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Abstract: Readability is a major issue with all maps. In this study, we evaluated whether 

we can predict map readability using analytical measures, both single measures and 

composites of measures. A user test was conducted regarding the perceived readability of a 

number of test map samples. Evaluations were then performed to determine how well 

single measures and composites of measures could describe the map readability. The 

evaluation of single measures showed that the amount of information was most important, 

followed by the spatial distribution of information. The measures of object complexity and 

graphical resolution were not useful for explaining the map readability of our test data. The 

evaluations of composites of measures included three methods: threshold evaluation, multiple 

linear regression and support vector machine. We found that the use of composites of measures 

was better for describing map readability than single measures, but we could not identify any 

major differences in the results of the three composite methods. The results of this study can be 

used to recommend readability measures for triggering and controlling the map 

generalization process of online maps. 
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1. Introduction 

The readability of maps is important. Traditionally, cartographers were responsible for ensuring the 

readability of maps. However, because of the cartographic digital revolution, particularly the use of  

the Internet, many maps are not controlled by cartographers. Therefore, the possibility of measuring 

the readability of a map analytically is important: is it possible to define a measure or a composite of 

measures that describe map readability? 

Measures of map readability have two main uses. The first usage concerns dataset specifications,  

in which producers often set thresholds of measures, such as the minimum size of an object and the 

minimum line width. The second usage is to trigger, control and evaluate the automatic generalization 

process. Although readability measures are frequent applied, relatively few user studies have advanced 

the understanding of their application. In this study, we calculate an extensive number of readability 

measures and evaluate the applicability of these measures in a user study. The aim of the evaluation is 

twofold. First, the evaluation aims to determine which measures are useful for explaining map readability. 

Because a map is a complex entity, a single measure is unlikely to explain its full readability; we must 

combine the measures as weighted readability formulas. Therefore, our second aim is to compare three 

composite methods of measures for describing map readability. Specifically, the aim of this study is to 

evaluate the use of measures, rather than develop new measures. The paper is organized as follows. 

First, the background of previous research in readability measures is provided. In Section 3, we 

describe the methodology, including details of the map samples, the user-test procedure, the 

participants in the user test, and the readability measures and composites. Section 4 presents the results 

of the user test and the evaluation of single and composite measures. The paper concludes with a 

discussion and conclusions.  

2. Related Studies 

2.1. Background 

Map readability is a broad term. In this study, we conducted a user test in which we used the 

following definition: Map readability focuses on the possibility of discerning map symbols (separating 

individual symbols and separating symbols from the background) and on the ease of reading, 

interpreting, and comprehending a map. 

The development of analytical measures of map readability is a relatively new field of research 

compared with the analysis of written text, for example. In the 19th century, Sherman [1] proposed that 

readability is affected by the length and organization of sentences, as well as by the choice of words. 

Readability formulas were introduced in the 1920s. These formulas were used to predict the difficulty 

of a text based on its contents. Gray and Leary [2,3], for example, investigated more than 200 elements 

of content, style, format and features of organization. By 1981, over 200 readability formulas had been 

published. These formulas have been validated by user tests, which have focused, for example, on 

readership, reading persistence and reading efficiency [3]. The obvious question is whether single 

measures or composites of measures, similar to those used to determine text readability, are useful for 

predicting map readability.  
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2.2. Readability Measures 

In cartography and vision science, visual complexity has been identified and reduced. Visual 

complexity can be defined as a state in which excess items, or their representation or organization, lead 

to degradation of user performance [4]. This definition implies that factors such as the amount of 

information/object complexity (“excess items”), the graphical resolution (“representation”), and the 

spatial distribution (“organization”) of map objects determine the degree of readability of a map. In the 

cartographic literature, there have been a substantial number of measures proposed:  

• Amount of information: the number of objects (e.g., [5–7]); the number of objects of 

a particular type [8,9]; the number of vertices [10–12]; the number of nodes, links and 

areas [11,12]; total length of links [12]; and occupied space [7,13]. 

• Spatial distribution: the distribution of objects [11]; object symmetry and organization [7]; 

entropy measures for objects and points [14,15]; homogeneity and number of neighbors [15]; 

density of objects [16]; and congestion measures [17]. 

• Object complexity: sinuosity [18,19]; total angularity [7]; and line connectivity [12,20]. 

• Graphical resolution: minimum size of points (on paper and on screens); minimum width of 

lines; and minimum separation of objects (see e.g., [21]). Additional measures include aspects 

of colors (e.g., contrast) of the visualized objects [7,22]. 

The measures above are mainly used for vector maps. For raster maps, other types of complexity 

measures are used. For example, Fairbairn [12] demonstrated that image compression is a valid measure 

for the structural complexity of raster maps. This result is extended by Jégou and Deblonde [23] who, 

among others, used a quad-tree representation of the raster map. The complexity of the image is then 

estimated by using the structure of the tree and the color value differences of adjacent pixels.  

There have been some studies on composites of measures for map complexity. Fairbairn [12] 

argued that it would be advantageous to use composite measures to describe the complexity of vector 

maps. Rosenholtz et al. [4] and Rosenholtz et al. [24] presented three measures for describing 

properties of visualization: the first describes the visual complexity based on color, contrast and 

orientation; the second calculates a weighted sum of entropies; and the third indicates the density of 

edge pixels. 

The readability of maps is related to visual distractors of images in general. In vision science, 

several studies have been performed regarding factors of efficient image searches. Researchers (using 

field-specific terminology) and others have investigated which distractors (unwanted spatial objects) 

affect the search of a specific target. He et al. [25] concluded that without distractors, the perception of 

spatial objects is limited by the visual resolution. However, when several objects are presented, the 

perception depends on the ability of attentional processes to isolate the objects. To guide a person’s 

attention, the target must be different from the distractors. Examples of such differences could be 

color, orientation and size [26]. In the scope of this paper, we could state that visual science has found 

that identifying and searching for map objects depend on the surroundings of the map objects. If there 

are many similar objects nearby, this identification/searching process is degraded, which will affect the 

readability of the map (cf. [5]). 
  



ISPRS Int. J. Geo-Inf. 2015, 4 421 

 

 

2.3. Usability Tests of Readability Measures 

Moacdieh and Sarter [27] provided an extensive review of methodologies for measuring readability 

(which they denote level of clutter) in graphics and images. In their conclusions, the authors state that 

measuring readability requires both a characterization of the display and/or subjective evaluation and an 

assessment of the performance of readability using performance outcome measures. Phillips and Noyes [5] 

tested the complexity of the topographic basis of geological maps. The aim of the study was to recommend 

methods of improving 1:50,000 geological maps. In this test, five versions of the same map with 

differing topographic bases were compared in terms of map readability. The authors found that the amount 

of information on a map reflects the map readability. The results supported the idea that numerous  

close-proximity objects of the same symbol style or color tend to create clutter. Rosenholtz et al. [24] 

tested three raster-map readability measures, i.e., feature congestion, sub-band entropy and edge 

density, in map search tasks. The search tasks were performed on digital maps. A significant 

correlation existed between the mean log (reaction time) and readability measures. In the second 

experiment, four users were asked to identify a one-second displayed target (on a map) and indicate its 

orientation. Contrast thresholds were studied in relation to readability measures, and a significant 

correlation was noted. In a third experiment, color variability was studied. Eighteen maps of varying 

colors were created. Four users were asked to find a specific target on the maps as quickly as possible. 

It was noted that the reaction times were longer for maps with larger color ranges. Lohrenz et al. [28] 

also used raster-map readability measures, which were based on saliency and color. The authors found 

that low color density plus high saliency results in clutter. Stigmar and Harrie [29] evaluated 

17 measures of the amount of information, spatial distribution and object complexity. Twelve test 

participants were interviewed regarding the readability of a number of test maps and were asked to 

rank maps according to the perceived readability. The results showed that some measures of the amount 

of information and spatial distribution corresponded well to the participants’ opinions. The measures of 

object complexity did not show the same correspondence. 

2.4. Readability Measures in Dataset Specifications and Cartographic Generalization 

Map readability measures in dataset specifications are used for graphical resolutions (e.g., [30,31]), but 

the other measurement categories have not yet led to similar recommendations for map production. 

There are, for example, few rules regarding the total angularity of a line or the maximum number of 

vertices in a map region. Furthermore, to the authors’ knowledge, no map specification includes 

composites of measures.  

Stoter et al. [32] comprehensively studied map specifications for automated map generalization  

(i.e., selection and simplified representation of details appropriate to the scale and/or purpose of a 

map [17]). In their results, the authors listed graphical measures for both single objects and groups of 

objects. However, measures that target the readability of a map were missing in the specifications. 

Many other studies in the field of generalization have both developed and used map readability 

measures, particularly in the context of evaluation. Early work was performed by McMaster and 

Shea [19]. These authors suggested the use of cartometric evaluation, e.g., measures of density, 

distribution and shape, for triggering generalization. More comprehensive studies have been 
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performed, e.g., the AGENT project [17]. In this project, several readability measures of both 

individual and groups of object (proximity, parallelism, congestion, etc.) were developed (see 

e.g., [33,34] for summaries and [17] for a detailed description). Recent overviews of the evaluation of 

generalization, in which readability measures are a component, are given in [35,36].  

Most measures of map readability have been geometrically oriented, e.g., based on the amount  

and distribution of information. This trend is consistent with most research on automated 

generalization that has focused on geometries. Brewer and co-authors [37,38] importantly suggested 

that we must not neglect the importance of the symbol style. Apart from improving the cartographic 

quality, the inclusion of symbol style changes could also reduce the work of maintaining multiple scale 

databases. A practical example of decreasing the need for geometric generalization by symbol style 

changes is provided by the National Land Survey of Sweden. The survey has used a partly transparent 

outer part of road symbols in small-scale maps to reduce the need for movement, e.g., moving building 

objects away from road objects. Additionally, Roth et al. [39] proposed that the traditional 

generalization operators that are geometry focused (see e.g., [40]) should be extended with new 

operators that focus on the changes in symbol styles. The authors introduce a new operator called symbol 

that includes, e.g., adjustment of color, adjustment of iconicity and adjustment of pattern. To trigger and 

control the new generalization operators, we need readability measures that focus on symbol styles. 

Defining readability measures of symbol styles is difficult because of the formalization. For example, 

color measures should include semantic rules (if themes are related, then they should have similar 

colors), contrast rules (support figure/ground in the map) and conventional rules (e.g., water is blue) [41].  

2.5. Semantic Aspects of Readability Measures 

It should be noted that most of the readability measures in the literature (as well as in this study) 

concern the syntactic component, rather than the semantic component, of map readability. Semantics 

are related to the perceived meaning of map symbols and are therefore difficult to measure. It has been 

argued (e.g., [42]) that it is not possible to measure the readability of a map because it is not possible to 

completely measure the semantic aspects. Some portions of information are not actually presented in 

the map but are derived from the reader’s previous knowledge and intelligence. This statement is also 

supported by studies in visual science. Neider and Zelinsky [43], for example, performed a user test of 

search times as a function of clutter in images (the number of buildings in the scene). The authors 

found that low-level descriptions of the scene (similar to some of the measures described in 3.5 below) 

could not fully explain the search time; therefore, they conclude that conceptual aspects may also be 

important in determining the effects of clutter on searches. We are also convinced that the semantic 

level will affect readability, but we have a pragmatic view. If we can show that syntactic measures are 

useful for improving map readability (e.g., by controlling the map generalization process), then these 

measures should be used, even though they do not present the entire truth.  

As described above, much research has focused on defining map-readability measures. However, 

comprehensive user surveys that target the applicability of these measures are lacking. Such studies are 

useful for determining which readability measures or composite measures should be included in the 

map specifications and used for triggering and controlling the automated map generalization process. 

We argue that such measures are particularly important for automated generalization in map services 
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based on user-generated data, such as OpenStreetMap [44]. A user of these services cannot expect the 

same level of positional accuracy and completeness as when using NMA services (cf. [45]), but they 

will expect high map readability. 

3. Materials and Methods 

3.1. Method Overview 

This study compares the automated computation of map readability and perceived readability. The 

methodology comprises six main steps. 

1. A number of map samples were created. 

2. A user test was performed using these map samples. 

3. Analytical readability measures were chosen. 

4. Composites of the readability measures were selected.  

5. An evaluation of how well the single readability measures could describe map readability  

was performed. 

6. An evaluation of how well the composites of readability measures could describe map 

readability was performed. 

In the remainder of this section, we describe the first four steps. The last two steps are given in the 

results section. 

3.2. Materials—Creation of Map Samples 

We decided that all map samples should be derived from topographic maps for two reasons. First, 

topographic maps are the most common maps and are also the base of other maps (such as thematic 

maps). Second, this study aims to evaluate the applicability of syntactic readability measures. 

Therefore, we preferred to use map samples containing feature types that are well-known to most of 

the participants. If there are unknown feature types in the map, there is a risk that these feature types 

would affect the participant’s perception of the map readability. In other words, we want to avoid a 

situation in which the participant’s shortcomings in semantic understanding would affect their judgment of 

the syntactic content.  

The ideal map sample size is controlled by two opposing aspects. The first aspect is that the map 

samples should be as large as possible. Using small map samples would provide an unnatural setting 

for the participants. However, the map samples must be homogenous to produce reliable results. If the 

map samples are not homogenous, then it is difficult to evaluate what circumstances affect a user’s 

perceived readability of a map. Additionally, because the readability measures are based on the entire 

map sample, it is problematic to evaluate their applicability if only parts of the map sample are 

unreadable.  

Based on these considerations, we derived map samples from a topographical map database  

covering the vicinity of Helsingborg, Sweden. The map database consisted of layers in the scale range 

of 1:10,000–1:50,000 (from the National Land Survey of Sweden and the municipality of 

Helsingborg). First, 60 map regions were selected: 30 regions at a scale of 1:10,000 and the other 
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regions at a scale of 1:50,000. The map regions were chosen such that they presented relatively 

homogeneous areas, which were attained by a relatively small map size (3 × 2 cm). The map regions 

represented the most typical types of areas in the map (e.g., urban areas, recreational areas, industrial 

areas, and rural areas) and represented variable map readability. We classified the map samples into 

the following categories: dense (if the map sample has a generally dense information impression); 

sparse; many object types; few object types; dense lines (sub-regions contain dense line objects); dense 

point objects (sub-regions contain dense point objects); and dense buildings. 

The maps for all 60 regions were compiled using three levels of detail (LOD 1–3, see Table 1 for 

details on the map information in each LOD) by selecting data layers with different resolutions. To conduct 

evaluations of graphical resolution measures, the maps were presented with two different symbol 

styles. The first symbol style, TS, (see Figure 1a–d) is a “traditional” Swedish style, often used for 

paper maps and for traditional-looking digital maps. The second symbol style, NS, (see Figure 1e–h) is 

a pale style developed by the Swedish National Land Survey for backdrop mapping.  

Table 1. The map information included at the three levels of detail (LOD) of the map 

samples. The LODs are not standard products but are collections of data layers selected to 

fit the purpose of this study. Point data are in bold, line data are in italics and polygon data 

are in normal font.  

Scale LOD 1 LOD 2 LOD 3 

1:50,000  

• Railroad point symbols 

• Ancient remains and building 

point symbols 

• Roads 

• Power lines 

• Hydrography 

• Contour lines 

• Protected areas 

• Establishments  

(e.g., power plants) 

• Land cover 

• Railroad point symbols

• Roads 

• Power lines 

• Hydrography 

• Contour lines 

• Protected areas 

• Establishments  

(e.g., power plants) 

• Land cover 

• Railroad point symbols 

• Ancient remains and building 

point symbols 

• Roads (low resolution) 

• Power lines (low resolution) 

• Hydrography (low resolution) 

• Contour lines 

• Protected areas 

• Establishments (e.g., power plants)

• Land cover (low resolution) 

1:10,000  

• Road and railroad  

point symbols 

• Ancient remains and building 

point symbols 

• Buildings 

• Boundaries (e.g., real-estate 

boundaries) 

• Roads 

• Power lines 

• Hydrography 

• Contour lines 

• Establishments (e.g., power plants)

• Land cover 

• Road and railroad 

point symbols 

• Ancient remains and 

building point symbols

• Buildings 

• Roads 

• Power lines 

• Hydrography 

• Contour lines 

• Establishments  

(e.g., power plants) 

• Land cover  

(low resolution) 

• Road and railroad point symbols

• Ancient remains and building 

point symbols 

• Boundaries (e.g., real-estate 

boundaries) 

• Roads 

• Power lines 

• Hydrography 

• Contour lines 

• Establishments (e.g., power plants)

• Land cover (low resolution) 
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Figure 1. Eight map samples (a–h) used in the study. The maps are presented with two 

symbol styles (NS and TS) at two scales (1:50,000 and 1:10,000) and at three levels of 

detail ((LOD) 1–3). Maps b and f only differ in symbol styles.  

3.3. Participants in the User Study 

We sought experienced map users or those involved in GIS as test participants. The target user 

categories were thus GIS and geography professionals, GIS and geography students, and professionals 

who use maps in their work (e.g., surveyors). Of the participants, 47% were female and 53% male. The 

average age was approximately 30 years old (although the participants’ ages ranged from younger than 

20 to older than 70). Half (51%) of the participants were students, 23% were teachers or researchers, 

and 26% were “others”; 47% of the participants were Serbian students. The last group was the only 

one to complete the survey as part of a laboratory (i.e., they did not volunteer to participate). All other 

participants answered on a voluntary basis; they were invited using e-mail lists for professionals in the 

targeted user categories. Overall, 37% of the participants were from Sweden, 56% were from Serbia 

and 7% were from other countries. Just over a quarter of the participants (27%) used maps every day, 

59% used maps every week, 13% used maps every month, and 1% claimed that they never used maps. 

3.4. Procedure of the User Study 

The user test was designed as a web-distributed questionnaire. To test all 350 map samples without 

exhausting the participants, we developed seven tests with 50 map samples each. Most of the map samples 

were used in more than one part of the test (see below). The map samples were displayed randomly in 

the tests. Apart from the different maps, the seven tests were identical. The tests were given in order as 

the participants opened the test web page (i.e., participant 1 was given test 1, participant 2 was given 

test 2, …, participant 8 was given test 1, etc.). The test language was English, as we expected 

participants of different nationalities.  

The first page provided an introduction, in which the participants were informed of the aim of the 

test, as well as the test process. We also provided a definition of map readability (see Section 2.1 
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above). This was followed by some personal profile questions and by the main test itself. The main test 

consisted of five parts:  

1. readability evaluation of 17 map samples (see Appendix A), 

2. readability ranking of 10 × 4 map samples, 

3. readability evaluation of 17 map samples, 

4. map task (for 10 map samples), and 

5. readability evaluation of 16 map samples. 

The test ended with a comment box in which the participants were asked to write their comments on 

the map samples or the test, if they had any. The entire test took approximately 20 min to complete. 

The readability evaluations of test parts 1 and 3 consisted of 17 pages each, and test part 5 was 16 pages, 

with one map sample on each page. The definition of “readability” was given on the first page 

(cf. Section 2.1), and the participant was asked to assess the “readability” of the map sample as “very 

difficult to read”, “difficult to read”, “easy to read”, or “very easy to read”. The readability ranking (test 

part 2) consisted of 10 pages with four map samples on each page. The map samples used in this part of 

the test were a selection of the 50 maps used in the readability evaluations (parts 1, 3 and 5). The 

participants were asked to compare the map samples and order them according to their readability. We 

used the sequences from this part to compare the order of the same maps in the readability evaluations. 

The map task (test part 4) consisted of 10 pages, with one map sample on each page. The participants 

were asked to count the number of buildings or ancient remains on the map and to note the number. The 

map samples in this part of the test were taken from a 28-map set that was used in the map tasks in all 

seven versions of the tests. Both ranking and evaluation of the same map samples were included to 

determine whether the participants were consistent in judging the map readability. The purpose of the map 

task was to compare the performances of the participants to their answers in the readability evaluations. 

After removing some outliers (e.g., when the participant assessed all map samples as “very easy to 

read”), 214 participants were included in the test. Some participants (18) did not complete the entire 

test, but we have used the results of the questions they did complete. We argue that these participants 

may not have had time to complete the entire test or may have been interrupted. Since their answers 

seems to be serious, we chose to include their answered questions; there is a minor tendency that these 

persons reveal the map samples as more difficult to read than the rest of the participants. 

Because of the form of the test—a web-distributed questionnaire—the sizes of the map samples  

may have appeared different to participants based on the size and resolution of their computer screens. 

The map samples were designed for a 19-inch, 1280 × 1024 pixel screen, where the map samples were 

displayed at their original scales (1:50,000 and 1:10,000) (3 × 2 cm). To compute the sizes of the map 

samples evaluated by the participants, they were asked to provide their screen size and resolution. 

However, when evaluating the results by comparing the perceived readability values (see next section), 

we found no differences in the readability perceived by the participants using different screen sizes or 

resolutions. All the data were therefore evaluated together.  
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3.5. Readability Measures 

In this study, we used analytical readability measures defined for different types of information in 

the map. Based on their geometrical properties, we defined the following four types of information 

(cf. [46]): 

• minor objects consisting of small, stand-alone point, line and area objects; 

• line networks consisting of line objects forming networks (such as roads, rivers and 

boundaries); 

• tessellation objects consisting of area objects forming tessellations (partitions), such as land  

use; and 

• field-based data consisting of contour lines. 

The measures belong to the following categories: amount of information, spatial distribution, object 

complexity and graphical resolution (cf. Section 2). The measures are listed in Table 2 and described in 

the forthcoming section. All measures were computed for each map sample. The selection was based 

on a literature search and previous experience [29,47]. In the test, we restricted ourselves to  

vector-based measures, i.e., we did not use raster-based measures of complexity (as in e.g., [12,23]).  

Table 2. The measures and their applications to the types of information (rows) and 

measure types (columns). 

Type of 

Information 
Amount of Information Spatial Distribution Object Complexity Graphical Resolution

Minor objects 

• Number of objects 

• Number of vertices 

• Object line length 

• Spatial distribution 

of objects 

• Spatial distribution 

of vertices 

• Object size 

• Line segment 

length 

• Brightness difference 

• Hue difference 

Line networks 

• Number of objects 

• Number of vertices 

• Object line length 

 
• Line segment 

length 

• Brightness difference 

• Hue difference 

Tessellation 

objects 

• Number of objects 

• Number of vertices 

• Object line length 

 

• Object size 

• Line segment 

length 

• Brightness difference 

• Hue difference 

Field-based 

data 

• Number of objects 

• Number of vertices 

• Object line length 

 
• Line segment 

length 
 

All objects 

• Number of object types 

• Number of objects 

• Number of vertices 

• Object line length 

• Proximity indicator

• Proximity value 
  

The readability measures used should ideally be defined based on the visual presentation of the 

data. Therefore, insignificant points in the objects (from a visual perspective) were removed with 

Douglas and Peucker’s algorithm [48] using a threshold of 1.0 meter. 
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3.5.1. Measures of the Amount of Information 

The measures of the amount of information are defined in a map region; in the present study,  

this region is the entire map sample (3 × 2 cm). All the measures, apart from the number of object 

types, should be normalized to the size of the region in map space. Thus, all the values of these 

measures are divided by 6 cm2.  

* Number of objects is the total number of objects in the region. Compound objects consisting of 

multiple objects were not allowed; thus, each geometric object was counted as one object. 

Furthermore, each link in a network was defined as one object. 

* Number of vertices is the total number of object break-points for all objects in the region.  

* Object line length is the total line length of all objects in the region. The total length of the 

boundary is used for area objects, while the boundary of the minimum-bounding rectangle of the point 

symbol is used for point objects. 

* Number of object types is the number of all object types in the region. An object type is defined as 

a group of objects that have the same symbol style. 

3.5.2. Measures of Spatial Distribution 

* Spatial distribution of objects )( _ ObjSDHI  is a normalized version of Li and Huang’s [15] 

geometric measure (see earlier work by Sukhov [49,50]). The measure is based on the Voronoi cells of 

the objects and is defined as the following entropy (cf. [51]): ܫܪௌ஽_ை௕௝ = ∑ ∑௜௡௜ୀଵ݌௜log݌ 1݊௡௜ୀଵ log 1݊ = ∑ ௜௡௜ୀଵlog݌௜log݌ 1݊  (1)

where pi is the ratio between the area of Voronoi cell i and the area of the map, and n is the number  

of objects.  
* Spatial distribution of vertices )( _VerSDHI  is similar to the spatial distribution of objects; it is based 

on a Voronoi diagram of the vertices: ܫܪௌ஽_௏௘௥ = ∑ ௜௞௜ୀଵlog݌௜log݌ 1݇  (2)

where pi is the relative size of Voronoi cell i, and k is the number of vertices. 

* Proximity value (PV) determines whether disjoint objects are too close to each other: ܸܲ = ∑ ∑ Area	of	intersection between buffers around object	݅	and	object ݆௡௝ୀ௜ାଵ௡௜ୀଵ Area of region (3)

where n is the number of disjoint objects. The buffer size is based on the symbol size and a required 

minimum separation of 0.3 mm between the symbols of the objects. Note that this measure only 

addresses disjoint objects; objects that are connected should not be added to the proximity value. 

* The proximity indicator is defined as the number of object pairs for which the shortest distance 

between the objects is less than a set threshold value (0.2 mm). The objects in the pair must be disjoint. 

This measure is computed for distances between different minor objects, between minor objects and 

lines, and between different field-based objects.  
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3.5.3. Measures of Object Complexity 

* Object size reflects the object size distribution. In many cases, the interest is not the size of the 

smallest object but whether there are many small objects. Therefore, we list all the objects according to 

size and use the size of the 30% percentile object (i.e., 30% of the objects are smaller than the size of  

the measure).  

* Line segment length concerns all the line segments in the line and area objects, and it reflects  

the line segment length distribution of all of these segments. In this study, we use the value of the 10% 

percentile as a measure of the line segment length. 

3.5.4. Measures of Graphical Resolution 

In the user studies, we used a topographical map database to generate the map samples. Therefore, 

the database was compiled by adhering to the standard limits of the minimum size of objects, etc. 

Therefore, we restricted the measures of graphical resolution to colors, particularly the measures of 

brightness difference and hue difference. Both refer to only one color per object; if an object is  

multi-colored, then the most dominant color is used. The measures are based on colors expressed in the 

RGB system, where each component (red, green and blue) is defined by a value between 0 and 255.  

* Brightness difference (Δbr) is defined as the absolute difference in brightness (br1, br2) for two 

neighboring objects (cf. [52]): ∆ܾݎ = ଵݎܾ| −  |ଶݎܾ
where ܾݎଵ = ଵ݀݁ݎ) ∙ 299) + ଵ݊݁݁ݎ݃) ∙ 587) + ଵ݁ݑ݈ܾ) ∙ 114)1000  

red1 etc. are the colour components for the first object, and 

br2 is defined analogously. 

(4)

* Hue difference (Δh) is obtained by (cf. [52]): ∆ℎ = ଵ݀݁ݎ| − |ଶ݀݁ݎ + ଵ݊݁݁ݎ݃| − |ଶ݊݁݁ݎ݃ + ଵ݁ݑ݈ܾ| − ଶ| (5)݁ݑ݈ܾ

The formulas for brightness and hue difference are defined for single neighborhood relationships. In 

this study, we used the mean values for all neighborhood relationships to describe the differences in 

brightness and hue in the map. We applied measures for different information types as follows:  

• minor objects—each possible pair of non-disjoint minor objects and tessellation objects constitutes 

a neighborhood relationship; 

• line networks—each possible pair of non-disjoint line network objects and tessellation objects 

constitutes a neighborhood relationship; and 

• area tessellations—neighbors are simply neighboring polygonal objects. 

3.5.5. Implementation of the Analytical Measures 

The measures were implemented in a Java program based on the open-source packages JTS 

Topology Suite (JTS; [53]) and the OpenJUMP platform [54]. To create Voronoi regions (for 

evaluating the spatial distribution of points and objects), we used the c-program Triangle [55,56]. 
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3.6. Composite Methods 

The second aim of the evaluation is to compare composite methods to find the most appropriate 

option. The first task was to select the composite methods to be compared.  

A common approach for compositing is to set up a number of criteria that must all be satisfied. In 

this study, the criterion for map readability is that the map’s readability measures are less than a 

particular threshold. To test this approach, we included threshold evaluation as one of the composite 

methods. Another common composite approach we would like to evaluate is a linear combination of 

measures. Therefore, we included the composite method multiple linear regression. 

Multiple linear regression requires that the map samples used for creating the regression 

relationship have a numerical value that describes the map readability (as our perceived readability 

values). One could anticipate a situation in which the map samples are classified as either readable or 

non-readable. In such a case, traditional multiple linear regression is not feasible. One composite 

method that could use such a training set is the support vector machine (SVM; [57]). In the study, we 

would like to determine whether we lose information by using a training set only based on a 

classification (rather than our perceived readability values); therefore, we included SVM in our study. 

Support Vector Machine 

Support vector machines (SVMs) are a supervised learning technique. SVM was first developed in 

the 1970s [57] but was not given much attention until the 1990s. SVMs have been used for 

classification problems in pattern recognition and object tracing. Originally, SVMs were designed to 

be used for only two classes. Now, however, several approaches have been proposed for multiclass 

classifications. 

SVMs construct a dividing hyperplane based on the properties of training samples. The distance 

from the hyperplane to the nearest training data points (of each class) should be maximal. To find this 

hyperplane, so-called support vectors are used (see Figure 2). Not all training samples need to 

contribute to the hyperplane. For many data samples, however, it is not possible to completely separate 

the data by linear boundaries. In these cases, cost measures are introduced to “penalize” some data points 

that do not fit the linear border (cf. [58]). When a linear approach is not suitable, SVMs can use a 

nonlinear classification, which maps the feature vectors into a higher dimensional space where they 

may be more easily separated [59].  

 

Figure 2. A hyperplane separates two classes in a two-dimensional space (x and y). 
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4. Result 

4.1. Perceived Map Readability 

The test answers were collected and grouped according to the test task. The answers to the 

readability evaluation (test parts 1, 3 and 5) were converted into numerical values of 1 to 4, 

corresponding to the readability assessments made by the participants (1 for “very difficult to read”, 

2 for “difficult to read”, etc.). For each map sample, the mean of the numerical values of the 

readability was computed; this value is denoted as the perceived readability value. The perceived 

readability values were used in the evaluation of single measures. 

For the evaluation of the measures, we also categorized the map samples as either readable or  

non-readable (Table 3). In this classification, we used a mean perceived readability value of 2.5 as the 

threshold value. This is a reasonable threshold because the participants graded these map samples as 

“very difficult to read” or “difficult to read” more frequently than “easy to read” or “very easy to read”.  

The answers between the different groups of participants were quite consistent. If we compare the 

answers from only the Serbian students with those of the entire group, there was a 6% mismatch in the 

classification in readable/non-readable map samples. 

Table 3. The number of readable and non-readable map samples. 

Map Symbol Type Non-Readable Readable 
NS 61 114 
TS 49 126 
All 110 240 

Examples of perceived readability values, standard deviation of perceived readability values and 

perceived readability classes for the map samples shown in Figure 1a–h are listed in Table 4.  

Table 4. Examples of perceived readability values (PRV), standard deviation of perceived 

readability values (Std) and readability classification for the eight map samples shown in 

Figure 1. It should be noted that maps b and f only differ in symbol styles. Thus, the map 

with the traditional style (TS) is regarded as more readable than the map with the pale style 

(NS). 

Map Sample 

(from Figure 1) 
a b c d e f g h 

Scale 1:50,000 1:50, 000 1:10, 000 1:10, 000 1:50, 000 1:50, 000 1:50,000 1:10,000

Symbol style TS TS TS TS NS NS NS NS 

PRV 2.48 1.83 3.21 3.03 2.30 1.64 3.40 2.96 

Std 0.53 0.54 0.69 0.80 0.82 0.73 0.50 0.64 

Readability 

classification 
Non-readable Non-readable Readable Readable Non-readable Non-readable Readable Readable 

The results of the readability ranking (test part 2) were arranged as an ordered sequence of maps 

from the most readable to the least readable. The mean ranking by all the participants was computed 

for each sequence. This sequence was compared with the order of the same maps given by the perceived 
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readability values. The sequences only differed in a few instances. Hence, the assessments of 

readability were very similar when the participants evaluated the readability of one map at a time and 

when they evaluated a number of maps together. This result confirms the reliability of the perceived 

readability values. 

The results of the map task (4), counting of the number of buildings or ancient remains on the maps, 

were transformed into the number of correct and incorrect answers for each map. The results showed a 

rather low proportion of correctly counted map objects. However, most of the time the error was only 

one or two objects. It could also be noted that most of the map samples used in this part of the test were 

perceived as non-readable (“very difficult to read” and “difficult to read”) in the readability assessment. 

4.2. Correlation of Single Measures of Map Readability 

The aim of the evaluation of single measures is to identify the measures that showed a good correlation 

with the perceived readability of the user test. This was performed by comparing the computed values of 

each measure with the perceived readability value. All of the map samples were used in the evaluation of 

the graphical resolution measures. For the other types of measures, we used only the TS map samples, as 

this symbol style was found to be more readable (discussed later in this section). 

The evaluation is performed by setting up a regression formula of the form: ݕ = ߙ + ߚ ∙ (6) ݔ

where x is the perceived readability value, y is the value of the measure, and α and β are the regression 

parameters. The number of perceived readability values that can be explained by the measure is 

computed by R: 

ܴ = ඨ1 − ∑ ௜ݕ) − ∑ො௜)ଶ௡௜ୀଵݕ ௜ݕ) − ത)ଶ௡௜ୀଵݕ  (7)

where 

yi is one perceived readability value; ݕො௜ is an estimate of the readability value based on the value of the measure using the regression 

(Equation (6)) ; ݕത is the mean value of all perceived readability values. 

We also tested whether the perceived readability values were independent of the single measures. 

First, we introduced the null hypothesis that the readability values were independent of the single 

measure and performed a two-sided statistical test by computing the p-value. The p-value is the 

probability of obtaining the same values in the null hypothesis and in the data material. In practice, 

whether the regression parameter β is equal to zero is tested (i.e., the perceived readability values are 

independent of the values of the measures). If the p-value is less than 0.01, then there is a strong 

argument against the null hypotheses. 

4.2.1. Result 

The evaluation result of the single measures is provided in Table 5. Generally, the measures of  

the amount of information had the highest R-values and best explain the readability of the maps. The 
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second-best category was the spatial distribution measure. Measures of object complexity and 

graphical resolution could not explain the map readability.  

Table 5. Evaluation of single measures. Note that in some cases, the measure is equal to 

zero for a map sample (e.g., the measure Spatial distribution of objects is zero when 

no minor objects are present). These samples are then removed for evaluating this 

particular measure. 

Readability Category Readability Measure Types of Information R-value p-value 
Amount of information Number of object types All objects 0.52 1.0·10−13

Amount of information Number of objects All objects 0.47 8.3·10−11

Amount of information Number of vertices All objects 0.48 1.7·10−11

Amount of information Object line length All objects 0.62 2.8·10−20

Spatial distribution Proximity indicator All objects 0.40 4.2·10−8 
Spatial distribution Proximity value All objects 0.26 5.5·10−4 
Spatial distribution Spatial distribution of objects Minor objects 0.12 0.16 
Spatial distribution Spatial distribution of vertices Minor objects 0.04 0.67 
Object complexity Object size Minor objects 0.06 0.59 
Object complexity Line segment length Line networks 0.11 0.21 

Graphical resolution Brightness difference Tessellation objects 0.10 0.19 
Graphical resolution Hue difference Tessellation objects 0.10 0.19 

4.2.2. Discussion 

Based on the p-values, we can reject the null hypothesis that the perceived readability values are 

independent of the values of the amount of information. This confirms previous findings by Phillips 

and Noyes [5], Rosenholtz et al. [24], and Stigmar and Harrie [29]. However, even if the perceived 

readability values depend on the measured values, the degree of explanation is low (the R-values are 

comparatively small); it is not possible to explain readability only by measuring the amount of 

information. This statement can be illustrated by the best overall measure—object line length. For this 

measure, the following regression relationship was obtained: 

perceived_readability_value = 3.24 − 0.035·object_line_length (8)

From Figure 3, we can see that map samples with long object line lengths generally have low 

perceived readability. However, the opposite case is not that clear. A map with short object line lengths 

could have low perceived readability. The difficulty in reading these maps may stem from other map 

properties (e.g., cluttering by point objects). Specifically, it is not possible to identify a relationship 

between map readability and a single measure; thus, defining the readability based on composites of 

measures is needed. 

The object complexity and graphical resolution may poorly explain the perceived readability 

because the cartographic data were the appropriate resolution and symbol style for the scale used. If we 

had used much more detailed data in maps of the same scale, then this type of measure may have been 

more important.  
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Figure 3. Relationship between the perceived readability value and the object line length. 

4.2.3. Evaluating Brightness and Hue Measures 

The color measures in this study were used to compare the pale symbol style (NS) with the 

traditional style (TS). The evaluation showed that the NS map samples were more difficult to read than 

the TS samples (Table 3). The color measures for the tessellation objects in the NS maps were ∆ܾݎധധധധധ = 8 

(mean difference in brightness for all tessellation objects and map samples) and ∆ℎധധധധ  = 35 (mean 

difference in hue for all tessellation objects and map samples); the corresponding values for the TS 

maps were ∆ܾݎധധധധധ = 15 and ∆ℎധധധധ = 52. 

The difference in the perceived readability values (for maps of the same region but with different 

symbol styles) is particularly large for maps that only contained land use information. The maps shown 

in Figure 4 had perceived readability values of 1.9 (NS) and 3.0 (TS). For these maps, the color measures 

for the tessellation objects were ∆ܾݎതതതതത = 7 and ∆ℎതതതത = 28 for the NS map and ∆ܾݎതതതതത = 25 and ∆ℎതതതത = 84 for 

the TS map. 

 

Figure 4. The same map area with different symbol styles. The TS map sample (right) was 

found to be more readable than the NS map sample (left). 

4.3. Evaluation of Composites of Measures 

4.3.1. Selection of Measures in the Composites 

The choice of measures for the composites was based on the following criteria: 
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(1) measures from as many categories (i.e., amount of information, spatial distribution, object 

complexity and color) as possible should be included; 

(2) only measures for which we can reject the null hypotheses that the perceived readability value 

is independent of the measure are included (i.e., the p-value must be less than 0.01 in Table 5); 

(3) the correlation between the measures should not be too high. 

Because the measures of the amount of information best explain the perceived readability (cf. Table 5), 

we decided to select two measures from this category. The three best candidates were object line 

length, number of vertices and number of object types. The second-best category was spatial 

distribution. The best candidate is the proximity indicator. All of these measures are defined for all 

objects (cf. Table 5). There are no measures in the categories of object complexity and graphical 

resolution that meet the second criteria. 

We investigated the correlation between the four candidate measures using the following  

correlation formula: ܿ݊݋݅ݐ݈ܽ݁ݎݎ݋	(݉ଵ,݉ଶ) = ∑ (݉ଵ௝ − ഥ݉ଵ)(݉ଶ௝ − ഥ݉ଶ)௡೘௝ୀଵට∑ (݉ଵ௝ − ഥ݉ଵ)ଶ ∑ (݉ଶ௝ − ഥ݉ଶ)ଶ௡௠௝ୀଵ௡೘௝ୀଵ  
(9)

where m1 and m2 are two measures, nm is the number of map samples, m1j is the value of measure 1 for 

map sample j, and ഥ݉ଵ is the mean value of measure 1 for all map samples. This coefficient is equal to 

1 for a perfect correlation and 0 for no correlation.  

Table 6 provides the correlation coefficient values for the four candidate measures. High 

correlations were found between the measures describing the amount of information. For example, the 

correlation between number of vertices and object line length was 0.92. Based on these correlation 

values, we decided not to use the measure number of vertices. The final list of measures was: 

m1 = Object line length (all objects) 

m2 = Number of object types (all objects) 

m3 = Proximity (all objects). 

Table 6. Correlations (Equation (10)) between measures. The computations are based on 

the 175 TS map samples. 

Readability Measure a b c d 
(a) Object line length 1.0  

(b) Number of vertices 0.92 1.0  
(c) Number of object types 0.72 0.71 1.0  

(d) Proximity indicator 0.37 0.20 0.11 1.0 

4.3.2. Composite I: Threshold Evaluation 

To compute the threshold value for each measure, we utilized the regression relationships computed 

in Section 4.2. The computations of the threshold value were based on where the regression line intersected 

the threshold for a readable map (i.e., when y = 2.5 in Equation (6); cf. categorization of readable maps 

in Section 4.1). By using this approach, we would obtain a threshold value of 21.7 cm−1 for the object 

line length. According to Figure 3, these values classify too many map samples as non-readable (which 

is also the case for the other two measures). We made some tests of different values and found that an 
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increase of 10% of the threshold values where appropriate (i.e., gave many correct classified map 

samples); hence, the threshold values (Ti) is defined as follows:  

௜ܶ = 2.5 − ௜ߚ௜ߙ ∙ 1.10 (10)

where αj and βj are the regression parameters estimated for measure j (cf. Equation (6)).  

Table 7 contains the estimated threshold values. This table also contains information on the number 

of maps that were classified as non-readable according to each measure. The total number of map 

samples that did not meet at least one of the threshold values was 39, which should be compared with 

the total number of map samples that were perceived as non-readable in the user test (49).  

Table 7. Threshold values for classifying a map sample as non-readable. 

Measure Threshold 
Number of Map Samples 

Classified as Non-Readable
Object line length  >23.9 cm−1 23 

Number of object types >17.4 19 
Proximity indicator >71.2 11 

4.3.3. Composite II: Multiple Linear Regression 

The composite method of multiple linear regression was included to investigate whether a linear 

combination of several measures could describe the readability of the map samples. The following 

regression formula was used:  

perceived_readability_value = ߙ + ଵߚ ∙ ݉ଵ + ଶߚ ∙ ݉ଶ + ⋯+ ௡ߚ ∙ ݉௡ (11)

where 

α, βi are regression parameters, mi is the value for measure i, and n is the number of measures used 

in the regression. The regression parameters are determined by a least-squares’ fit of the data 

sample, in this case, by the perceived readability values and the measures in Section 4.3.1.  

After the parameters were determined, the regression parameters were used to classify the map 

samples. This classification was made by applying Equation (11) to all map samples. If the estimated 

value was less than 2.5, then the map sample was classified as non-readable. The computations for 

multiple linear regression was performed by a Matlab script.  

4.3.4. Composite III: Support Vector Machine 

In this study, we used the linear approach of SVMs, in which two classes (non-readable and 

readable) were available, i.e., we used settings similar to Figure 2. We used all the map samples as a 

training set. For the computations, we used the SVM tool in the Bioinformatics Toolbox in 

Matlab [60], along with personal Matlab scripts. 

4.3.5. Results of the Measure Composites 

Table 8 presents the result of the measure composites. Note that we used the same map samples for 

training and testing the composite methods (e.g., the same map samples to determine the regression 

parameters that are later used for the evaluation). By doing this, we overestimate the amount of 
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correctly classified map samples. For the composite methods, multiple linear regression, and support 

vector machine, we performed several tests in which we divided the map samples into two parts, for 

example, 145 map samples for training and 30 for evaluation. Typically, the number of correctly 

classified map samples is approximately 2%–5% lower than that shown in Table 8. However, the 

random selection of map samples in each category substantially affects the results (a single evaluation 

can vary between 65% and 95% correctly classified map samples). Therefore, it is not straightforward 

to compare the composite methods, which was the main aim of this study; hence, we included all the 

map samples in both the training and evaluation datasets. 

Table 8. Percentage of correctly classified map samples for each composite method using the 

measures m1 = object line length, m2 = number of object types and m3 = proximity indicator. 

Measures Used in 
the Composites 

Threshold 
Evaluation 

Multiple Linear 
Regression 

Support Vector 
Machine 

m1 76 75 73 
m1, m2 78 78 74 

m1, m2, m3 78 83 79 

In the supplementary material, the results of the three composite methods are listed for each map 

sample. From this list, we can conclude that there are minor differences between the methods 

classifying readable and non-readable samples.  

5. Discussion 

5.1. User Tests 

The data acquisition process, i.e., the user test, is important. In this study, we used a web-distributed 

test, which provided us with a large number of participants. This extensive material has been valuable 

when performing the described evaluations. However, every method has disadvantages. One 

disadvantage of our user test is that we were not able to observe or talk to the participants during the 

test. At the end of the test, we provided a comment box for which the participants were able to 

comment on the test or maps. However, only a few participants took advantage of this feature. 

Therefore, we do not know the attitudes of most of the participants towards the maps, which might 

have provided valuable qualitative data. Another disadvantage of user tests based on judgment is that 

they might answer differently than they would in real life [61]. In future studies, it is therefore important 

to include other user test methods to reflect the different aspects of participants’ performances. 

In the user studies we divided the participants into seven groups where the groups studied different 

maps. If there are biases between the groups this will potentially affect the classification of the map 

samples, especially since we used a single threshold value to distinguish between readable and  

non-readable maps. These circumstances are likely the reason that seemingly similar map samples are 

classified differently (see e.g., the map samples Trad10_GL1_04, Trad10_GL2_04 and 

Trad10_GL3_04 in the supplementary material). 

In the user test, we used a scale of four possible answers, where we later classified two as readable 

and the other two as non-readable maps. In this way, we forced the user to decide whether the map was 
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readable or not. Forcing the user to answer without a neutral choice is debatable, and we are aware that 

our choice of excluding a neutral choice might bias our results. Furthermore, we used the mean value 

of all answers to decide whether a map was readable or non-readable. We also tested with using the 

median values. The difference between these measures was fairly small. Five readable map samples 

(using mean values) where classified as non-readable using medians, and the same amount was 

misclassified in the other direction. All of the map samples that were classified differently using mean 

and medians had a perceived readability value between 2.41 and 2.58. In our study we preferred to use 

the mean value since it provided us with the possibility to use standard multiple linear regression with 

the (mean) perceived readability values as dependent variable (cf. Equation (11)). 

5.2. Composites of Measures 

There are no major differences between the results of the three composite methods (Table 8). The 

percentage of correctly classified maps is mainly dependent on the ability or inability of the measures  

to explain readability. However, there are a few things that we should note. The threshold evaluation is 

appealing because it is conceptually easy and logical. If all the threshold constraints are met, then the 

map is simply classified as readable. A challenge of this method is setting the threshold. In this study, 

we set the threshold values according to a common formula for all measures (Equation (10)). We 

tested the threshold values through manual modifications to obtain a somewhat better result, but we 

preferred to continue with Equation (10) in the evaluation. In principle, it would also be possible to 

write an optimization routine to define the optimal threshold values (according to the map samples). 

The results of multiple linear regression (MLR) and support vector machine (SVM) are similar  

(Table 8). There are well-known methods for determining the regression parameters in MLR and the 

hyperplanes in SVM. One advantage of SVM is its ability to handle the situation in which training 

datasets only have information on whether the training map samples are readable or non-readable  

(a standard MLR requires numerical readability values). Additionally, the MLR method is likely more 

sensitive for outliers in the test data, which could be map samples with uncommon measurement values. 

We also performed experiments with the artificial neural network Biased ARTMAP [62,63]. Biased 

ARTMAP is an unsupervised learning classification (clustering of map samples in measurement space) 

followed by supervised classification (determining whether each map sample cluster contains readable 

or non-readable map samples). However, the use of Biased ARTMAP produced significantly worse results 

than the other composite methods, possibly because Biased ARTMAP, and similar methods, relies on 

clusters in the input data. However, the readable/non-readable map samples do not form clusters in the 

measurement space (cf. Figure 2) but rather determine the perceived readability by threshold values.  

5.3. Evaluation of the Study 

In our composite study (Table 8), approximately 80% of the map samples were classified correctly 

based on the three best available measures. The accuracy was possibly limited by the following factors: 

(1) The readability measures are inadequate. 

(2) The symbol design was not good. 

(3) The best composites methods were not used. 
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(4) We must consider the semantic aspects of map reading. 

(5) We should have used fuzzy classification rather than crisp classification. 

A short discussion of each of these factors is stated below.  

One could argue that we included all relevant measures in this study. However, raster-based 

measures (e.g., [12,23]) and measures of complexity and graphical resolution (developed in e.g., [17]) 

are missing. Of course, we may still need to develop new measures that are missing in the literature. If 

we study map samples that were perceived as non-readable (by the participants) but classified as 

readable (by the measures), then we find samples with regions of dense lines (foremost railway lines) 

and point objects (cf. Figure 5 and supplementary material). Here, we would need better measures to 

include these properties. One might also argue that the problem of the readability of these maps is not 

related to geometry but to the symbol style; hence, readability measures that better capture the symbol 

style are needed. It might also be so that the maps in Figure 5 are perceived as non-readable because of 

that there are several similar objects in a neighborhood, which complicate the search for a spatial 

object (see e.g., [5,26]). 

The design of the symbols is surely an important aspect of map readability. In our result we 

revealed that map samples including cadastre boundaries often were classified as non-readable. This is 

especially the case for small real-estates such as the right map in Figure 5. In this case the chosen map 

symbol for the cadastre boundary is not appropriate for the size of the cadastre units. 

  

Figure 5. Maps that were often misclassified as readable: (left) maps with dense lines, 

(middle) maps with dense/overlapping symbols and (right) map with bad symbol types 

(of the cadastre boundaries). 

An interesting research direction is to identify a pattern between misclassified maps and the 

properties of the map samples (cf. supplementary material). We studied the relationships between the 

classification between the map samples and the outcomes of the study. A χ2 test (with 5% significance) 

indicates that map samples that are dense and have dense lines is more likely to be misclassified (than 

map samples in general), but it is hard to make any clear conclusion. If we would have used a finer 

categorization of the properties of the map samples, we could perhaps have been able to identify the map 

samples in Figure 5; however, our categorization (which occurred before the analysis) was too broad. 

We can conclude that the three composite methods used provided similar results, despite the 

differing foundations of the methods. We can also conclude that composite methods based on 

clustering in measurement space, such as Biased ARTMAP [62,63], are not appropriate. Whether there 

are other composite methods that would provide substantially better results are, to the authors’ 

knowledge, not very likely.  

The readability measures in this study are at the syntactic level (cf. Section 2.5), i.e., they measure 

graphical complexity. By studying the examples of misclassified map samples, we can observe the 
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following. Map samples that are perceived as readable but classified as non-readable often cover a 

common geographic pattern (Figure 6 and supplementary material). For map samples that cover more 

unusual geographic regions, the situation is often the opposite: the map samples are perceived as non-

readable but classified as readable (Figure 6 and supplementary material). Hence, it seems as that the 

map reader’s ability to interpret the map in a geographical context are important, i.e., we cannot 

neglect the semantic aspects of the map samples when we study map reading. This result is indicated 

even though we deliberately chose map regions that did not contain strange geographic features 

(cf. Section 3.2). One can argue that this result is an obvious result, e.g., it is well-established that 

readability of images in general is affected by the understanding of the context [43]. 

 

 

Figure 6. The two maps on the top are perceived as readable but are classified as  

non-readable; they both include a common geographic pattern. The two maps on the 

bottom are perceived as non-readable but are classified as readable; they both cover a more 

unusual geographic pattern.  

Finally, in our study, we classified all the map samples as either readable or non-readable. By 

studying the perceived readability values for misclassified map samples (cf. supplementary material), 

we can conclude that many misclassified map samples have a perceived readability value close to the 

threshold (as described in Section 4.1, we used a perceived readability value of 2.5 as the threshold). 

One could experiment to see whether the use of a fuzzy classification scheme would improve the 

results, but this objective is outside the scope of our paper.  

6. Conclusions 

In this study, we evaluated single measures of map readability and methods for describing 

readability by the composites of measures. In the evaluation of the single measures, we found that 

measures of the amount of information were correlated with perceived map readability, which 

confirms the results of Phillips and Noyes [5], Rosenholtz et al. [24] and Stigmar and Harrie [29]. The 

best correlation was given by object line length, number of object types and number of vertices. For the 

measures of spatial distribution, proximity indicator and proximity value showed the best results. We 

could not reject the hypothesis that the perceived readability value is independent of the measures of 

object complexity or graphical resolution. However, the map samples used in the tests all obeyed the 

basic rules of object complexity (proper level of generalization) and graphical resolution (suitable 
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symbol style). Finally, it seems as our study lacked appropriate measures for identify non-readable 

maps due to dense lines and dense/overlapping symbols. 

The result shows that the use of measure composites is better for describing map readability than 

single measures. By using the best measure object line length, we could correctly classify 

approximately 75% of the map samples as readable/non-readable. When we added two other measures, 

number of object types and proximity indicator, the amount of correctly classified samples increased to 

approximately 80%. We could not identify any major differences in the three composite methods we 

evaluated. However, we can conclude that the threshold evaluation method would require more work 

on optimizing the threshold values. We could also conclude that the support vector machine is a 

suitable method because it only requires a test dataset in which each map is classified as either readable 

or non-readable (while the multiple linear regression method requires numerical readability values).  

By studying the map samples that were not correctly classified by the composite methods, we can 

conclude the following. It seems as the map reader’s ability to understand the geographic context 

(represented in the map samples) affects his/her ability to read the map; that is, we cannot fully explain the 

map readability by the graphical complexity of the map.  

A practical recommendation, based on this study, is that map producers should not solely use 

graphical resolution readability measures in their map specifications. Producers should complement 

these measures with measures of amount of information, such as object line length. Furthermore, the 

map generalization process should be triggered and controlled by readability measures for the amount 

of information and possibly the spatial distribution (which is sometimes already considered). 

Our comparison of the two symbol styles (denoted TS and NS, cf. Section 3.2 and Figure 4) 

indicates that the pale style is less readable than the traditional style. The color differences in these two 

styles are also nicely captured by the hue and brightness measures. This result is interesting in the 

context of backdrop mapping on the web. Commercial services (Google Maps, Bing Maps, etc.) have used 

pale colors for a long time because they allow users to add their own thematic information on top of the 

maps. In recent years, many of the national mapping agencies have also provided services with pale 

colors to support the addition of thematic information. This development is positive overall, but one 

must be careful to not lose the readability of maps. According to our findings, readability loss is a risk. 
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