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Abstract: Analysis of land cover change is one of the major challenges in the remote 

sensing and GIS domain, especially when multi-temporal or multi-sensor analyses are 

conducted. One of the reasons is that errors and inaccuracies from multiple datasets (for 

instance caused by sensor bias or spatial misregistration) accumulate and can lead to a high 

amount of erroneous change. A promising approach to counter this challenge is to quantify 

and visualize uncertainty, i.e., to deal with imperfection instead of ignoring it. Currently, in 

GIS the incorporation of uncertainty into change analysis is not easily possible. We present 

a concept for uncertainty-aware change analysis using a geovisual analytics (GVA) 

approach. It is based on two main elements: first, closer integration of change detection and 

analysis steps; and second, visual communication of uncertainty during analysis. Potential 

benefits include better-informed change analysis, support for choosing change detection 

parameters and reduction of erroneous change by filtering. In a case study with a change 

scenario in an area near Hamburg, Germany, we demonstrate how erroneous change can be 

filtered out using uncertainty. For this, we implemented a software prototype according to 

the concept presented. We discuss the potential and limitations of the concept and provide 

recommendations for future work. 
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1. Introduction 

Uncertainty is inherent in geospatial data and can have severe impacts on spatiotemporal analysis [1]. 

However, it is still common to assume that data is error free although it has been shown that  
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“[e]rror-laden data, used without consideration of their intrinsic uncertainty, are highly likely to lead to 

information of dubious value” (p.3). This is especially true for change detection and analysis since 

multiple remote sensing (RS) scenes are involved. Uncertainty accumulates over the scenes and further 

uncertainty is introduced, e.g., during the classification step in post-classification change detection. 

Thus, analysis of detected change has to cope with a high degree of uncertainty. Sensitivity analyses, 

performed by Pontius and Lippitt, demonstrated that half of all detected “changes” were caused by 

errors, although the overall accuracy for each of the input data sets was determined to be 91% [2]. This 

is one of the reasons why we see the need for a concept to incorporate uncertainty into change analysis 

instead of just ignoring it.  

Traditionally, GIS are created to utilize precise geodata, which makes it difficult to use them for 

uncertainty-aware analysis. One reason for this is that uncertainty is stored as a separate data layer and 

not as an integrated part of a dataset. Another reason is that change detection and the analysis of 

changes are conducted as separate steps (Figure 1). In the past, much effort was devoted to enhancing 

the detection step, often with the goal of full automation [3]. We follow a different approach and 

suggest a closer integration of the change detection and analysis steps and the incorporation of 

uncertainty through visualization. 

This article is structured as follows: we introduce the concept in Section 2, focusing on geovisual 

analytics and on a measure for change uncertainty. Possible applications are presented in Section 3. In 

Section 4, a case study shows how the concept can be implemented and discusses the potential benefits 

and drawbacks. From this, we derive a conclusion and provide an outlook on future work in Section 5. 

Figure 1. Common workflow including change detection and analysis as separate steps. 

 

2. Concept 

In this section we present a concept to counter the challenges in change analysis described in 

Section 1. The basic idea is to facilitate uncertainty-aware change analysis by using iterative 

workflows with a high degree of user interaction. In the following subsections we introduce the 

concept following a geovisual analytics (GVA) approach and define an uncertainty measure for  

post-classification change. 
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2.1. Geovisual Analytics  

We propose a geovisual analytics (GVA) approach to deal with the challenges discussed above. 

GVA is an interdisciplinary field following a “new paradigm for how information technologies can be 

used to process complex geospatial information to facilitate decision making, problem solving, and 

insight into geographical situations” [4] (p. 23). GVA “integrates perspectives from Visual Analytics 

(grounded in Information and Scientific Visualization) and Geographic Information Science (growing 

particularly in work concerning geovisualization, geospatial semantics and knowledge management, 

geocomputation, and spatial analysis)” [5] (p. 174). By integrating algorithms and user input with the 

help of visual interfaces, GVA tools establish the “linkage of visual and computational methods and 

tools for extracting hypotheses and information from spatial data” [6] (p.126). GVA is based on Visual 

Analytics that has successfully been used in other fields such as health research [7] or financial 

analysis [8], where neither automated nor manual analysis alone can provide the needed insight. 

This research builds upon related work from two different categories: first, visual tools which make 

uncertainty usable in the analysis of RS data; and second, change analysis through visual 

analysis/analytics. Most work from the first category focuses on the classification of RS data, for 

example, a visual tool by Arko Lucieer named Parbat supports the optimization of segmentation 

parameters by visualizing uncertainty during classification [9]. Other work deals with the enhancement 

of class definitions, e.g., Ahlqvist used visualization of semantic similarity and overlap between class 

definitions to address incompatibilities of class definitions for land cover and land use [10]. Based on 

the work from the FLIERS project (Fuzzy Land Information from Environmental Remote Sensing), 

Bastin et al. developed a toolkit named VTBeans to enhance the classification of RS data with the help 

of uncertainty [11]. Multiple linked views can be combined to visualize uncertainty from different 

sources and, for instance, explore fuzzy spectral signatures to enhance class definitions. 

In the second category regarding visual change analysis from RS data, there have also been a 

number of promising approaches that serve as a basis for our work. Zurita-Milla et al. extended the 

GIS software package ILWIS (Integrated Land and Water Information System) by adding a toolbox 

called SITS (Satellite Image Time Series) [12]. It facilitates the use of animation and interaction to 

analyze changes based on the imagery and provides filtering and aggregation functionality to conduct 

analyses at different levels of granularity. Another example is Change Matters, a web-based 

application for interactive change analysis of Landsat satellite imagery [13]. A change overlay is 

displayed on top of the imagery and the user can modify thresholds, e.g., for vegetation gain and loss. 

Based on this, change maps can be created interactively and distributed over the Internet. An 

interesting approach for multi-temporal change analysis was presented by Hoeber et al. They use 

spatiotemporal difference graphs to display change over multiple time points in GTDiff, a system that 

facilitates interactive exploration of multi-temporal changes [14].  

All in all, there has been substantial work regarding the use of visual analysis and GVA to either 

explore uncertainty in geospatial data or to analyze change visually without incorporating uncertainty. 

However, we see the need for a concept that integrates the two approaches, merging the strengths of 

GVA and uncertainty visualization. Thus, the first goal of this concept is to use GVA to integrate 

detection and analysis of change and the second goal is to use potential benefits of uncertainty by 

visually communicating this information during analysis. 
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For a systematic design and documentation of workflows we created a workflow description 

concept in the form of a graph. It contains the following categories (Figure 2): 

• Data: The data used during analysis (e.g., RS imagery, GIS layers, etc.) 

• User: User interaction (e.g., choosing a threshold) 

• Hypothesis: A hypothesis about change (e.g., “this area was falsely detected as change”) 

• Computation: Computational steps in the workflow (e.g., classification of RS data) 

• Visualization: Visual communication to the user (e.g., display of change uncertainty in a map) 

• Result: The resulting change set 

As already mentioned, the core of this concept is the combination of automated algorithms 

(“Computation”) and visual interfaces (“Visualization”). In close interplay with these two components 

the user generates hypotheses, evaluates their plausibility with the help of visualization tools and 

revises them iteratively. When the user confirms a hypothesis the end results can be exported. Example 

workflow descriptions are provided in Section 3. 

Figure 2. Basic concept of iterative analysis facilitating geovisual analytics. 

 

2.2. Change Uncertainty 

Change detection based on remotely sensed data typically involves a high degree of uncertainty. 

Ignoring this fact can make further analysis of changes questionable [2]. During change detection, 

uncertainty from multiple RS scenes (errors and inaccuracies from sensor bias, misregistration, etc.) 

accumulate during the process, especially when multi-temporal (including more than two scenes) or 

multi-sensoral (using data from different sensors) detection is applied.  

In the field of RS and GIS, research on modeling uncertainty in geospatial data has been conducted 

for decades. Different types of uncertainty (e.g., attribute, positional, and temporal) and their formal 

descriptions have been discussed in literature [1,15,16]. Substantial work regarding the description of 
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uncertainty in land cover change was provided by Fisher and colleagues [17]. They extended the 

widely used change matrix to include fuzzy change values and provided a model for describing change 

uncertainty. Using a case study, they highlighted how fuzzy change data can reveal subtle changes that 

would not have been detectable with boolean change detection. At the same time they pointed out that 

“[w]hether the fuzzy mappings better reflect the landscape character than the Boolean remains an open 

question, and as is the reality of the differences noted here between the Boolean and fuzzy matrices of real 

change.” [17] (p.176). Generally, there are at least three ways to quantify uncertainty in land cover change: 

• from accuracy assessment (class-specific) [1], 

• from classification confidence, e.g., class membership probabilities (pixel-/object-specific) [18], and, 

• from expert knowledge, e.g., estimation of class similarities (class-specific) [19]. 

Since our goal is to depict geographically varying uncertainty, class-specific measures are not taken 

into account since they only provide one uniform uncertainty value for all instances (pixels or objects) 

of a change type. Thus, we focused on uncertainty measures that are quantified by classification 

confidence. Based on the work by Fisher and his colleagues, we defined a straightforward uncertainty 

measure for land cover change on the basis of fuzzy membership values. The intersection of 

membership values μi from each scene is conducted by applying the minimum operator [17]. The 

complement of the minimum membership value yields a value for change uncertainty: = 1.0 − min  with ∈ [0.0, 1.0] (1)

Figure 3. Example for change uncertainty measure (here: per-pixel and bi-temporal). 

Schematic (top row) and real data example (bottom row). Uncertainty is represented by a 

grayscale from black (0.0) to white (1.0). 

 

This uncertainty measure ranges from 0.0 (no uncertainty) to 1.0 (maximum uncertainty). It is 

straightforward to compute and can be applied to different spatial units (pixels, objects) and to any 

number of scenes (two or more). It is a compound measure reflecting uncertainty from all scenes 

resulting from errors and inaccuracies in the imagery, vagueness in land cover class definitions, 
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ambiguity in class determination during classification, etc. Figure 3 illustrates the computation of the 

measure for two RS datasets, 0 and 1, in a schematic way (top row) and with real data (bottom row). 

The first two columns show the membership values of each dataset followed by the minimum 

membership values from both datasets. Subtraction from 1.0 yields the magnitudes of uncertainty. 

An exemplary division into two classes, “high” and “low”, is provided in the last column. This is an 

optional step, but in many cases unclassified uncertainty data may be too complex to interpret. 

A suitable number of uncertainty classes may depend on the task, yet for many applications two 

classes, i.e., “low uncertainty” and “high uncertainty”, will suffice. An alternative is percentage steps, 

for instance, the use of the three classes 0%, 50%, and 100%. 

3. Applications 

As already mentioned, we see several potential benefits of incorporating uncertainty in change 

analysis. In the following we discuss three specific applications to illustrate this: enabling a better 

informed analysis of detected change, optimizing the parameters used for change detection, and 

filtering by uncertainty to reduce false-positive change. 

3.1. Enable Better Informed Analysis 

When a human analyst explores change detection results, he or she creates hypotheses about land 

cover change. For instance, when informal settlements have been detected from satellite imagery the 

analyst may come up with the hypothesis that a specific settlement has grown over time. However, 

informal settlements are usually hard to delineate and have fuzzy boundaries, therefore the exact size 

of a detected settlement cannot be determined. In such cases, change uncertainty can provide further 

information to help interpret the detected change. For instance, a detected informal settlement may 

show lower uncertainty in its interior (making this part more reliable) and higher uncertainty at its 

boundaries, where a transition zone towards formal urban settlements may exist. When the analyst 

wants to determine the area of a settlement (and the number of people living there) uncertainty can 

provide information about the range of possible locations of the area’s boundary and thus can help 

derive a better estimate of the actual area. This way, information about uncertainty can make a 

hypothesis better defined and more plausible. 

3.2. Optimize Change Detection Parameters 

Another application of uncertainty that can potentially help with analyzing change is the 

optimization of the parameters used for its detection. With post-classification change detection, which 

we focus on here, the reliability of detected changes is highly dependent on the quality of the 

individual classifications on which the change detection step is based on. It was shown that 

misclassification can greatly impact change error [20]. Thus, often the only way to minimize change 

error is to increase the quality of the classified datasets. However, the optimization of classification 

parameters is not trivial and iterative modifications of the parameters are necessary to find a reasonable 

parameter set. To support this process, information on change uncertainty can help. The workflow 

depicted in Figure 4 shows that the user can visually explore a result after the initial classification of 
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the single scenes and the change detection step. While iteratively modifying the parameters, the analyst 

gets immediate visual feedback on the resulting classified datasets and, thus, the detected changes. 

When the outcome is satisfying the current changes can be exported as final results. During the 

process, it is also possible to show the results for different parameter sets simultaneously so that the 

analyst is able to compare them and pick the best set. 

This workflow is also applicable to other change detection approaches, e.g., when image 

differencing or ratioing are conducted, a threshold between change and no-change must be defined. In 

an analogous way, as described above, the choice of the change threshold can be optimized iteratively. 

Figure 4. Workflow: Optimizing change parameters. 

 

3.3. Reduce False-Positive Change  

The third potential benefit of using change uncertainty lies in the reduction of falsely detected 

change. The basic idea is to use high uncertainty as an indicator for erroneous change so that filtering 

by uncertainty can improve the results. In the workflow presented in Figure 5, the user imports the 

result from post-classification change detection and the related uncertainty. The next step is to apply 

filtering so that only changes of a certain type remain. The reason is that it is more likely to find a 

suitable threshold for a single change type than for changes pertaining to all types. This subset of 

changes is now visualized along with the connected uncertainty. The initial hypothesis is that this is the 

optimal change set (in terms of correctness). Now, the user can apply a filter so that only changes with 

uncertainty less than a certain threshold (e.g., <80%) remain (which can be seen as a revised 
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hypothesis). While changing the filter threshold the user gets immediate visual feedback to help him or 

her judge if the result has improved or not. When the user is satisfied with the result it can be exported 

as the final result. 

Figure 5. Workflow: Filtering change by uncertainty to reduce false-positive change. 

 

4. Case Study  

The following case study serves as proof-of-concept and highlights potential benefits and 

limitations of the approach for uncertainty-aware change analysis we present here. We created a 

change scenario based on two satellite scenes from an area in the vicinity of the Elbe River, northwest 

of Hamburg, Germany. The imagery was taken in 2010, on 5 June and on 16 July, by RapidEye, 

a satellite system that provides imagery with a geometric resolution of 5 m (pan-sharpened) and 

a temporal frequency of up to one image every 24 hours under ideal circumstances 

(http://www.blackbridge.com/rapideye/). The sensor covers five spectral channels, including the  

so-called “Red Edge” channel between red and near-infrared, giving the sensor potential advantages 

for vegetation mapping compared to other optical sensors [21]. The imagery we used here 

was radiometrically corrected and orthorectified (RapidEye Ortho-Level 3A). It was acquired 

via RapidEye Science Archive (RESA), which provides imagery free of cost for scientific use 

(http://resa.blackbridge.com/). 
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4.1. Change Detection  

The area covered by the satellite imagery is a 25 km × 25 km rural agricultural area between Stade 

and Pinneberg in the vicinity of the Elbe River. Since the images were taken in summer and there were 

just six weeks between their acquisition we expected that most changes would be related to vegetation 

and water bodies (due to vegetation growth/harvesting and tidal changes). Therefore, we classified the 

two scenes separately using ISODATA unsupervised classification with eight classes, and aggregated 

them in both datasets yielding three classes: “water”, “vegetated area” (i.e., vegetated arable land, 

meadows, forest, etc.), and “non-vegetated area” (settlements, roads, non-vegetated arable land, etc.). 

For both scenes most of the land cover is vegetated area, mainly consisting of agricultural crops, 

meadows, and forests (Figure 6). Non-vegetated area is comprised of bare soil or settlements and 

roads, but also riverbanks. Most of the area classified as water belongs to the river—a minor part 

consists of a few small water bodies. 

Figure 6. The two classified datasets from RapidEye imagery we used in this case study. 

 

From the aggregated dataset with the three classes described above, we created spectral signatures 

and rerun the classification using the Maximum Likelihood algorithm to get additional information 

about the membership values of each pixel. By intersecting the two classified datasets we created a 

change dataset containing changed areas and their type (Figure 7). On the basis of the class 

membership values we computed the change uncertainty measure (refer to Section 2). We removed a 

no-data area in the southeastern corner of the scene and filtered out all changes that occurred in areas 

smaller than the minimum mapping unit of 1000 m2. 
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Figure 7. Change dataset (left) and related uncertainty (right). 

 

4.2. Change Analysis  

When analyzing the result, the first observation is that 22% of the study area was detected as having 

changed. Most changes belong to the type “non-vegetated to vegetated” (58% of the changed area), 

followed by “vegetated to non-vegetated” (28.5%), and “water to non-vegetated” (13%). There was 

also a very small amount of change from water to vegetated area (about 0.5%) that we did not consider 

in this analysis. Generally, the detected change types and their resulting area proportions seem 

plausible considering the two scenes are from June and July, when vegetation growth and harvesting of 

some crop types is common and therefore may explain most of the detected change. 

In order to assess the accuracy of the detected change we conducted a visual assessment with 

stratified random point sampling over the whole area. We determined the number of points after 

Tortura’s method of approximation [22]. With an estimated average accuracy of 70% and an error 

tolerance of 5%, we obtained a required sample size of 323 points. We focused on false positive 

changes, i.e., changes that have been falsely detected, since they are a common challenge in change 

analysis (see Section 1). Thus, we only assessed the areas detected as changes and not the no-change 

areas (false-negatives). Reference data from a different source was not available for the exact two 

dates so we visually examined each of the points based on the available imagery and estimated the 

correctness of the change in each position. Consequently, since the assessment conducted here does not 

rely on independent data, it does not fulfill the requirements of a statistically sound accuracy assessment. 

However, for the purpose here we see it as sufficient in order to get an impression about the quality of the 

change set. Table 1 shows the change types, their proportions of the overall area, and their corresponding 

number of sample points. The last two columns contain the result from the visual assessment.  
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Table 1. Stratified point sampling and results of the visual assessment of change correctness. 

Change Type 
Proportion of 

Overall Area 

Number of 

Sample Points 

Correct 

Change 

Erroneous 

Change 

All 100% 323 - - 

No change 77.7% 251 - - 

Water to non-vegetated 2.9% 9 66.7% 33.3% 

Vegetated to non-vegetated 6.3% 21 80.9% 19.1% 

Non-vegetated to vegetated 12.9% 42 85.7% 14.3% 

Figure 8. Change uncertainty for “water to non-vegetated area”. 

 

In the following we focused on the change type “water to non-vegetated area” because it showed 

the highest amount of erroneous change (33.3%). The high error rate is explainable by the uncertainty 

in separating water bodies from bare areas. The changes from water to non-vegetated areas are due to 

the different water levels of the river at the two dates. Regarding change uncertainty, the first 

observation was that all changes of this type that did not occur directly along the bank of the river were 

highly uncertain. Some small areas of this nature were detected. This corresponds to the assumption 

that changes from water to non-vegetated areas would only occur along the riverbanks. Small water 

bodies could potentially dry out in summer, but since this is unlikely in such a short period of time 

(at least for the area under research) we hypothesize that these small area changes were caused by 

misclassification. A second observation is that most areas situated directly at the edge of the water 

seem to be homogeneously certain and become more heterogeneous the further away from the water’s 

edge they are. Figure 8 shows an exemplary change area at the eastern part of the river. The 

distribution of uncertainty seems plausible, because directly at the river bed the change is more likely 

to have happened than when we move further away from the water’s edge. It is obvious that the 
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boundary between the riverbed (belonging to the class “water”) and mud flats on the banks (belonging 

to the class “non-vegetated areas”) plays an important role for this change type and is highly uncertain 

at the same time. 

For a closer look at the changes from water to vegetated areas we generated 41 additional random 

sample points over the area covered by this change type to attain 50 random points (Figure 9), which 

follows the rule of thumb suggested by Congalton and Green [23]. Again, we conducted a visual 

assessment without independent reference data. The result was that the detected changes at 72% of the 

points were correct, while 28% were incorrect due to misclassification. For most applications this level 

of accuracy does not seem acceptable and the change dataset would have to be improved. In the 

following, we would like to demonstrate how information on change uncertainty can help increase the 

accuracy of the change dataset. 

Figure 9. Sample points (red) in the area of change from water to non-vegetated area (yellow). 

 

4.3. Reduce False-Positive Change 

In Section 3 we hypothesized that the accuracy of detected change could be increased if we filter 

out uncertain change by applying a suitable threshold. We tested this hypothesis using our change 

scenario. For this, we utilized a simple prototype including a map client and a slider to filter change by 

uncertainty (Figure 10). The prototype is written in Java and is based on the geotools map client 

(http://www.geotools.org/) that provides standard map functionality (pan, zoom, etc.) under a free and open 

source license. The RS imagery is shown in the background and yellow pixels on the map represent 

changes. Change uncertainty is visualized using a color scheme from blue (0% uncertainty) to yellow 

(50%) to red (100%). The slider at the bottom of the window can be used to interactively filter the changes 

by uncertainty, starting with an initial threshold of 100% (meaning that no changes are filtered out). 
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Figure 10. Software prototype for iterative filtering by uncertainty. 

 

In order to show how erroneous change can be filtered out by thresholding we chose an area of  

5 km × 5 km with a large zone of change from water to non-vegetated area (Figure 11). To get started 

we lowered the threshold so that changed pixels with an uncertainty of more than 50% were filtered 

out. A visual check showed that this removed a number of questionable areas of change, but not all of 

them. After modifying the threshold several times and visually checking the outcome, we found that 

setting the uncertainty threshold to 40% filtered out most of the outliers we had identified on the map, 

clearly improving the result compared to the initial state. While the threshold was only determined for 

the small area presented here, we were interested to see if it would work for the whole scene. After 

taking a closer look at our sample points, it was revealed that all 17 misclassified points were filtered 

out, i.e., all erroneous change could be eliminated through simple thresholding. Furthermore, only one 

point with a correct change was (falsely) removed. This shows that a threshold chosen for a local area 

can work for a larger area such as a whole satellite scene. But it is likely that this does not hold true 

with scenes that show greater spectral variation as those we used here. 

4.4. Discussion  

The case study presented here highlighted the potential of uncertainty-aware change analysis using 

a GVA approach. First, it could be shown that better-informed change analysis is possible and that 

uncertainty can provide valuable information during the interpretation of detected change. Apart from 

this, as shown in the case study, uncertainty can serve as an indicator for erroneous change and can be 

used for filtering. It became clear that it is not a fully reliable indicator, but that it can serve as a 

criterion when deciding whether a change is correctly detected or not. Further criteria should be taken 

into account to validate detected change, e.g., the size or spectral signature of a changed area. It 

became clear that a suitable threshold can be determined locally, e.g., for a single area of change, but 

that one overall threshold for a whole scene (although it is only for one change type) often does not 
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seem realistic, depending on the change type and the variability in the imagery. One downside of this 

concept that we mentioned is that by including uncertainty into the analysis and thus adding another 

data dimension, change analysis becomes more complex. This stresses the importance of minimizing 

the complexity, for instance by keeping the visual load for the user low.  

Figure 11. Iterative filtering of change by 100% (upper left), 50% (upper right),  

30% (lower left), and 40% (lower right) uncertainty. 

 

In this case study we performed an analysis with the help of a simple prototype. In comparison to 

standard GIS, it facilitates the straightforward modification of the filter threshold and provides 

immediate feedback on the map. The simple tool we used here makes iterative analysis more fluent 

and more intuitive—however, this assumption has not yet been assessed in user studies. We are 
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convinced that with more sophisticated workflows, e.g., when more information about a change is 

visualized (for example, area, spectral signature, and uncertainty), the advantages compared to 

common GIS analysis will become more apparent. 

5. Conclusions 

In this article we presented a concept to enhance the analysis of change derived from remote 

sensing (RS) data. The idea was to incorporate information about uncertainty concerning detected 

changes into the analysis. We suggested a geovisual analytics (GVA) approach that combines manual 

and automated analysis with the help of visual interfaces. This contributes to a better integration of 

change detection and analysis as well as to an enhanced visual communication of uncertainty during 

the analysis. We defined a measure for change uncertainty and identified potential applications of the 

concept. In a case study we used a simple software prototype that showed changes on a map and 

provided filtering by uncertainty. The study included a bi-temporal change scenario with RS data in 

the vicinity of the Elbe River near Hamburg, Germany, and showed how false positive changes could 

be successfully filtered out by the use of uncertainty thresholding. We pointed out that generally, 

uncertainty can be an indicator for erroneous change, however, it has limitations since the critical level 

of uncertainty (for the distinction between correct and erroneous change) may vary within a dataset. 

Thus, we recommended the use of other additional indicators to help decide whether changes are 

correct, e.g., the area of a change or its spectral signature. 

All in all, it was shown that tools implementing the concept have the potential to counter challenges 

in change analysis such as the high amount of false positive changes. At the same time, analysis 

naturally becomes more complex since uncertainty adds another dimension of data that has to be taken 

into account. This fact stresses the importance of well-crafted visual interfaces and interaction 

functionality to minimize user burden. User studies will be necessary to evaluate if analysts can use 

uncertainty information when it is visually depicted and how they cope with the complexity and visual 

load that is added when incorporating uncertainty. 

The case study we presented here involved a bi-temporal analysis of change. But the concept allows 

analysis of more than two RS datasets at a time and we hypothesize that this is one of the strengths of 

the approach. This will have to be tested in future studies involving more than two RS scenes.  

The software prototype we used in the case study shall serve as a starting point for more complex 

change analysis tools of this kind. Thus, an important part of future work will be the derivation of 

guidelines and recommendations to support the development of change analysis tools based on this 

concept. These should include recommended techniques for uncertainty visualization and user 

interaction. All in all, we see the support for GVA tool development as a crucial step to get closer to 

the goal of establishing tools for uncertainty-aware analysis of change that can be used in practice. 

Acknowledgments 

This work was partly funded by the research program “KLIWAS—Impacts of climate change on 

waterways and navigation” financed by the German Federal Ministry of Transport, Building and 

Urban Development.  



ISPRS Int. J. Geo-Inf. 2014, 3 1137 

 

 

Helpful comments on the article provided by Jochen Schiewe (HafenCity University) were greatly 

appreciated. Maya Donelson (HafenCity University) has been of great help proof-reading the article. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Zhang, J.; Goodchild, M.F. Uncertainty in Geographical Information; Taylor & Francis: London, 

UK, 2002. 

2. Pontius, R.G., Jr.; Lippitt, C.D. Can error explain map differences over time? Cartogr. Geogr. Inf. 

Sci. 2008, 33, 159–171. 

3. Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B. Digital change detection methods in 

ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. 

4. De Chiara, D. From GeoVisualization to Visual-Analytics: Methodologies and Techniques for 

Human-Information Discourse. Ph.D. Thesis, University of Salerno, Salerno, Italy, February 2012. 

5. Tomaszewski, B.M.; Robinson, A.C.; Weaver, C.; Stryker, M.; MacEachren, A.M. Geovisual 

analytics and crisis management. In Proceedings of the 4th International Information Systems for 

Crisis Response and Management (ISCRAM) Conference, Delft, The Netherlands, 13–16 May 2007. 

6. Schiewe, J. Geovisualisation and geovisual analytics: The interdisciplinary perspective on 

cartography. In Proceedings of 26th International Cartographic Conference ICC 2013, Dresden, 

Germany, 25–30 August 2013; pp. 122–126. 

7. Wang, T.D.; Wongsuphasawat, K.; Plaisant, C.; Shneiderman, B. Extracting insights from 

electronic health records: Case studies, a visual analytics process model, and design 

recommendations. J. Med. Syst. 2011, 35, 1135–1152. 

8. Schreck, T.; Tekušová, T.; Kohlhammer, J.; Fellner, D. Trajectory-based visual analysis of large 

financial time series data. ACM SIGKDD Explor. Newsl. 2007, 9, 30–37. 

9. Lucieer, A. Uncertainties in Segmentation and Their Visualization. Ph.D. Thesis, Utrecht University, 

Enschede, The Netherlands, 2004. 

10. Ahlqvist, O. Extending post-classification change detection using semantic similarity metrics to 

overcome class heterogeneity: A study of 1992 and 2001 U.S. National Land Cover Database 

changes. Remote Sens. Environ. 2008, 112, 1226–1241. 

11. Bastin, L.; Fisher, P.; Wood, J. Visualizing uncertainty in multi-spectral remotely sensed imagery. 

Comput. Geosci. 2002, 28, 337–350. 

12. Zurita-Milla, R.; Blok, C.; Retsios, V. Geovisual analytics of Satellite Image Time Series. 

In Proceedings of the 2012 International Congress on Environmental Modelling and Software, 

Leipzig, Germany, 1–5 July 2012; Seppelt, R., Voinov, A.A., Lange, S., Bankamp, D., Eds.; 

International Environmental Modelling and Software Society (iEMSs): Leipzig, Germany, 2012;  

pp. 1431–1438. 

13. Green, K. Change matters. Photogramm. Eng. Remote Sens. 2011, 77, 305–309.  

  



ISPRS Int. J. Geo-Inf. 2014, 3 1138 

 

 

14. Hoeber, O.; Wilson, G.; Harding, S.; Enguehard, R.; Devillers, R. Visually representing  

geo-temporal differences. In Proceedings of the IEEE Conference on Visual Analytics Science 

and Technology 2010, Salt Lake City, USA, 25–26 October 2010; MacEachren, A., Miksch, S., Eds.; 

IEEE Press: New York, NY, USA, 2010; pp. 229–230. 

15. Foody, G.M., Atkinson, P.M., Eds. Uncertainty in Remote Sensing and GIS; Wiley: Hoboken, NJ, 

USA, 2002; doi:10.1002/0470035269. 

16. Shi, W., Fisher, P.F., Goodchild, M.F., Eds. Spatial Data Quality; Taylor & Francis: New York, 

NY, USA, 2002. 

17. Fisher, P.; Arnot, C.; Wadsworth, R.; Wellens, J. Detecting change in vague interpretations of 

landscapes. Ecol. Inform. 2006, 1, 163–178. 

18. Brown, K.M.; Foody, G.M.; Atkinson, P.M. Deriving thematic uncertainty measures in remote 

sensing using classification outputs. In Proceedings of the 7th International Symposium on Spatial 

Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon, Portugal, 5–7 July 

2006; Caetano, M., Painho, M., Eds.; Instituto Geográfico Português: Lisbon, Portugal, 2006. 

19. Lowry, J.H.; Ramsey, R.D.; Langs Stoner, L.; Kirby, J.; Schulz, K. An ecological framework for 

evaluating map errors using fuzzy sets. Photogramm. Eng. Remote Sens. 2008, 74, 1509–1519. 

20. Burnicki, A.C. Modeling the probability of misclassification in a map of land cover change. 

Photogramm. Eng. Remote Sens. 2011, 77, 39–49. 

21. Schuster, C.; Förster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use 

classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012,  

33, 5583–5599. 

22. Khorram, S. Accuracy Assessment of Remote Sensing-Derived Change Detection; American 

Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1999. 

23. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and 

Practices, 2nd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2009. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


