 = 0.76). However, we 

considered focusing more on each local variations on dengue patterns as past studies found to distinguish 

relationships by local variations [36,44]. The association resulted in higher hotspot patterns than in random 

and dispersed patterns (GWR: R2 in hotspot = 0.39, random = 0.37, dispersed = 0.23), which according to 

Kinear PR and Gray CD is a larger effect (<0.01, small effect; 0.01 to 0.1, medium, and >0.1 is a large 

effect) than that of the OLS results found as medium effect [49]. Vanwambeke et al. in their previous 

research about the presence of Aedes sp. larva, found higher association (R2 = 0.52) for peri-urban 

housing and orchards factors [29]. Our limitation is that we were addressing only house roof variables, 

which indicated weaker results than those found by Vanwambeke et al. Higher results might be 

obtained when adding vegetation and shadow as variables related to dengue disease [29,43,47,48]. We did 

not include them as dengue risk factors because we have added such variables with PR and FR 

variables in earlier experiments. Unfortunately, our HSR imagery showed low agreement between the 

classification image and ground data. Results might be attributable to the condition that we did not 

have a full bundle of imagery that consists of eight bands including the panchromatic band by which 

we can increase agreement using methods of past studies [46]. We also did not have texture feature 

data of the city in a detailed manner, such as building and skyscraper textures. These data are crucially 

important when differentiating objects including shadows in HSR images [20]. We also did not include 

precipitation data or temperature data as dengue disease risk, variables in the analyses because the 

climate station in the city that measured such data is lacking, although many researchers used such data 

in past studies [11]. However, despite these limitations, this study specifically demonstrated the use of 

available HSR images from the Indonesian government, analyzed in automatic manner, with an 

attempt to integrate the data by relation with DDP. Different from previous studies, we analyzed DDP 
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spatiotemporally based on mosquito characteristics: flight range and life cycle [10,11]. In future 

studies, manual digitation for the HSR imagery to correct the classification can be conducted to 

increase the agreement. 

The standardized residual value of the GWR result is mapped in Figure 7. This figure is presented to 

help set priorities to control roofs by cleaning them to prevent future dengue disease cases. Priority of 

the roof is any value closer to 0 (zero). The greater the difference of the value from 0 is, the lower its 

priority. If the value was more than 3 or less than −3, it was regarded as an outlier and was ignored [49]. 

This point is crucially important for setting government priorities. Efforts can be more efficient and 

effective despite budget limitations. 

 

Figure 7. (a) Standardized residuals in DDP; (b) standardized residuals are shown within 

hotspot, random, and dispersed patterns; and (c) closer examination of the residuals on roofs. 

4. Conclusions 

This study finds a low association of pitched and flat roof types with each of dengue disease pattern but 

higher association with whole patterns. Nonetheless, results show that the dengue hotspot pattern has 

higher association than random and dispersed patterns. Results showed moderate agreement of pitched and 

flat roof classifications. In this moderate agreement condition of the classification, results also show that 

the less-pitched roofs present higher probability of dengue disease in a hotspot pattern, although a larger 

flat roof might be slightly associated with a higher probability of the hotspot pattern. In preparing  

high-resolution imagery, automatic analysis might not be the best step for an RGB color composite  

pan-sharpened Worldview 2 imagery to obtain better agreement results, although manual analysis or using 

full bundle imagery is apparently a potential step that demands further research. However, a combination of 

the mosquito life cycle and flight range approach may be promising to analyze dengue disease patterns for 



ISPRS Int. J. Geo-Inf. 2015, 4 2600 

 

 

other global regions as long as data of dengue patient addresses and dates of symptoms are reported to the 

city health service of a country. Exploring roof type associations with dengue disease patterns can provide 

more information with which governments and communities can map, prioritize and target environmental 

interventions against dengue disease. Additional research should address vegetation, shadows, temperature, 

and texture of city in addition to the association. 
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