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Abstract: Volunteered Geographic Information (VGI) such as data derived from the 

OpenStreetMap (OSM) project is a popular data source for freely available geographic data. 

Normally, untrained contributors gather these data. This fact is frequently a cause of concern 

regarding the quality and usability of such data. In this study, the quality of OSM land use and 

land cover (LULC) data is investigated for an area in southern Germany. Two spatial data 

quality elements, thematic accuracy and completeness are addressed by comparing the OSM 

data with an authoritative German reference dataset. The results show that the kappa value 

indicates a substantial agreement between the OSM and the authoritative dataset. 

Nonetheless, for our study region, there are clear variations between the LULC classes. 

Forest covers a large area and shows both a high OSM completeness (97.6%) and correctness 

(95.1%). In contrast, farmland also covers a large area, but for this class OSM shows a low 

completeness value (45.9%) due to unmapped areas. Additionally, the results indicate that a 

high population density, as present in urbanized areas, seems to denote a higher strength of 

agreement between OSM and the DLM (Digital Landscape Model). However, a low 

population density does not necessarily imply a low strength of agreement. 
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1. Introduction 

OpenStreetMap (OSM) is a collaborative mapping project founded in London (UK) in 2004. With 

the project, private citizens create freely accessible spatial data, which can present an alternative to 

official data [1]. Today, OSM is a very popular project and for certain applications it “has become a 

potential competitor to public and commercial geodata providers” [2], at least in terms of accuracy of 

the position of objects [3]. 

User-generated or crowdsourced geoinformation, also known as Volunteered Geographic Information 

(VGI) [4], can enhance geographic data and the knowledge about or understanding of the environment. 

Nonetheless, concerns about the quality and value of these data exist [5]. Typically, the contributors of 

VGI are non-experts; they may be unqualified, untrained volunteers focusing on their fields of interest, 

and in case of OSM, the users can modify or edit features immediately after registration [1,5–7].  

Heipke [8] points out the benefits user-generated data yields due to the incorporation of local 

knowledge. Indeed, utilizing user-generated OSM data can be beneficial; it is cost-free and enables the 

use of potentially up-to-date data at any time. Additionally, OSM can easily be shared under its “Open 

Data Commons Open Database License (ODbL)”. In contrast, authoritative data are often costly and the 

use and sharing of data are usually restricted. Furthermore, updates of authoritative data are commonly 

associated with further costs. 

As already mentioned, it is essential to address the quality of VGI data. In order to do this, the  

fitness-for-use concept has been described “as the closeness of the agreement between data 

characteristics and the explicit and/or implicit needs of a user for a given application in a given area” [9]. 

Spatial data quality can be defined through several quality characteristics, and standards are available 

for describing them. Quality principles for geographic information were previously described in the standards 

ISO 19113 [10] on quality principles and ISO 19114 [11] on quality evaluation procedures. Both standards 

were later revised and conflated in ISO 19157 with the title “Geographic information-Data quality”.  

ISO 19157 [12] outlines six data quality elements: Completeness, Thematic Accuracy, Logical 

Consistency, Temporal Quality, Positional Accuracy, and Usability Element. In this work, the focus is on 

completeness, defined as “the presence and absence of features, their attributes and relationships” [12] as 

well as on classification correctness; a data quality element of thematic accuracy.  

One of the first systematic attempts to assess OSM quality was conducted by Haklay [6]. The author 

compared the OSM data with an Ordnance Survey dataset by analyzing the positional accuracy and 

completeness of the road network based on methods developed by Goodchild and Hunter [13] and 

Hunter [14]. Girres and Touya [15] extended this work to the French OSM dataset by using several 

quality parameters including the attribute accuracy. The authors show the advantages of flexibility and 

responsiveness of the data, as well as the disadvantage of heterogeneity in the OSM dataset. Several 

authors have developed further methods and tools in order to address the quality of OSM data.  

Graser et al. [16] presented a freely usable tool consisting of models and algorithms to evaluate the quality 

of street networks by addressing positional accuracy, network length and attribute completeness.  

Ludwig et al. [17] compared the German street network of OSM with Navteq by automatically matching 

road objects, and Zielstra and Zipf [18] analyzed the completeness of the road network comparing OSM 

and TeleAtlas. The result of the latter study showed that “freely available data provided is not yet a 

sufficient replacement for the proprietary TeleAtlas data” [18]. Helbich et al. [19] investigated the positional 
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accuracy of road junctions by also comparing OSM with TeleAtlas. Furthermore, Pourabdollah et al. [20] 

developed a method to conflate OSM and Ordnance Survey road attributes. There are several further 

studies addressing the quality of the OSM street networks e.g., [2,21–24] and it has also been shown that 

the quality and coverage of OSM data depends on the users mapping behavior. Usually, the data are denser 

in urban areas in comparison to rural areas [24].  

Besides the extrinsic analyses mentioned above (where two different datasets are compared),  

Haklay et al. [3] applied an intrinsic approach, which relies on only one dataset to evaluate the spatial 

data quality (here positional accuracy) by taking Linus’ Law into account. With this approach, the 

authors were able to show that the OSM positional accuracy increased along with the number of 

contributors. The framework of Barron et al. [25] developed a set of intrinsic OSM quality analysis for 

describing the fitness-for-use for a set of usage types, but without focusing on LULC (land use and land 

cover), which is addressed in this paper. With such an approach no ground truth dataset is necessary, but the 

authors of [25] remark that “absolute statements on data quality are only possible with a high quality 

reference dataset as a basis for a comparison.” Mooney et al. [26] combined intrinsic and extrinsic analyses. 

They investigated quality metrics to evaluate OSM data quality with or without ground-truth information. 

Besides quality analyses of linear OSM features, other studies dealt with areal features. Hecht et al.,  

Kunze et al. [27,28] and Klonner et al. [29] addressed the quality of buildings. They compared OSM building 

features with data from official sources in Germany or Austria. In Germany, a higher completeness in urban 

areas in comparison to rural areas was detected. However, the absolute OSM building completeness in 

general was low [27]. A detailed study by Fan et al. [30] investigated building footprints in regard to 

completeness, semantic accuracy, positional accuracy, and shape accuracy by comparing OSM with ATKIS 

(Authoritative Topographic-Cartographic Information System). The authors concluded that the completeness 

of building footprints is high but that further building attributes are commonly lacking. 

Even though there are many studies addressing the quality of OSM data, few focus on land use and land 

cover. Schoof [31] compared OSM and the German ATKIS Base DLM land cover data in three study 

regions, each covering 25 km2 in Niedersachsen, northwestern Germany. The author addressed 

completeness and positional accuracy for both linear and areal features. Regarding areal features the focus 

was on the categories vegetation and built-up areas, comparing the area sizes. The author showed that the 

ATKIS Base DLM has, with one exception, larger area values than OSM [31]. Jokar Arsanjani and Vaz [32] 

conducted another study focusing on land use and land cover. The authors assessed the accuracy of OSM in 

comparison to the Global Monitoring for Environment and Security Urban Atlas. The completeness index 

and kappa statistics were derived for several large metropolitan areas in Europe. The resulting kappa values 

strongly vary between the investigated cities. Furthermore, Mooney et al. [33] examine the representation of 

OSM features tagged as natural or land use. For instance, the authors calculated the mean distance between 

vertices and concluded that many LULC polygons are under-represented while others are over-represented 

in respect to the number of points [33].  

It has been suggested to effectively check VGI data against official data before use [1]. With this in 

mind, the current study compares the LULC in OSM with an authoritative LULC dataset. More precisely, 

a comparison of the OSM “naturals” dataset with the German authoritative ATKIS DLM dataset is 

conducted for a region of about 1300 square kilometers comprising both urban and rural areas. The aim of 

the study is to assess the quality of OSM land use as well as land cover data. It is investigated if the data can 

be used instead of, or in addition to, authoritative data. The study is a part of a larger project in cooperation 
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between the Heidelberg GIScience group, Central Institute of Mental Health in Mannheim, and the 

Karlsruhe Institute of Technology. The intended longitudinal study addresses the possible relationship 

between well-being or mental health and land use, among others. It would be beneficial to use freely available 

geodata in order to cover a larger region and to reduce the need for costly updates of authoritative data.  

2. Study Area and Data 

Our study area is the Rhine-Neckar region, located in southern Germany in the Federal State of 

Baden-Württemberg (Figure 1). The region comprises 54 municipalities and includes both rural areas 

and the cities Mannheim (~318,000 inhabitants, Nexiga GmbH, 2014) and Heidelberg (~151,000 

inhabitants, Nexiga GmbH, 2014), among others. The total region covers about 1300 km², with built-up 

areas covering approximately 19% of it. This study addresses the quality of OSM land use and land 

cover data by comparing the data with the authoritative data set ATKIS Base DLM version 6.0. This 

dataset is provided by the mapping agency Landesamt für Geoinformation und Landentwicklung  

Baden-Württemberg (LGL—Baden-Württemberg State Office for Geoinformation and State 

development). The data have a scale of 1:25,000 (the highest resolution for nationwide land use datasets 

in Germany) and consist of 103 different object categories, 46 of which are polygon features. The 

minimum area for acquisition is between 0.1 ha and 1 ha with differences between categories. For 

instance, a minimum width of 12 meters is required for streams, whereas other areas such as sport facilities 

and power plants are captured without any restriction regarding minimum area. The dataset is the only 

consistent nationwide authoritative dataset for land use in Germany. For the large study area used in this 

article, this is the best reference available, but there might be limitations due to data actuality and scale. 

 

Figure 1. Land use/Land cover of the study area (Rhine-Neckar region) from (a) ATKIS 

Base DLM, and (b) OpenStreetMap.  

The OpenStreetMap data were retrieved from the OSM database (Osmosis schema). The data have 

been processed according to Goetz et al. [34] and were extracted from the database as shapefiles. The 
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OSM “naturals” objects contain elements tagged with “landuse”, “leisure”, “natural”, “tourism”, and 

“waterway”. According to that, land use as well as land cover features are included and cover 76% of 

the total study area (Figure 1).  

Both the ATKIS and the OSM datasets are vector based. However, the DLM has a fixed scale, while 

in the OpenStreetMap natural dataset the level of detail and consequently the scale varies, as shown by 

the study of Touya and Reimer [35]. Both datasets are from 2014, OSM was downloaded in March and 

the Base DLM was obtained in May. The ATKIS Base DLM is updated at least twice a year. Therefore, 

a similar actuality can be assumed for both datasets.  

3. Methodology 

The comparison of the crowdsourced OSM and the DLM datasets is executed through a semantic 

harmonization (Section 3.1) and a polygon preprocessing part (Section 3.2), which lead to an area related 

map comparison with a confusion matrix (Section 3.3). Figure 2 visualizes this procedure. The semantic 

harmonization was accomplished by translating the German ATKIS DLM nomenclature terms into 

English and subsequently comparing the OSM and DLM datasets’ descriptions. Next, merging all 

polygons within a class solved overlaps within the classes. Afterwards, further inconsistencies were 

solved; overlapping of polygons from different classes had to be solved in order to allow a comparison 

using kappa statistics. After the preprocessing the datasets were intersected, the area values were 

calculated and a confusion matrix was built in order to assess the OSM map quality. This chapter 

explains the preprocessing and the analyses more in detail.  

 

Figure 2. Workflow for the comparison between OSM and ATKIS Base DLM. 
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3.1. Semantic Harmonization  

It is common that different LULC datasets use different semantics. The ATKIS DLM is a German 

system, thus the names of the categories first had to be translated into English in order to allow  

an OSM-DLM comparison. Furthermore, the DLM provides 46 polygon object categories, whereas 

OSM “naturals” has 52 categories for the study area (after processing according to [34]). In order to 

allow for comparison of the datasets, a dictionary was built. First, for each OSM category a corresponding 

ATKIS category was manually identified. Next, these categories were grouped to classes to enable a 

comparison. With this approach 15 comparable LULC classes were formed (see Table 1). In addition to 

these, a class named “unknown” was introduced containing the categories where OSM data could not be 

matched to any ATKIS DLM class, and vice versa. In the OSM data 25.3% of the total area is covered by 

the “unknown” class, while 1.49% of the area in the DLM being labeled “unknown”.  

Some categories required extra attention. Nature reserve for example had to be evaluated separately, 

because it is an administrational object including several land cover classes like forest among others. 

Urban or residential areas also overlap with other classes; they are included in the comparison, being 

given the lowest priority in overlaps. Consequently, overlaps with urban areas were solved by removing 

these areas from the urban class. The new class, “unknown”, in the DLM refers to several of the original 

classes, which cannot be compared with existing data in OSM because the land use is ambiguous. These 

areas mainly consist of major roads, highway junctions, areas of mixed land use, areas with special 

functional character, and areas with unknown land use. The new OSM class, “unknown”, consists of 

areas where no LULC information is available (95%) and areas covered by other classes that cannot be 

matched to the DLM (5%). Once the dictionary was created, the polygon objects needed to be preprocessed. 

3.2. Preprocessing of Polygons 

A comparison of the OSM and the DLM dataset requires the same spatial reference. OSM uses the 

World Geodetic System 1984 (WGS 84), which is appropriate as a global reference, but causes 

contortions in local areas. In contrast, the ATKIS DLM is delivered in the Gauss–Krüger coordinate 

system zone 3. For this study both datasets were projected to the European Terrestrial Reference  

System 1989/UTM zone 32N, a coherent European coordinate system suitable for the study area. 

Subsequently, the datasets were reclassified according to Table 1. Polygons belonging to the same class 

were merged in order to avoid spatial overlaps within the same class as prevalent in OSM. Possible 

topological errors in vector data result from features belonging to at least two classes within one dataset [36]. 

Because this study aims at analyzing the accuracy of OSM by using kappa statistics, a dataset without 

overlapping polygons is a precondition [37].  

Overlaps between classes exist in both datasets and were mainly related to the class “urban”. Within  

the DLM, overlaps are also caused by the classes “industry”, “railway” and “lock”, which occasionally 

overlap with other land use classes. In order to deal with the overlaps in the ATKIS DLM, the following 

rules were established: In case of an overlap with the urban class, the non-urban class was given priority. The 

only exception was for the class “unknown” in which case the urban area was given priority. Another rule 

ensured that “lock” was given priority over “river” and “railway”. Otherwise all lock areas would have been 

removed. For all other overlaps, individual decisions were made after a visual examination of aerial images. 
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Table 1. A dictionary between OSM and ATKIS Base DLM. 

Class OSM  ATKIS Base DLM 

Farmland Farmland, farm, meadow, orchard, vineyard Farmland 1 

Forest Forest, wood Forest 2 

Industry Industrial, commercial, landfill, boatyard Industry and commercial, port 3 

Scrub Scrub Grove 4 

Recreation 

Allotments, village_green, golf_course, park, 

pitch, recreation_ground, sports_centre, stadium, 

water_park, zoo 

Sport, leisure and recreation areas 5 

River Riverbank Harbour basin, stream water 6 

Lake Water Backwater 7 

Railway Railway Rail traffic 8 

Cemetery Cemetery Cemetery 9 

Quarry Quarry Mining, open-cast mining, pit, quarry 1° 

Wetland Wetland Marsh, moor 11 

Lock Lock Lock 12 

Heath Heath Heath 13 

Urban Residential Built-up area 14 

Nature 

reserve 
Nature_reserve 

Nature, environment or soil- 

conservation law 15 

Unknown Other classes/no data 

e.g. mixed land use, area with special 

functional character, unknown land use 16 

or major roads 

Original German labels: 1 Landwirtschaft, 2 Wald, 3 IndustrieUndGewerbeflaeche, Hafen, 4 Gehoelz, 5 

SportFreizeitUndErholungsflaeche, 6 Hafenbecken, Fliessgewaesser, 7 StehendesGewaesser, 8 Bahnverkehr,  

9 Friedhof, 10 Bergbaubetrieb, TagebauGrubeSteinbruch, 11 Sumpf, Moor, 12 Schleuse, 13 Heide, 14 Ortslage,  

15 NaturUmweltOderBodenschutzrecht, 16 FlächeGemischterNutzung, FlächeBesondererFunktionalerPrägung, 

FlächeZurZeitUnbestimmbar 

In OSM, no specific class besides “urban” could be associated with topological errors. However, a 

large proportion of the overlaps were due to sliver polygons that may arise when borders are not aligned 

in OSM. Sliver polygons can also result from different user perspectives with the same area being tagged 

as both “scrub” and “forest” for example. Other occurring errors are due to smaller areas within a larger area, 

for example a lake located within a forest. In most cases, forest areas are covered by large polygons. The 

outer borders of these polygons may be drawn based on an aerial image without consideration of smaller 

non-forest areas inside. If the lake is mapped at a later point it will overlap with the larger forest polygon.  

OSM polygons smaller than 20 m2 were merged with the adjacent polygon having the longest shared 

border. For the remaining topology problems, at first, smaller classes were given priority  

(e.g., a forest lake was given priority over forest). If the best choice could not be determined based on 

the polygon sizes, land use classes were favored over land cover classes. The ‘urban’ class was given 

lowest priority (as in the proceeding with the DLM) with the exception of the unknown class. Analysis 

of aerial images was used to solve remaining errors. Finally, the land use category natural reserve was 

compared separately, all polygons within this class were merged and therefore no overlaps occurred.  
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3.3. Area Related Map Comparison 

In order to address the quality of the OSM dataset, the LULC map comparison was conducted based on 

polygons. Both the OSM completeness and correctness were evaluated. Completeness is an element of 

spatial data quality [38] and this study addresses the completeness of objects. An investigation of the 

completeness of attributes would be another possibility, which is beyond the scope of this study. Another 

measure for spatial data quality is the mentioned correctness. According to ISO 19157 [12] classification 

correctness is a data quality element of thematic accuracy and defined as “comparison of the classes […] to 

a universe of discourse (e.g., ground truth or reference data).” In addition to completeness and correctness, 

Cohen’s kappa is derived in order to further address the agreement between the OSM and DLM datasets. 

Kappa is a well-known measure of agreement in the field of remote sensing [39].  

After extracting the relevant features and preprocessing the data according to Section 3.1 and  

Section 3.2, the overlapping and non-overlapping areas of the resulting OSM dataset with the  

adjusted ATKIS DLM dataset were identified. Next, the area in hectare was calculated and a confusion 

matrix was derived. Based on the matrix the completeness, correctness and kappa could be calculated.  

The True Positive (TP), False Positive (FP) and False Negative (FN) values were derived for every 

single LULC class separately. True Positives are the overlapping areas in the same class in the observed 

(OSM) and reference dataset (DLM). False Positives are areas, which belong to the evaluated class in 

OpenStreetMap, but not in the DLM. Correspondingly, False Negatives are areas belonging to the class of 

interest in the DLM but not in OSM. Completeness (1) and correctness (2) are calculated according to [40]: 

Completeness= 
TP

TP+FN
 (1) 

Correctness= 
TP

TP+FP
 (2) 

Completeness and correctness are also known as producer’s and user’s accuracy, respectively. 

Completeness is an accuracy measure, which indicates the omission errors and correctness measures the 

commission errors [41]. Cohen’s kappa [42] is a statistical measure to quantify the agreement between 

images. It is often used to assess the quality of classification on basis of remote sensing images, along 

with completeness and correctness [39]. The kappa index may be below 0 (meaning that there is less 

agreement than agreement by chance), equal to 0 (which indicate an agreement equivalent to chance) or 

up to 1 (which indicates a total agreement) [43] between two images or maps. This study uses the kappa 

index to address the overall quality of OSM. 

4. Results and Discussion 

The bars in Figure 3 show the completeness and correctness of the OSM dataset for 14 classes. The 

absolute areas of the land use classes are included in the figure as lines. The class unknown is not 

included, because the content of the class is not comparable between the data sets. The figure shows 

both land cover and land use classes. The DLM data shows that a large area is covered by farmland 

(approx. 52,300 ha) and forest (approx. 45,400 ha), with other LULC classes like lock and heath only 

covering comparably small areas (approx. 13 and 4.8 ha, respectively). The illustration also displays 

forest comprising a comparably large area (approx. 46,600 ha) in OSM. Furthermore, this class is being 
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mapped with the highest accuracy, as both completeness (97.6%) and correctness (95.1%) are relatively 

high. One reason for false positive areas in forest, which reduce the correctness value, is that in some regions 

the structure might be similar to scrub and therefore the users mapped these areas as forest. Recreation areas, 

which might be relevant for the well-being of people, show a moderate completeness (57.8%) as well as 

correctness (62.3%). On the other hand, rivers are comparably complete (86.7%) and correctly (87.9%) 

mapped. One reason can be that both forest and rivers are land cover categories that can be easily 

identified in remote sensing images due to their structure and color, but recreation is a land use category 

incorporating different land covers (e.g., a pitch with an athletic track). The former is therefore 

comparably easy to map. Another explanation of the high values could be related to data imports, 

investigated for the OSM road network in the US by [44] for instance. Usage of ATKIS Base DLM is 

restricted and associated with financial costs. Additionally, data cannot legally be imported to OSM. 

Therefore, we can assume that there are no significant imports from the DLM in OSM. Nevertheless the 

completeness pattern of farmland might also be explained by data imports from other sources. The class 

shows a low completeness (45.9%) but a high correctness (94.8%), and it is obvious that primarily the 

western part of the study area is well mapped (see Figure 1). However, the western part is also more 

urbanized than the eastern part, consequently a higher interest or higher number of OSM users could 

explain the higher coverage as well.  

Rather small classes such as cemeteries and lock show a high correctness (97.2% and 97.7%, 

respectively), but the completeness values (77.7% and 12.0%, respectively) show that many areas are 

missing. For the lock class the low completeness is assumingly due to the mapping behavior of the OSM 

users. The area around the actual lock is not included in OSM, but in the administrative DLM dataset. 

For the heath class no results are visible, because the areas are comparatively small in OSM (ca. 2 ha) 

and in the DLM (ca. 5 ha) and the data simply do not overlap. For these examples, the correctness values 

are higher than the completeness ones, while, for three categories (forest, lake and quarry), the 

completeness is higher than the correctness. This might be an indicator of false or inaccurately mapping 

of some areas. 

Nature reserve is a land use covering several land use and land cover classes. The separate evaluation 

results of the OSM nature reserve class show a completeness of 72.92% and a high correctness of 98.58%. 

Kappa was used as an indicator for the OSM LULC data quality. The resulting kappa of 0.61 shows 

a positive agreement between OSM and the DLM. According to the labeling of kappa categories of 

Landis and Koch [43] the measured agreement is substantial (0.61 to 0.80).  

The calculation of kappa for each municipality gives a more detailed insight into the spatial 

distribution of the OSM map accuracy (Figure 4). In the western part, the strength of agreement is 

substantial to almost perfect classified according to Landis and Koch [43]. The municipalities with the 

lowest kappa values are located in the southeastern, more rural, part of the study area. Here missing 

farmland areas result in the rather low kappa values (see Figure 1). The differing scales of the datasets 

might influence the results. In order to investigate this factor, both datasets were converted to a raster 

with a resolution of 50 meters. This coarse resolution (in comparison to the vector dataset) reduces 

potential inequalities at the polygon borders. The derived kappa index (0.61) for the study area did not 

change, and neither did it change when a raster resolution of 20 meters was chosen. These findings 

indicate that the scale in this study area seems to have minor influence on the results. Nevertheless, 



ISPRS Int. J. Geo-Inf. 2015, 4 1666 

 

 

further research is required to investigate the influence of scale in this context, as for example Touya 

and Reimer [35] already did for individual objects. 

 

Figure 3. Completeness and correctness of the OSM dataset in comparison to the reference 

data set ATKIS Base DLM. The lines show the coverage in hectare. 

 

Figure 4. Cohen’s kappa for the municipalities in the study area classified according to 

Landis and Koch [43]. 
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To investigate a possible link between urbanization and OSM quality, the relation of population 

density and OSM coverage, as well as population density and kappa were visualized (Figure 5). The 

figure depicts that a higher population density tends to lead to higher OSM coverage. However, it also 

illustrates that municipalities with a low population density may have either low or high OSM coverage. 

The same applies to the relation of population density and kappa. Nevertheless, it can be stated that both 

the OpenStreetMap coverage and kappa tend to be higher in municipalities with higher population density.  

 

Figure 5. Relation of OSM Coverage (mapped OSM area/municipality area) and kappa to 

population density for the municipalities in the study area (Population density data © 

Statistisches Landesamt Baden-Württemberg, Stuttgart, 2013). 

5. Conclusions 

OpenStreetMap is a freely available data source, yet often contested due to data quality concerns. 

Heterogeneity and incompleteness are some of the major concerns. Al-Bakri and Fairbairn [1] suggest 

testing VGI data against official data before using it. In this study, the quality of the OSM “naturals” 

dataset retrieved from Osmosis was addressed by using the German ATKIS Base DLM as a reference 

dataset. Completeness, correctness and kappa were derived to address the spatial data quality. 

The results show that the completeness and correctness results were heterogeneous. Forest, which 

covers a large share of the study region, was the land use with the highest completeness, while also 

showing high correctness. Several other classes had low completeness (e.g., farmland, urban) and higher 

correctness, indicating that the features present are accurately mapped, yet with a lot of features missing. 

Other classes showed a higher completeness than correctness (e.g., quarry, lake), suggesting that in 

comparison fewer features are missing, but with more wrongly or inaccurately mapped features. The 

calculations revealed that one class had completeness above 90% and six out of 15 classes (incl. nature 

reserve, excl. unknown) have a correctness above 90%.  
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As an overall measure for thematic accuracy, the kappa statistics were derived. The result of 0.61 can 

be interpreted as substantial agreement between the two data sources. A further analysis showed 

differences between urbanized and rural areas. In our study region, the more densely populated areas 

tended to have both higher OSM coverage and higher kappa values.  

To summarize the results, the study revealed that the quality of OSM land use and land cover features 

varies between the investigated classes. Some classes show higher correctness and completeness than 

others and might therefore be applicable for specific purposes. If a full completeness and high 

correctness, as in an official dataset is required, OSM is not sufficient according to this study. Neither is 

a replacement of the German DLM through OSM LULC data advisable at the current state and for the 

investigated region. Nevertheless, for this study region, forest is an example of a land use class, which 

(depending on the application) might be derived from OSM instead of authoritative data and in general 

there might be missing data, but when it is mapped, it is mostly correct. In the future, it will be beneficial 

if land use and land cover in OSM will be improved regarding adding new features and adding precision 

to existing features to create a consistent dataset for several applications or to address a possible 

relationship of land use and people’s well-being. Finally, further research in more study regions is 

required in order to investigate the spatial data quality and the fitness-for-use of OpenStreetMap LULC 

data in more detail.  
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