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Abstract: Human health is part of an interdependent multifaceted system. More than ever,
we have increasingly large amounts of data on the body, both spatial and non-spatial, its
systems, disease and our social and physical environment. These data have a geospatial
component. An exciting new era is dawning where we are simultaneously collecting multiple
datasets to describe many aspects of health, wellness, human activity, environment and
disease. Valuable insights from these datasets can be extracted using massively multivariate
computational techniques, such as machine learning, coupled with geospatial techniques.
These computational tools help us to understand the topology of the data and provide insights
for scientific discovery, decision support and policy formulation. This paper outlines a
holistic paradigm called Holistics 3.0 for analyzing health data with a set of examples.
Holistics 3.0 combines multiple big datasets set in their geospatial context describing as
many areas of a problem as possible with machine learning and causality, to both learn from
the data and to construct tools for data-driven decisions.

Keywords: geospatial; machine learning; Big Data; health; remote sensing; Holistics 3.0;
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1. Introduction

For decades, experts in public health and the social sciences have recognized the geospatial variation
of populations; health is shaped by multiple factors, including healthcare, public health systems,
individual behaviors (e.g., smoking) and risk factors (e.g., obesity), socioeconomic factors (e.g., income,
education), the physical environment (e.g., air pollution), the social environment (e.g., social support),
public policies and the “macro-structural” elements of society that shape this entire list. Linking these
data to resolve public health concerns requires accounting for non-linear multi-variate relationships, as
well as the spatial dimension of the data.

Decades of research have also attempted to isolate the specific factors that matter the most, not only as
an academic exercise, but to help policy makers set priorities in a decision-making environment of limited
resources. For example, in a specific community beset with high rates of chronic diseases, should the city
council or board of supervisors give priority to hospital budgets, expanding primary care, passing laws
to ban smoking indoors, addressing unemployment, strengthening schools, and so on? All are clearly
important, but which one or which combination matters the most and which will give the best return
on investment?

Posed with such questions, scientists have typically resorted to traditional statistical techniques,
such as regression equations, to try to quantify or model the relative importance of different factors.
This approach has shed insight onto some of the key factors, but also carries limitations, two of which
bear mentioning here. First, these calculations often examine associations rather than causality: for
example, the fact that people who have not graduated from high school have worse health does not mean
that handing out diplomas will fully erase the disparity; rather, the educational level proves to be a useful
proxy. Second, the variables that researchers insert into their formulas are chosen selectively based on
the variables for which data are available and those that the researchers think are most important to
consider. For example, a researcher forced to choose whether to adjust for poverty, voter registration or
social trust will invariably choose poverty, because there is more evidence available linking poverty to
adverse health outcomes.

The a priori selectivity in choosing the variables to consider is partly a legacy of the age-old scientific
method (pose a hypothesis first and then collect data to support or refute it), but partly a practical
necessity, because examining all of the data has previously often been an untenable option, especially
as the volume of available data has expanded. The advent of machine learning is removing the second
barrier at a time when the availability of “Big Data” is ascendant in all fields [1–6].

1.1. Big Data

Different people use the term Big Data in slightly different ways. However, the common idea is large
datasets in terms of the volume of data (e.g., because of temporal or spatial resolution and/or coverage)
and/or large in terms of the number of variables included. One of the prime differences in the use of
Big Data typically relates to: exactly how big is big?

For the specific examples used in this paper, these datasets also describe geospatial variations; the
number of variables ranges from tens to thousands of variables, and the number of records for each
variable ranges from thousands to many millions, covering both a snapshot in time as well as the daily
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variation tracked for nearly two decades. This quantity of data would probably be classified as Big Data
by most investigators.

1.2. Machine Learning

Machine learning is a valuable set of tools for empirically estimating and classifying variables of
interest when we do not have a complete theoretical description of a process, but we do have useful data.
Further, we often would like to use these data to provide insights and/or help make decisions.

Machine learning encompasses a very broad range of algorithms (for example, neural networks,
support vector machines, Gaussian processes, decision trees, random forests, etc.) that can provide
multi-variate, non-linear, non-parametric regression or classification based on a training dataset (i.e., a
set of examples to learn from) and give insight into the underlying topology of the data. This approach
allows the data to speak for themselves.

Machine learning has widespread and growing applications. A few examples of its daily use include
credit checking, use by Amazon and other online stores to suggest other products of potential interest to
consumers, Netflix movie suggestions, remote sensing applications, various Google tools and inventory
decisions made by large retailers, such as Walmart [7–9].

Machine learning has not yet made its large-scale entry into public health, but Big Data exist
widely in population health, a sea of data that can be mined in healthcare (e.g., electronic medical
records), public health statistics, census data on population living conditions, environmental hazards and
public programs. Within the past year, articles and entire theme issues of major medical journals have
called attention to the exciting opportunities that exist in applying machine learning to these data sets.
Organizations have launched prizes to encourage innovations in this area [10]. The federal government
has hosted four annual Health Datapalooza conferences born from efforts by the Obama administration
to “liberate” health data (http://healthdatapalooza.org/about/). Many of these initiatives focus on creating
decision support tools to track diseases, such as the early identification of infectious disease outbreaks
or dashboards for tracking health conditions and costs, but the application of machine learning to these
datasets opens a much larger horizon.

1.3. Holistics 3.0

We define Holistics 3.0 as (1) bringing together multiple datasets describing as many aspects of
a problem as possible, i.e., holistically describing the problem with data; (2) coupling this holistic
description of the problem with machine learning to build empirical decision support tools for data-driven
decisions; and (3) where relevant, augment the correlations and associations exploited by machine
learning to address the further issue of causality. Taken together this paradigm is called Holistics 3.0
and is illustrated schematically in Figure 1.
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Figure 1. A schematic illustrating the key components of Holistics 3.0: (1) multiple
geospatial datasets describing many aspects of a problem holistically; (2) use of machine
learning to build empirical decision support tools; and (3) augmentation by inferences about
causality. Taken together, this paradigm is called Holistics 3.0.

2. Mining Meaning from Data

Is unleashing a powerful computer to scan for associations across a wide net of countless variables
useful? Data-driven decisions can help policymakers, from clinicians to elected officials, to identify
the factors that are most likely to improve health. Variables that have not been previously considered,
or even noticed, may hold the key to understanding important drivers of health outcomes that offer
new solutions and new understandings of how disease complications arise in the first place. In many
of our previous machine learning studies, we find that in many cases, an accurate description of the
problem requires us to simultaneously describe multiple aspects of the problem. Sometimes, this
encompasses just five or six variables, but sometimes forty or more. There is usually not a single
“magic” variable; rather, we are typically faced with truly multi-variate problems, where many factors
must simultaneously be considered, which are often also non-linear. In many cases, we do not know
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the functional form of the relationship (i.e., they are also non-parametric), and many times, the variables
may have non-Gaussian distributions.

Machine learning can help tremendously with just these types of problems, not only for identifying
key variables, but also in providing empirical tools, often of remarkable fidelity. If we then add the
concept of causality as described by Judea Pearl [11], we have a very powerful paradigm for data-driven
decisions. Current understandings of the causal pathway for diseases have been built on the scientific
method, which has a strong legacy, but also carries the limitation of relying on human minds to choose
which variables (and hypotheses) are worthy of further study.

Machine learning offers an unprecedented opportunity to let the data speak for themselves, without
human presupposition, and to draw attention to previously unrecognized variables that seem to have
important associations with health outcomes and warrant further study under the traditional scientific
method to confirm/refute the association. Machine learning thereby can augment the scientific method
by offering a more “open-minded” approach to hypothesis testing and scientific lead generation that
relies on the data to draw attention to intriguing questions. In this way, using machine learning is more
evidence-based than relying on a few individuals to selectively pick and choose variables they “think”
are important.

Apart from discovering new levers for improving health, machine learning also has the potential
to quantify the relative importance of levers already known to be important. For example, claims
that healthcare accounts for 10% of health outcomes are based largely on linear regression equations.
Machine learning can improve on this approach by not only providing a multi-variate, non-linear,
non-parametric regression, which requires no prior knowledge of functional form, but also providing
an objectively ranked list of the relative importance of the variables used in the regression.

Moreover, access to multiple big datasets required to perform machine learning also provides a ready
resource for policymakers who need quick access to descriptive statistics or trends for their communities
or special populations. For example, the Affordable Care Act (ACA) requires hospitals to prepare
community health needs assessments to maintain their nonprofit status with the Internal Revenue Service.
Hospitals across the country that have little experience in studying population statistics are scrambling
to find colleagues in public health or community organizations that can be contracted to produce these
reports. The enormous insights available through machine learning would enable health systems to
profile their communities at a level of detail not currently imaginable.

Large health systems are also forming accountable care organizations (ACOs) that, under the ACA,
are required to assume responsibility for the health of the population they serve. The impetus behind
ACOs is to encourage healthcare systems to identify new models of intervention, including those that
involve determinants of health outside the clinic, to prevent disease, reduce complications and control
costs. Most ACO leaders are currently relying on educated guesses to decide how best to invest their
dollars to improve population health [12]. Decision support tools based on machine learning have
the potential to arm decision-makers and policy-makers with more granular information about the
health of the population, the prevalence and geography of local factors that are shaping community
health and where the greatest potential return on investment might lie if confirmatory research supports
a causal link.
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3. Some Examples

Let us now examine two very different examples relevant to geospatial health that illustrate
this approach.

Table 1. Health outcomes associated with particulate matter (PM) and ultra-fine particles
(UFP) (modified from [13]).

Health Outcomes
Short-Term Studies Long-Term Studies

PM10 PM2.5 UFP PM10 PM2.5 UFP

Mortality
All causes xxx xxx x xx xx x
Cardiovascular xxx xxx x xx xx x
Pulmonary xxx xxx x xx xx x

Pulmonary effects
Lung function, e.g., PEF xxx xxx xx xxx xxx
Lung function growth xxx xxx

Asthma and COPD exacerbation
Acute respiratory symptoms xx x xxx xxx
Medication use x
Hospital admission xx xxx x

Lung cancer
Cohort xx xx x
Hospital admission xx xx x

Cardiovascular effects
Hospital admission xxx xxx x x

ECG-related endpoints
Autonomic nervous system xxx xxx xx
Myocardial substrate and vulnerability xx x

Vascular function
Blood pressure xx xxx x
Endothelial function x xx x

Blood markers
Pro inflammatory mediators xx xx xx
Coagulation blood markers xx xx xx
Diabetes x xx x
Endothelial function x x xx

Reproduction
Premature birth x x
Birth weight xx x
IUR/SGA x x

Fetal growth
Birth defects x
Infant mortality xx x
Sperm quality x x

Neurotoxic effects
Central nervous system x xx
Legend: x, few studies (≤6); xx, many studies (7–10); xxx, large number of studies (>10).
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3.1. Airborne Particulate Matter

With the increasing awareness of the many health impacts (Table 1) of particulate matter, ranging
from general mortality to specific pulmonary, respiratory, cardiovascular, cancer and reproductive
conditions, to name but a few, there is a growing and pressing need to have global daily estimates
of the concentration of ground-level airborne particulate matter with a diameter of 2.5 microns or
less (PM2.5). The Holistics 3.0 paradigm can be applied to existing NASA remote sensing datasets
coupled with meteorological analyses, demographic data and in situ observations to effectively meet
this need. We have already successfully employed machine learning to estimate the daily global PM2.5

concentration on a routine basis. The approach uses a suite of remote sensing and meteorological data
products and ground-based observations of particulate matter at 8329 measurement sites in 55 countries
(Figure 2) made between 1997 to the present to estimate the daily distributions of PM2.5.

The many health impacts of PM2.5 depend on the airborne concentration at ground level, where PM2.5

can be inhaled (Table 1). However, as can be seen in Figure 2, the spatial coverage has many gaps, and
in some countries, there are no PM2.5 observations altogether. This is largely due to the costs involved
in operating such a sensor network. Several studies have sought to overcome the lack of direct PM2.5

observations by using remote sensing and satellite-derived aerosol optical depth (AOD) coupled with
regression and/or numerical models to estimate the ground-level concentration of PM2.5 [14–32].

Many studies have shown that the relationship between PM2.5 and AOD is a multi-variate function
of a large number of parameters, including: humidity, temperature, boundary layer height, surface
pressure, population density, topography, wind speed, surface type, surface reflectivity, season, land
use, normalized variance of rainfall events, size spectrum and phase of cloud particles, cloud cover,
cloud optical depth, cloud top pressure and the proximity to particulate sources [17,18,20,27,29,33–51].
In some cases, such as for wind speed, the relationship is highly non-linear, and in many cases
not well characterized.

The picture is further complicated by the biases present in the satellite AOD products [52–56],
the difference in spatial scales of the in situ point PM2.5 observations and the remote sensing data
(several kilometers per pixel) and, finally, the sharp PM2.5 gradients that can exist in and around cities,
particularly in Asia.

Taken together, all of these factors naturally suggest that any successful regression must be
multivariate, non-linear and non-parametric. The natural choice is therefore machine learning, an
approach which excels in describing multivariate, non-linear, non-parametric problems. Machine
learning, does an outstanding job of providing a new PM2.5 product. Figure 3 shows the monthly average
of our machine learning PM2.5 product (µg/m3) for August, 2001. The average of the observations at a
given site are overlaid as color-filled circles when observations were available for at least a third of the
days. Notice the good agreement between the PM2.5 product and the observations (i.e., the color fill of
the circles depicting the observations is in good agreement with the background color depicting the new
machine learning PM2.5 product).
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Figure 2. A map showing the 8329 PM2.5 measurement site locations from 55 countries
(red squares) that were used over the period 1997–present. The greatest density of sites is in
North America, Europe and Asia. However, there are also southern hemisphere sites in South
America, South Africa, Australia and New Zealand. The background color scale shows the
global topography and bathymetry.

As would be expected in late summer, the eastern U.S. has much higher PM2.5 concentration than
the western U.S. Figure 3a is of Alaska and highlights common fire zones associated with elevated
PM2.5. Figure 3b,c show the good agreement between our product and observations. Figure 3d shows
the elevated PM2.5 with the heavily agricultural Central Valley in California, the highly populated Los
Angeles Metropolitan Area, the Sonoran Desert, one of the most active dust source regions in the U.S.,
the Four Corners Power Plants, some of the largest coal-fired generating stations in the U.S., and the
Great Salt Lake Desert.

We are in the process of combining the daily particulate data product produced using machine learning
(an example is shown in Figure 3) and other environmental data products with the VA’s Electronic Health
Record (EHR) System to facilitate data-driven insights and decisions.

3.2. Life Expectancy and Socioeconomic Data from the U.S. Census

In 2012, the Center on Society and Health at Virginia Commonwealth University launched a two-year
study of factors that affect life expectancy in California census tracts with high poverty rates. They
calculated the life expectancy of thousands of census tracts in California, working with vital statistics
supplied by the California Department of Health. The researchers were using traditional statistical
techniques, such as regression equations, to study factors in these census tracts that might affect life
expectancy, such as healthcare and public health, the physical and social environment, socioeconomic
conditions of individuals and households and macrostructural resources. Their goal was to see if these
factors seem to differ in outlier census tracts with unexpectedly high or low life expectancy given their
poverty rate. The goal is to help elected officials and other policymakers identify assets that act positively
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to help poor communities buffer the adverse health effects of poverty. The parsimony required for
traditional methods, as discussed above, required the researchers to handpicked a limited number of
variables in each domain to enter into their regression equation.

Figure 3. The monthly average of our prototype machine learning PM2.5 product (µg/m3)
for August 2001. The average of the observations at a given site is overlaid as color-filled
circles when observations were available for at least a third of the days. Notice the good
agreement between the PM2.5 product and the observations. Furthermore, as would be
expected, in summer, the eastern U.S. has much higher PM2.5 concentration than the western
U.S. (a) Alaska highlighting common fire areas associated with elevated PM2.5; (b,c) the
good agreement between our product and the observations; (d) the elevated PM2.5 with the
heavily agricultural Central Valley in California, the highly populated Los Angeles Metro
Area, the Sonoran Desert, one of the most active dust source regions in the U.S., the Four
Corners Power Plants, some of the largest coal-fired generating stations in the U.S., and the
Great Salt Lake Desert.

Four Corners Power Plants

Sonoran Dessert
Los Angeles Area

Central Valley

Common Fire Area
Close Ups Showing Good Agreement With Observations

Alaska

(a)

(b) (c)

(d)

Great Salt Lake Desert
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Building on this study, we conducted a parallel project to serve as a demonstration of the power
of machine learning. As a proof of concept, it was intentionally limited to one geographic area
(the State of California) and one domain in the researchers’ model: socioeconomic conditions in
individuals and households.

The 2007–2011 U.S. Census Bureau’s American Community Survey provides a rich data set on
socioeconomic conditions for individuals and households that are too extensive for traditional researchers
to examine in total, but that are arrayed at the census tract level in a downloadable form that
supercomputers can easily analyze. The total number of variables available at the census tract level
is extensive: a total of 21,038 variables spread across 113 data files. Some of the variables are duplicated
in more than one file, and when these duplicates are removed, 18,528 unique variables remain. Some
of these variables have missing values for certain census tracts; if variables with missing values are
removed, then 13,065 variables remain. Although this is a staggering number of variables that most
conventional investigators would not even attempt to analyze, we easily used machine learning to design
a fully non-linear, non-parametric, multi-variate fit of all 13,065 variables. We calculated the bivariate
statistical significance of the individual correlation of these variables with life expectancy and found
that a staggering 10,339 variables had a p-value less than 0.05. The variables in the census are not
orthogonal, and aspects of the same information content are duplicated in many census variables. If the
p-value threshold is progressively decreased, we find that, remarkably, seven variables have a p-value of
less than 10−240.

Whether we use all 13,065 variables or the 10,339 with a p-value of less than 0.05, or just the
seven variables with a p-value of less than 10−240, machine learning is able to do a good job of estimating
life expectancy. Two examples of the fully non-linear, non-parametric, multi-variate estimates of life
expectancy using Random Forests [57,58] are shown in Figure 4.

A few obvious take away messages were found.
First, the variables that machine learning highlighted as most important replicated classic

epidemiological studies in highlighting the importance of factors with known associations with life
expectancy—age, sex, race-ethnicity, income/poverty, and education—however, in addition, the machine
learning approach identified some additional key factors. Among the top 50, it identified other factors
that ranked very highly in importance, including: relocation (first); employment, especially in certain
industries (third, seventh, eighth, 13th, 15th, 19th, 20th, 36th, 42th, 49th); occupied housing (sixth,
11th, 16th, 18th, 21st, 31st, 50th); single-parent households (sixth, 12th); language (14th); grandparents
living with grandchildren (26th, 48th); and SNAP eligibility (38th). Whether these variables are proxies
for socioeconomic status or reflect unique influences on life expectancy independent of classic social
determinants of health requires further analysis beyond the scope of this project.

Second, perhaps because key information in the census is duplicated many times, the fit using just
seven variables was almost as good as that using all 13,065 variables, or the 10,339 with a p-value of
less than 0.05.

Third, as good as the machine learning fit was, the slope of the scatter diagram is not exactly one.
This data signature indicates that additional key factors have not been considered. This is not unexpected;
this study focused only on the socioeconomic dimension and not other determinants of health, such as
environmental factors, like air quality, or dietary habits and access to health care. It is clear that important
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factors related to life expectancy that need to be simultaneously accounted for are healthcare, health
behaviors, the social environment, the physical environment (including pollution) and public spending
on social and health services.

Figure 4. Two examples of the scatter diagrams for fully non-linear, non-parametric, multi-variate
estimates of life expectancy: (a) 10,339 variables in the American Community Survey (U.S. Census
Bureau) with a bivariate p-value for life expectancy of less than 0.05; (b) seven variables in the
American Community Survey (U.S. Census Bureau) with a bivariate p-value for life expectancy of
less than 10−240. Blue circles depict the training data. Red squares depict randomly selected, totally
independent validation data not used in the training. The green line is the ideal 1:1 line for a perfect fit.
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Therefore, we have seen that machine learning is a powerful tool for dealing with massively
multi-variate systems, for letting the data speak, for highlighting key drivers and for providing objective
tools that tell us when additional factors need to be considered.
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3.3. False Positives

It is critical to recognize that correlation is not causation; further, when using machine learning with
many variables, there is always the possibility of false associations. The full analysis of such possibilities
are beyond the scope of this paper. However, one way to address these questions is some kind of
experimental control in the data mining exercise, but a variety of other methods have been proposed.

4. Summary

Human health is part of an interdependent, multifaceted system, with many aspects varying
geospatialy. The Holistics 3.0 paradigm that brings together data on as many aspects of a problem as
possible and combines it with machine learning (and where necessary, causality) is a powerful tool for
informing data-driven decisions that can incorporate and account for geospatial variations. Key in this
is allowing the data to “speak for itself” and the ability to process thousands of variables simultaneously
in a fully multi-variate, non-linear, non-parametric, non-Gaussian framework.
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