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Abstract: Road infrastructure in countries like India is expanding at a rapid pace and is 

becoming increasingly difficult for authorities to identify and fix the bad roads in time. 

Current Geographical Information Systems (GIS) lack information about on-road features 

like road surface type, speed breakers and dynamic attribute data like the road quality. Hence 

there is a need to build road monitoring systems capable of collecting such information 

periodically. Limitations of satellite imagery with respect to the resolution and availability, 

makes road monitoring primarily an on-field activity. Monitoring is currently performed 

using special vehicles that are fitted with expensive laser scanners and need skilled resource 

besides providing only very low coverage. Hence such systems are not suitable for continuous 

road monitoring. Cheaper alternative systems using sensors like accelerometer and GPS 

(Global Positioning System) exists but they are not equipped to achieve higher information 

levels. This paper presents a prototype system MAARGHA (MAARGHA in Sanskrit 

language means an eternal path to solution), which demonstrates that it can overcome the 

disadvantages of the existing systems by fusing multi-sensory data like camera image, 

accelerometer data and GPS trajectory at an information level, apart from providing 

additional road information like road surface type. MAARGHA has been tested across 

different road conditions and sensor data characteristics to assess its potential applications 

in real world scenarios. The developed system achieves higher information levels when 

compared to state of the art road condition estimation systems like Roadroid. The system 

performance in road surface type classification is dependent on the local environmental 

conditions at the time of imaging. In our study, the road surface type classification accuracy 
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reached 100% for datasets with near ideal environmental conditions and dropped down to 

60% for datasets with shadows and obstacles. 

Keywords: road condition; road surface type; low cost sensors; GPS; accelerometer; camera 

 

1. Introduction 

Connecting cities and hinterlands, roads infrastructure is the artery of a country’s economy. It enables 

cheap and quick transportation of people, services and goods inland. In developing countries, of late, 

there has been increased focus and budget allotted for the construction and maintenance of highways. 

But the local urban and rural roads have been neglected due to insufficient funds, poor planning and lack 

of coordination between municipal authorities and contractors. Under-maintained roads deteriorate over 

time and become unusable and go beyond repair. In India, the better funded national highways account 

only for 1.9% of the entire road network, although it has the world’s second longest, length of roads. 

These roads are laid with asphalt, bitumen tar and concrete or even compacted mud depending upon the 

requirements of the location and incur different maintenance costs. Hence, statistics of the road condition 

or quality and road surface type is essential to help convince the decision makers to allocate budget to 

new roads and maintenance projects. It can also help them prioritize maintenance of certain areas 

depending on the extent of damage that the road incurs. 

Road maintenance is either done periodically or as an event to fix major issues of road condition like 

potholes, surface cracks and the like. To identify and locate the latter, continuous monitoring of roads 

for these dynamic changes is needed as part of a well-defined operational Geographical Information 

systems (GIS) based Road information system that keeps track of the road condition and surface type. 

Apart from providing geometry and location of the road features, current GIS systems usually provide 

attribute data like speed limit, area type, traffic flow direction, and occasionally some of the road 

furniture like traffic signals and signboards. However these systems do not have an efficient data 

collection infrastructure to update its dynamic attributes. Current practice is to typically record manually 

the road characteristics for every 100 m segment, a costly and time-consuming approach to capture 

attributes that were either missed out previously or those that are changing over time. 

Instead of observing the ground truth from manual inspections, the use of technology for accurate 

road quality monitoring has been preferred. Expensive vehicle mounted systems that use high power 

laser or radar sensors have been proposed but are a challenge to scale up across the cities and regions 

due to their low coverage and unavailability of skilled operators. Alternatively, using smart phones as 

data collection platforms has been of much interest in various studies including road monitoring 

applications as it has an array of useful sensors like GPS, camera, etc. Smart phones are also pervasive 

and inexpensive platforms, but the use of consumer grade sensors for data collection may produce noisy 

and unreliable data. Hence in the context of road monitoring, cheap and smart systems need  

to be built that uses heterogeneous data to achieve a comparable information level of the road  

condition [1,2] similar to the expensive laser based systems. This paper proposes and builds a prototype 

system that recognizes and classifies road condition and road surface type by fusing multisensory data, 

derived from accelerometer, GPS and camera, at an information level. It efficiently classifies the road 
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surface type into asphalt/bitumen tar, concrete or mud roads and the road condition into four distinct 

levels, which are good, satisfactory, unsatisfactory and poor. 

2. Existing Road Monitoring Systems 

While a range of road monitoring systems are in practice, ranging from a fully manual, paper based one 

to a fully automated laser guided engineering grade information provider, it is important to understand and 

evaluate these in terms of information diversity, accuracy and the related parameters: affordability and 

scalability. Road monitoring agencies have witnessed a paradigm shift from camera-based systems towards 

laser scanners starting with the introduction of “LASER Road Imaging System” (LRIS) in 2005 [3] and 

similar laser systems like IBEO Laser [4] and PPS [5]. Typically, one or two illuminating laser beams 

reflected by the road surface are imaged by line cameras to provide 3D profile of the road. These systems 

provide high fidelity (1 mm resolution) and low per-sortie operational time (>100 Kph). However high 

equipment cost, complexity of data processing and skilled resource requirement of these systems slows 

down the overall operation and make them impractical to be applied as a tool for continuous road 

monitoring. VOTERS PAVEMON [6] is a web based GIS system that uses integrated multi sensor data 

like tire pressure sensor, accelerometer, laser, radar, and imagery to arrive at road distress parameters. 

Despite the capabilities, the need for specialized vehicle set up confines the system from being used as 

a mass data collection platform. While the above two systems provide engineering grade accurate 

information on the road condition, other additional information like road surface has to be manually 

collected. In addition, these systems score less on affordability and scalability. 

Imitating the recent trend in data collection methodologies, smart phones have been utilized as a road 

monitoring platform. Smartphones in today’s world are a frequent sight and also have an arsenal of 

valuable sensors to be used for data collection. Sophisticated systems may be beneficial but cell phone 

based systems can easily scale up and is a valuable advantage that they offer. Smart phone based 

prototypes Nericell [7] and Wolverine [8] detect road bumps based on change in accelerometer readings 

along the direction of gravity (Z direction). Additionally, they also estimate the traffic conditions based 

on braking events that results in persistence of surge in accelerometer reading along the direction of 

vehicle motion (X direction). While Nericell employs fixed thresholds Z-Peak [9] and Z-Sus [7] at two 

speed levels for road condition classification, Wolverine learns the thresholds by training an SVM based 

on six features—the mean and standard deviations in the three coordinate axes (µX, µY, µZ, σX, σY 

and σZ) over a window of 1 s. Work has also been done in distinguishing potholes from other road 

anomalies like rail crossing, center lane lights, speed breakers etc. (Pothole Patrol (P2) [9]) by analyzing 

the patterns in accelerometer reading using X–Z ratio and Speed-Z ratio. The assumption that potholes 

impact only one side of the car and spatial clustering on collected data improved the accuracy of the 

detection by reducing false positives. Roadroid [1] is a commercially available smart phone based system 

for road monitoring. It classifies the road into good, satisfactory, unsatisfactory and poor based on 

calculated IRI (International Roughness Index) values and claims 80% to 90% accuracy for the results. 

Vehicle type and mobile platform sensitivity are taken into account for the calculations involved. This 

system can also be used as an inspection tool by manually adding information about bumps and also 

taking snapshots of the road and uploading them to the web database. The road surface imagery that is 
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collected is used only for manually validating the road condition reports and no useful information is 

extracted automatically out of them. Smart phone running Roadroid App is shown in the Figure 1. 

 

Figure 1. Roadroid App on a Smartphone. 

Though these smartphone based systems are affordable and scalable, the main drawback of these are 

that they produce data at an information quality level of 3 or 4 compared to precision laser systems 

whose quality level is 1 [2]. Research needs to focus on using additional data, either heterogeneous or 

redundant, in order to push up the accuracy score of these systems. Earlier system designs were 

dominated by system performance [7,8] but with the ever-increasing processing capabilities, phones are 

equipped to handle computationally expensive tasks like on-board image processing. This opens up a lot 

more possibilities in data gathering. Moreover, road monitoring does offer the luxury of offline processing. 

3. System Design 

3.1. Process Block Diagram 

The proposed system uses camera images, GPS trajectory and accelerometer data to perform spatially 

explicit road surface type and road condition mapping. The system is primarily aimed at monitoring and 

updating a Road GIS database with appropriate attribute information. At present, this system is not a 

road evaluation tool and generating engineering grade data is out of its scope. Figure 2 shows the 

functional blocks of the proposed system, MAARGHA. 

Road surface type estimation is performed using the periodic snapshots from the camera. 

Independently, images that are captured are utilized for detecting potholes. It provides additional 

information to the road condition estimator thread that is performed in parallel using accelerometer and 

GPS speed data. Information obtained from all the processing threads are finally fused at an information 

level using the present position given by the GPS map matching algorithm. Result is a set of road mass 

points whose attribute data is generated. The attribute data can then be used to update the road 

characteristics on a GIS database. This paper focuses on the part of the system shown by the process 

blocks bound within the red box in Figure 2. 
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Figure 2. MAARGHA system Overview. 

3.2. Prototype Design 

The prototype was developed using an Android smart phone for data collection, and a laptop for 

running the offline data processing algorithms. The smartphone was mounted on the car’s windshield or 

the dashboard (see Figure 3) and the data was collected using a sensor data-logging app, at frequencies 

as listed in Table 1 for each sensor. The smart phone app synchronizes the raw data collected from 

different sensors using timestamp. 

Table 1. Sensor Data Collection Frequency. 

Sensor Device Frequency of Data Collection 

Camera (640 × 480 resolution) 0.5 Hz 

GPS Location 1 Hz 

GPS Speed 1 Hz 

Accelerometer 15 Hz 

The screenshot of the software application running on the laptop is shown in the Figure 4 and a  

demo of the same is accessible [10]. Table 2 shows the software and hardware requirements for the 

development of the proposed system. 
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Figure 3. Smartphone Mounted on Windshield with Data Collection App Running. 

 

Figure 4. Screenshot of the PC application. 

Table 2. Software and Hardware System Requirements. 

Software Requirements 
ANSI C++, OpenCV 2.3, Open Street Maps,  

Windows (32/64 bit), Data Logging App on Smartphone 

Hardware Requirements 
2 GB RAM, Intel Core 2 Duo, Android Smartphone with 

accelerometer, GPS, camera 

4. Methodology 

4.1. Road Condition Estimator 

4.1.1. Accelerometer Data Processing 

Accelerometer readings are an indirect way of finding the undulations on the road surface by 

measuring the degree of vibration inside the vehicle. The vibrations are measured along the three 

measurement axes: direction of gravity (Z-axis), direction of vehicle motion (Y-axis) and the direction 

parallel to the dashboard (X-axis). For simplicity, the smart phone is carefully mounted in a  

well-oriented position with the X-, Y-, and Z-axes of the phone aligning with the measurement axes.  
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In practice the accelerometer readings have to be reoriented as in Nericell [7] depending on the mount 

position. Except for intentional speed breakers, vibrations that get through the car’s suspension system 

is mostly chaotic and is reflected on all the three accelerometer axes of measurement. Standard deviation 

(SD) of accelerometer readings along X-, Y-, and Z-axes (Ax, Ay, Az) and GPS Speed are considered as 

features (σx, σy, σz, Vg). Vehicle speed considered in the feature vector is the instantaneous speed. Unlike 

P2 [9], the speed is considered as a separate feature instead of a ratio Az/Vg since it is found that the 

maximum-vibration-amplitude to speed ratio is not constant when traversing similar sized speed breakers 

at different speed values (Figure 5). Vehicle breaking and turning shows sustained reading changes in Ax 

and Ay. Hence such slow changes in readings are removed using a high pass filter so that only high 

frequency data is used for SD calculation. Accelerometer readings are obtained at 15 Hz frequency and the 

features are extracted over a window of 2 s. A non-parametric approach is adopted and the system is trained 

manually for a supervised classification. The roads are labeled into poor, unsatisfactory, satisfactory and 

good for the training and sufficient samples are collected. Later a K-Nearest Neighbor (K-NN) algorithm 

is used for classification of fresh data in to the above-mentioned classes. 

 

Figure 5. Vibration Response: Plot of ratio between Az
Max and Average GPS Speed (Vg) 

while driving through similar speed breakers. 

4.1.2. Camera Based Pothole Detection 

Primary objective of this work is to improve the information quality level of the current state of the art 

in road monitoring systems using heterogeneous data. Bad road condition across the width of the roads is 

detected using the accelerometer but the scattered potholes are mostly missed, as it is a general tendency 

to avoid them while driving. In the current systems, Nericell [7] and Roadroid [1], the images captured by 

the camera are not utilized and serves only as an occasional visual validation proof. Camera snapshots are 

typically captured at a frequency of 0.3 Hz to 0.5 Hz and as a result it becomes an overhead to manually 

inspect every image post data capture, especially when monitoring is done across a vast area. However, 

robust image segmentation based pothole detection is a difficult problem considering the complexity of 
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the scenes captured by the dashboard camera. Emir Buza et al. [11] proposed a method to detect pothole 

using image processing and spectral clustering for rough estimation of potholes. Otshu [12] based 

thresholding is applied to select darker pixels of the road for pothole detection. However, potholes cannot 

be generalized only as patches that have darker pixels inside the boundary compared to the surroundings. 

The color of the interior pixels depend on the road or mud layer that is exposed as a result of wearing 

out of the top layer. This can result in pothole interior pixels to have the same or even higher average 

pixel intensity than the surroundings (Figure 6). The proposed system MAARGHA, detects potholes 

based on the edge features detected on the images (Figure 7). The results of image based detection 

supplements the accelerometer readings in detecting the missed out potholes. 

  

  

Figure 6. Easily Avoided Potholes. 

  

(a) (b) 

Figure 7. (a) Pothole on the road (b) corresponding edge information. 

The smart phone is mounted with the camera facing towards the road and the captured snapshots are 

cropped to focus the region of interest to 1 or 2 m ahead of the car. The sub-image is then smoothed 

using a 5 × 5 bilateral filter, which preserves the sharp edges of potholes and shadows. Because shadows 

are regions of low intensity (Figure 8a) and are connected to the boundary of the image, they are 

identified using intensity threshold based connected component analysis (Figure 8b). If the shadowed 

regions constitute more than 50% of the image the scene is ignored for further processing to avoid false 

positives. Consequently, a canny filter with an empirical lower gradient threshold of 30 is used to obtain 

the edges of the sub-images and edge contours are extracted. Commonly used high:low gradient 

threshold ratio of 3:1 is used to obtain the higher threshold value. A second level of filtering is done by 

selecting the images that have a limited number of contours n (empirical value). The selected images are 

assigned unsatisfactory road condition score. The pseudo algorithm is given below in Algorithm 1. 
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Algorithm 1. Pothole Detection Algorithm 

Step 1: Apply 5 × 5 bilateral filter on sub-image I 

Step 2: Reject I if pixels with intensity values <100 constitute more than 50% of the sub-image 

Step 3: Detect n contours {C1, C2, ..., Cn} based on Canny edges with 90-high and 30-low threshold value 

Step 4: Pothole detected if 1 < n < 5 

Ghost images do get formed due to the reflection on the windshield of the car and these need to be 

filtered out from the input set to the algorithm. The position of the sun with respect to the car can  

be used to detect such possible images and neglect them. Linear shapes like lane markings can  

be removed by exploiting the small length to breadth ratio of a bounding box. However, such 

enhancements are operational details and have not been implemented under the scope of this work. 

  

(a) (b) 

Figure 8. (a) Shadowed Region along the Road, (b) Intensity based segmentation.  

The road condition estimator takes both the accelerometer based classification and the pothole 

detection algorithm to provide the four-class output, with precedence to the latter algorithm in case where 

the classification is worse than the former method. 

4.2. Road Surface Type Classification Using Camera 

4.2.1. Histogram Based Road Surface Type Recognition 

Based on the composition of the construction materials used, the roads appear in different colors. Much 

work has been done in the domain of autonomous navigation systems (Survey by Vipul et al. [13,14]), but 

mostly to distinguish between road and non-road regions. Color content, color features and additional 

features like road boundary [6] and depth sensors based road region modeling have been used in road 

detection. But the problem in hand is to classify the detected road into different surface material types like 

bitumen, concrete and mud. This is a problem of outdoor color classification. Methods discussed in [15] 

have adopted parametric and non-parametric approaches for outdoor colour classification and can be 

applied in the context of road surface type identification. Parametric methods [16–22] predict the color 

based on illumination models while non-parametric methods [23–26] follow sample based training and 

classification regime. The later has been successfully applied for road surface type estimation in the 

proposed system due to its smaller computational footprint. The classification problem is simplified if 

carried out in two steps. First is to differentiate between tar roads vs. mud/concrete roads based on the 

intensity distribution of the scene. In the second step, the mud roads are differentiated from concrete 

roads depending on the colorfulness of image. 
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Image is converted to HSI color space and the histograms are calculated for Saturation and Intensity 

components of the sub-image. Intensity histograms are then used as features in the first stage classification. 

Under open sky conditions, the intensity values of mud and concrete roads are higher than the 

tar/bitumen roads. HSI color space is the closest to the way humans perceive colors and hence hue is 

commonly utilized for color classification [27]. However, HSI being a cylindrical color space the hue 

component which explains the color of the object, is unstable as the saturation and intensity decreases. 

Whereas, the saturation is found to be stable and describes the colorfulness of the scene. Thus, the 

histogram of the saturation channel is used as a feature vector to train the system to differentiate between 

mud and concrete roads in the second stage classification. The marked difference between the saturation 

values of mud and concrete roads is seen in the saturation channel histograms shown in Figures 9 and 10. 

The training dataset used for the first stage classification is built by collecting sufficient intensity channel 

histograms of tar, mud and concrete class samples and labeling them as either mud-concrete pair or tar. 

The second stage training dataset is built by collecting saturation channel histogram samples of mud and 

concrete classes. During classification, if the first stage classification results in mud-concrete pair, the second 

stage classification is invoked to differentiate between mud and concrete. 

  

(a) (b) 

Figure 9. (a) Mud road sample and (b) its histogram of saturation channel. 

 
 

(a) (b) 

Figure 10. (a) Concrete road sample and (b) its histogram of saturation channel. 
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4.2.2. Histogram Distance Metric 

Performing color classification using histograms needs a measure of histogram similarity. There are 

a number of distance metrics that are used for histogram comparison. The paper [28] talks about the 

failure of Euclidean distance metric at higher dimensions. Aherene et al. [29] proposes Bhattacharyya 

distance (equation 1) to be used for histogram comparison when compared to the famed Chi-Squared 

distance method. A Bhattacharyya distance of zero means a perfect match where as a distance of 1 means a 

perfect mismatch. This distance metric is used for performing a K-NN classification using the  

training dataset. 
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4.3. Map Matching of GPS Ticks 

To associate the road profile and surface type data accurately with the correct stretch of the road,  

GPS data is used. But the common commercial grade GPS used in mobile phones are less accurate and 

may also experience multipath reflection while driving through streets. So the GPS ticks obtained by the 

devices are distributed randomly on either sides of the road segment. A simple online map matching 

algorithm, discussed as “Algorithm 2” in [30], is used. Raw GPS ticks are snapped to the nearest road 

segment that is parallel to the direction of vehicle motion, as derived from the heading data (Figure 11). 

A good resolution of the road data is selected such that the separate road center lines are available along 

the vehicle driving direction (Two center lines if it is a two way road). 

 

Figure 11. GPS Map Matching (AB and CD are road segments. p1, p2, p3, p4, and p5 are 

raw GPS coordinates. q1, q2, q3, q4, and q5 are map matched GPS points). 

Post map matching, for every unique GPS point, the latest results from road condition and road 

surface type classification is associated depending on the timestamp of the GPS data point. The result is 

a set of GPS points called the road mass points, whose road condition and road surface type attributes 
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are available. This marks the information level fusion of the results obtain from different modules and 

can be used to update a Road Information System.  

5. Demonstration and Results 

5.1. Data Sets 

The training set was generated in a nearby locality at Hyderabad, India by driving through different 

types of roads and manually classifying the road surface type and road condition. Adequate samples 

were collected for asphalt/tar, concrete and mud surface types and also for the various road conditions. 

Both the training data were saved in separate text files and synchronized using time stamps. 

The collected data was grouped into two sets based on the image information available. The first 

group of datasets was collected on sections of the roads having few shadowed regions and under clear 

sky conditions (Ideal Data). The second class of data has many gaps in terms of shadows, disturbances 

in the path, unclear road surface type, etc. (See Figure 12). The system was trained using one part of the 

ideal data and classification performed for all conditions (Table 3). 

 

  

Figure 12. Ideal road visibility conditions—Dataset 1 (Top row); and Cluttered views with 

unclear road surface—Dataset 2 (Bottom row). 
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Table 3. Number of Training Samples for Road Condition and Surface type Classes. 

Road Class Type Data Points (Samples) 

Good Condition 41 

Satisfactory Condition 30 

Unsatisfactory Condition 22 

Poor Condition 35 

Asphalt/Bitumen Tar Surface Type 24 

Mud-Concrete Surface Type 68 

Concrete Surface Type 38 

Mud Surface Type 30 

5.2. Results 

The classification mode of the application takes in the sensor data and performs a K-NN classification 

for both road condition and the road surface type data. The value of K was chosen as 5 based on the 

accuracy of the results after experimentation with different K values. To avoid incorrect classification 

when the vehicle is stationary, the classification is performed only when the speed of the vehicle exceeds 

3 Kph. The legend for road condition and surface type mapping results is shown in Figure 13. The results 

presented in Figures 14–20 were obtained by driving the vehicle mounted with the setup for a total 

stretch of around 4 km in a nearby locality (The demo is available at [10]). The locality was chosen 

based on the availability of different types of the road surface and road condition classes. Classification 

of road surface type and road condition is performed every 2 s. 

 

Figure 13. Legend for Road Condition and Surface type Mapping. 

 

Figure 14. Road Surface type Map for dataset 1 (few snapshots from the sortie are shown to 

the left and right of the map)—largely consisting of Asphalt and Concrete road. 
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Figure 15. Road Surface type Map for dataset 2 (red circle indicates one set of erroneous 

classification while green circle shows some of the correct classification results)—primarily a 

mud road with one section being Asphalt road. 

  

(a) (b) 

Figure 16. Results comparison for predominantly Smooth Road. (a) is the Road Condition 

Results Map from MAARGHA, while (b) is from Roadroid (Screenshot from its cloud server). 

  
(a) (b) 

Figure 17. Results comparison for moderately rough road. (a) is the Road Condition Results 

Map from MAARGHA (sub image: accelerometer readings), while (b) is from Roadroid 

(Screenshot from its cloud server). 
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(a) 

 
(b) 

Figure 18. Results comparison for significantly rough Road. (a) is the Road Condition 

Results Map from MAARGHA, while (b) from Roadroid (Screenshot from its cloud server). 

 

 

Figure 19. Roadroid results showing 100% smooth road condition for a section of the road 

that does have minor potholes. 
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Figure 20. MAARGHA accelerometer results supplemented by pothole detection showing 

some unsatisfactory road condition points (red circles are some of the detected potholes 

shown with their snapshots). 

5.2.1. Road Surface Type Classification Results 

The road surface type classification accuracy was measured against a manually generated ground 

truth by calculating the percentage of correct classification as per Equation (2). True positives are the 

number of instances when the algorithm matched with the manual classification. False positives are the 

number of instances when the surface type was misclassified. True and false negatives were considered 

to be zero as they cannot be measured in this scenario. The results of road classification for the two 

groups of datasets have been presented below. 

 

 
100

TP TN
Acc

TP TN FP FN


 

  
 

(2) 

The Figure 14 and Table 4 shows a 100% accurate surface type classification result under clear sky 

conditions and when there are no shadowed regions. Figure 15 shows results from dataset 2, where larger 

part of the road stretch is laden with shadows of buildings, which resulted in incorrect classification. Table 5 

summarizes the results, showing an initial accuracy of 51%. Given that the ideal dataset was used for 

training, the shadowed road surfaces tend to get classified as tar/bitumen class as seen in Figure 15. The 

true positives occur at sections of the road without shadows. As road surface type does not change 

frequently, sparsely distributed incorrect classification results can be corrected either using the 

neighborhood information or manually picking the odd results. In this case, around seven such instances 

can be identified and removed bringing up the accuracy to 60%. However, time of the day based filtering 

of the results from multiple sorties can significantly minimize the effect of shadows. 

5.2.2. Road Condition Classification Results 

The results presented here are from both the proposed MAARGHA system and the Roadroid  

system [1], obtained by gathering data at the same time for the same stretch of the road segments.  

The setup needed two smartphones to be mounted to the vehicle windshield, one running Roadroid app 

and the other one running the data collection app used by MAARGHA. While the figures provide a 

visual comparison of the results obtained, the corresponding table tabulates and presents the performance 

of these two systems. A rough estimate of the ground truth was known from the microphone recordings 

of the vehicle driver while conducting the experiments. 
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Table 4. Road Surface type Classification for dataset 1. 

Category True False 

Positives 36 0 

Negatives 0 0 

Accuracy 100% 

Table 5. Road Surface type Classification for dataset 2. 

Category True False 

Positives 24 23 

Negatives 0 0 

Accuracy 51% 

The road condition results in Figure 16 and Table 6 reflects high correlation between MAARGHA 

and Roadroid systems for predominantly smooth roads. In roads intermittent with rough patches  

(Figure 17 and Table 7) both the systems identified similar bad patches (poor) but they opine slightly 

different in the road condition classification. Few of the road mass points that were classified as “good” 

and “satisfactory” in Roadroid has been classified as “unsatisfactory” in “MAARGHA”. Inspecting the 

accelerometer readings at such instances, it is observed that the vehicle produced more body roll than 

vertical motion, when moving slowly in continuous bad patches of the road. The yellow line in the sub 

image of Figure 17 is the lateral acceleration along the X-axis corresponding to the body roll of the 

vehicle. Roadroid appears to be less sensitive towards this lateral motion. Other than such differences 

the results of both the systems match each other for the poor and smoother sections of the road. 

According to the ground truth recorded in the microphone, the third comparison result is for a road 

stretch that had significant rough road condition. This road stretch consisted of rough mud road at the 

beginning and smoother tar road towards the end. As per the results (Figure 18 and Table 8) Roadroid 

follows similar trend of assigning more “good” and “satisfactory” scores as compared to MAARGHA, 

while the latter produced more “unsatisfactory” results. Overall, both systems are comparable having 

similar response to smooth roads and slightly divergent response to the rough roads as seen visually from 

the Figures 16–18. Both the systems successfully identify major road anomalies and thus providing the 

important information expected out of a road survey. 

5.2.3. Pothole Detection Results 

The proposed system uses images obtained from the smartphone camera to identify the potholes that 

are usually missed out by accelerometer only approach. In sections of the roads where accelerometer 

based results from MAARGHA and results from Roadroid (Figure 19) showed 100% “good” roads, 

image based identification helped to identify the missed out potholes. Since the frequency of the 

snapshots is 0.5 Hz, generally multiple runs (Figure 20 shows MAARGHA results from a single run) 

produces 100% detection. The end result of the classification is more realistic with the additional sensor 

information and move closer towards ground. The combined results of MAARGHA and Roadroid is 

summarized in Table 9. 
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Table 6. Comparison Report 1. 

Road 

Condition 

Class 

MAARGHA 

(Num of Points) 

MAARGHA—% 

of Points 

Roadroid—Num 

of Points 

Roadroid—% 

of Points 

Good 76 100 71 100 

Satisfactory 0 0 0 0 

Unsatisfactory 0 0 0 0 

Poor 0 0 0 0 

Total 76  71  

Table 7. Comparison Report 2. 

Road 

Condition 

Class 

MAARGHA—Num 

of Points 

MAARGHA—% 

of Points 

Roadroid—Num 

of Points 

Roadroid—% 

of Points 

Good 224 83.27138 220 80.9 

Satisfactory 3 1.115242 22 8.1 

Unsatisfactory 30 11.15242 12 4.4 

Poor 12 4.460967 18 6.6 

Total 269  172  

Table 8. Comparison Report 3. 

Road 

Condition 

Class 

MAARGHA—Num 

of Points 

MAARGHA—% 

of Points 

Roadroid—Num 

of Points 

Roadroid—% 

of Points 

Good 214 68.81029 253 80.06329 

Satisfactory 18 5.787781 39 12.34177 

Unsatisfactory 54 17.36334 12 3.797468 

Poor 25 8.038585 12 3.797468 

Total 311  316  

Table 9. Comparison Report showing significance of image based pothole detection. 

Road Condition 

Class 

MAARGHA—Num 

of Points 

MAARGHA—% 

of Points 

Roadroid—Num 

of Points 

Roadroid—% 

of Points 

Good 100 96.15385 118 100 

Satisfactory 0 0 0 0 

Unsatisfactory 4 3.846154 0 0 

Poor 0 0 0 0 

Total 104  118  
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6. Conclusions 

The developed system based on multi-sensor information fusion here provided a unique and simple 

way of classifying the roads. There is always a trade-off between computational complexity, ease of 

implementation and the accuracy of results achieved while building a system. While highly complex 

algorithms may provide a high accuracy, the computational and implementation needs of such 

algorithms on mobile or other simple platforms may be quite challenging. In the proposed system, 

accelerometer and camera sensors helped in collecting data to perform the classification, whereas the 

GPS provided for accurately geo-tagging and updating the GIS database. Moreover, all the sensors used 

in this application are common and are available in a modern smart phone. 

Results show that the proposed system compares well with the current state of the art systems that 

produce information levels of 3 and 4. The use of images helped identify information usually missed out 

by the conventional systems, thus improving the information level further. The images also helped to 

provide additional information like road surface type, thus improving the information diversity. Though 

the proposed system is currently not an engineering grade solution, but it can be potentially extended to 

measure the exact dimensions of the potholes, provided a calibrated camera is being used. Also, the 

proposed system enables easy manual inspection of bad road images for large road monitoring projects. 

Further work is needed through extensive field trials for evaluating many other field conditions  

and improving the algorithm heuristics to deliver an operational system of MAARGHA. Algorithmic 

approaches can be introduced to filter and remove lesser quality data especially with respect to the clutter 

of the images. The surface type classification thread of the application depends on the brightness of the 

camera scene; classification accuracy can be improved by using additional luminance sensors to adjust 

the sensitivity of the camera. On the other hand, given the ease of the system application, multiple data 

points for each location including at different times of the day can be generated by multiple users of the 

system—an ideal condition for using this application within a crowd sourced platform of GIS based 

Road Information system’s data generation and updating. The latter leads to a situation where improving 

the accuracy of road classification will become purely an operational challenge. Overall, the proposed 

system provides a valuable contribution in bridging the needs of the road maintenance agencies like the 

municipal corporations, highway authorities and the developments in imaging and sensor technologies 

for road surveillance at all levels. 
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