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Abstract: Associative methods for content-based image ranking by semantics are 

attractive due to the similarity of generated models to human models of understanding. 

Although they tend to return results that are better understood by image analysts, the 

induction of these models is difficult to build due to factors that affect training complexity, 

such as coexistence of visual patterns in same images, over-fitting or under-fitting and 

semantic representation differences among image analysts. This article proposes a 

methodology to reduce the complexity of ranking satellite images for associative methods. 

Our approach employs genetic operations to provide faster and more accurate models for 

ranking by semantic using low level features. The added accuracy is provided by a 

reduction in the likelihood to reach local minima or to overfit. The experiments show that, 

using genetic optimization, associative methods perform better or at similar levels as  

state-of-the-art ensemble methods for ranking. The mean average precision (MAP) of 

ranking by semantic was improved by 14% over similar associative methods that use other 

optimization techniques while maintaining smaller size for each semantic model.  

Keywords: content-based image ranking; data mining; ranking; genetic;  

satellite images; associative 
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1. Introduction 

Evaluation of geospatial imagery is challenging due to high dimensionality of spatial data and to the 

coexistence of visual patterns related to multiple semantics in images [1]. As the rate of image 

collection grows exponentially, it is becoming exceedingly difficult for image analysts to manually 

extract knowledge from geospatial images in order to deliver focused information for decision making. 

This necessitates the need for automating remote sensing data analysis and evaluation. Traditional data 

approaches, such as statistical methods, have limitations in terms of distributional assumptions and 

restrictions on data input which may prevent them from analyzing unknown and unexpected 

relationships in geospatial images [2]. Other traditional methods of data mining such as Artificial 

Neural Networks and Genetic Algorithms (GA) have a black-box characteristic which makes it 

difficult for users to apply extracted rules to other cases [3]. Besides, data values gain meaning only in 

the context of the geospatial domain and the existence of multiple semantic interpretations for the same 

image [4,5], which makes it difficult to apply traditional data analysis methods to images. Therefore, new 

approaches that consider unique characteristics of image data have emerged for mining patterns 

from images.  

In content-based image retrieval, images are indexed by their visual contents such as color and 

shapes. However, these low-level features cannot properly capture the high-level image semantics in a 

user’s mind. Therefore, recent studies on content-based image retrieval focus on reducing the semantic 

gap between low-level features and high-level human semantics by constructing semantic models that 

can be used for prediction. A comprehensive review of various semantic models are provided in [6] 

where methods for reducing the semantic gap include using object ontology to define concepts, using 

machine learning methods to associate low-level features to users’ semantics, introducing relevance 

feedback to learn users’ intentions, generating a semantic template to map low-level features to high-level 

concepts, and combining visual and text content for web image retrieval.  

Recent research in the geospatial area provided a variety of in-depth solutions [7–18], to represent 

the complex, often overlapping geospatial knowledge and to assist image analysts in generating necessary 

domain specific metadata. The research in [7] describes a framework for modeling and image retrieval 

using directional spatial relationships among objects. Content-based image retrieval (CBIR) methods 

were applied to ranking satellite images using possibilistic associations between low-level features  

and semantics of interest [8]. The researchers in [9,10,13] use Latent Dirichlet Allocation (LDA)  

semi-supervised methods to annotate images with semantic classes. Both supervised and unsupervised 

methods are combined in the I
3
KR [11] framework to enhance image searching capabilities using 

semantic- and content-based information. The researches in [12,15] efficiently retrieve images using 

indexing structures on the feature space. The application of self-organizing maps to the analysis of 

man-made structures in multispectral imagery is investigated in [14]. The research in [16] proposes the 

integration of a multi-modal content-based system with complex methods of querying on shape,  

multi-object relationships, and semantics, while the research in [17] automatically detects variations in 

geospatial images and applies clustering techniques to organize visual pattern variations. The approach  

in [18] uses ontological knowledge and artificial neural networks to build semantic models of visual 

patterns using both low-level and descriptive image features. These models can be used to measure the 
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semantic similarity among image objects. For an in-depth review of spatial data mining and knowledge 

discovery, the reader is directed to [3].  

Among the proposed solutions, associations between low-level features and visual patterns are 

generated using data mining techniques [8,19] and provide more human-readable insight into the 

structure of the generated models. Each association rule generates a decision rule where a set of  

low-level features are selected as the antecedent and a unique semantic as the consequent of the 

decision rule. The association rules are then evaluated and ranked for their relevance to the high-level 

visual patterns. Different algorithms have been proposed for spatial association rule mining. Among 

those, Apriori and AprioriTid algorithms [20] have made significant improvements for generating 

efficient rules and filtering rules that are trivial or common knowledge. One of the challenges in  

this area is the computational overhead associated with various spatial predicates in order to derive 

association rules from large data sets. An approach that derives association rules using fuzzy  

data mining techniques is proposed in [21] to deal with uncertainty found in spatial data. In [22],  

self-organization maps are used to mine whether satellite images, and then time dependent association 

rules, are extracted using Apriori algorithm. For an in-depth review of associative classification mining 

and spatial associative rule mining, the reader is directed to [23].  

The method of feature selection from raw original images is an important step in improving the 

performance of associative rule mining methods. The process reduces the dimensionality and complexity 

of the raw image data by eliminating irrelevant and redundant features. A similarity/dissimilarity 

measure between the selected set of low-level features and high-level semantics determines the 

effectiveness of the associative models. An important problem in geospatial knowledge discovery is 

the choice of optimization strategies that can be applied to a feature space. Finding a unique solution in 

a high-dimensional feature space that contains a large quantity of continuous variables is a challenging 

task. In particular, in spatial associative mining, subspace generation is exponential to the number of 

possible subspaces which makes brute force associative methods NP-hard [24]. Feature selection 

algorithms attempt to reduce feature space complexity by removing irrelevant features [25] using 

either filtering or wrapper approaches. Brute-force feature selection algorithms are also computationally 

expensive, while recently proposed feature selection algorithms are greedy in nature and may return 

inferior performance. Other greedy decision algorithms [26,27] attempt to reduce the complexity of the 

problem but may be trapped in suboptimal, local maximum solutions. To overcome this problem, 

additive associative models are used where the newly discovered association rule is added to the model 

only if the rule’s relevance to the semantic model is greater than a predefined threshold [9]. For 

example in [8,28] additive models were combined with algorithms such as the Sequential Forward 

Floating Selection Algorithm (SFFS), which applies a number of backward steps as long as the 

objective function returns better results. Feature selection through association rules is also employed  

in [29] to reduce the dimensionality of feature vectors.  

Evolutionary algorithms are self-adaptive optimization methods that perform global search in a 

solution space. They tend to perform better with attribute interactions when compared to greedy 

decision algorithms [30]. Genetic Algorithms (GAs) [31,32] model the space of candidate solutions in 

chromosome structure where the success of each chromosome is assessed with a fitness function. The 

best solution or most satisfactory solution is based on natural selection methods that combine successful 

features existent in a set of previously generated models by selection, crossover and mutation. Since 
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knowledge about the search space is accumulated during the search process, GAs can eliminate  

local-maxima traps by adaptively moving the solution space to approach a global optimal. GAs are 

applied in various spatial data mining domains. In [33], evolutionary programming is used to classify 

multispectral images using a non-linear combination of spectral and texture metrics. The research in [34] 

uses GAs to optimize the interpolation of air pollution data while the research in [2] applies to GAs to 

classify land-cover using object shape found in image. In [35], a spatial clustering method based on 

GAs and k-medoids is proposed to address spatial clustering with obstacle constraints. The research 

in [36] uses GAs to discover association rules for image data mining. In [37], a multi-objective 

optimization algorithm is used to search a number of conflicting objective functions to find  

Pareto-optimal solution for pixel classification.  

GAs have also been applied for feature selection in image retrieval tasks. In [38], GA-based feature 

selection algorithm is used to select a set of discriminative feature set for satellite images. Separability 

index is used as the fitness function to evaluate feature subsets and the effectiveness of the algorithm is 

tested on a neural network classifier. In [39], ranking evaluation functions are proposed as fitness 

functions in GA-based feature selection to search for the best feature set. In [40], the feature selection 

method includes a filter-based feature selection using genetic algorithm to improve the precipitation 

estimation from a remotely sensed imagery.  

In this paper, we extend the work in [41] to explore steady-state genetic methods [42] for optimization 

of associative models for ranking geospatial image regions by land cover. Our goal is to provide an 

associative method for mapping semantics to visual patterns in domain-specific images. These 

methods are attractive due to the fact that they can be interpreted much more easily by experts, which 

can be eventually used in expert training procedures. In previous approaches, we have used Apriori 

association rule mining techniques for the initial determination of the feature subspaces. However, the 

training proved to be complex and many of the methods used to reduce the complexity proved limiting 

and directly affected the quality of pranking. Therefore, in the new approach we use only genetic 

methods for generation, selection and fine-tuning of the mappings between feature spaces and 

semantics. The main scope of this article is to evaluate if genetic methods for associative rule mining 

resulted in performance that is better or similar to the performance of other state-of-the-art techniques. 

We investigated two models of genetic algorithm for offspring generation; generational GA (standard 

GA) and steady state GA and chose to use the later. In standard GA, the genetic operators replace the 

entire old generation with the new off-spring population, whereas in steady-state GA, the population is 

replaced incrementally such that there is one new member inserted into the new population. A 

replacement strategy determines which members of the population will be replaced by the new 

offspring [43]. Each association between a feature and the land cover of interest is modeled as a k-bit 

exon that contains information about both the features and the characteristics of the feature subspace 

used. The novelty of our approach is the use of genetic operations at both feature and subspace levels. 

We evaluate the fitness of models in genetic populations using MAP and compare and contrast it with 

the SFFS optimization algorithm used in [8]. This paper is organized as follows: In Section 2 we 

introduce the methodology used to implement genetic algorithms, we present the experimental results in 

Section 3, and then conclude the article in Section 4.  
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2. Methodology 

In this section we present our methodology for ranking satellite image regions using genetic 

operations. For each image in the database we generate a feature space F. The key feature of the 

algorithm is that we use sets of association rules between feature subspaces and semantics in a 

semantic space S to rank images by semantic. Each set of associations is generated and evolved using 

genetic operations at two levels: the feature and subspace levels. At the feature level, we vary the set of 

features used to identify association rules, while at the subspace level we vary the region for the same 

feature set that will be used in ranking. For example, for a 38-dimensional space there are     unique 

combinations of features. Using genetic operations we randomly choose and evolve combinations of 

features using methods such as crossover, shrink, constant, or grow mutations. Once a combination of 

features is selected, we randomly generate and evolve features’ subspaces modeled by sigmoid 

possibilistic functions. Further, sets of feature spaces are used additively to model correlation to a 

semantic of interest. To evaluate which subspace is the most relevant we also apply genetic operations 

at this level.  

2.1. Fitness Function  

The fitness function for each semantic model is used by the optimization algorithm to determine 

which combinations of association rules will better model the association between feature subspaces 

and semantics of interest. In our study, we use the MAP to determine the relevance of each feature 

subspace, a set of associations that will form a semantic model. However, since each semantic model 

is an ensemble of associations, with multiple non-zero relevance values, the fitness function is applied  

as follows: Each association rule maps the region of the feature space     into the semantic of  

interest    .  

          (1) 

      
  

 
      

     
 

  
        

     
 

  
    (2) 

The function   is an asymmetric double sigmoid possibilistic distribution (L—left and R—right) 

that models the relevance of a measurement    to a semantic  . Each half sigmoid is controlled by 

two parameters: (a) center (  
 ,   

 ) and (b) width (  
 ,   

 ) while    is weight of the relevance retrieved 

by the  . Each possibility distribution is shaped using the relevance assessments provided by image 

analysts, which we considered as ground-truth semantic information for each semantic of interest. For 

details of this mapping function, the reader is referred to [8]. The relevance of an image   to a semantic 

  is determined by the relevance of the feature values       of the image over region of the feature 

space  : 

                                         (3) 

where    is a weight of the feature subspace   that determines its relevance in mapping F into  . 

Further, for each semantic   we create a semantic model    defined as the set of mappings of subspaces 

  of   into a semantic space  : 



ISPRS Int. J. Geo-Inf. 2013, 2 536 

 

 

         (4) 

The overall relevance         of an image   with feature measure      , to a semantic   is 

computed by sorting the relevance (rank function) values of image feature measures to each feature 

subspace      in descending order and then computing:  

                                  

    

 
(5) 

In this equation,         is computed as a weighted mean of all the sigmoid relevance values of the 

associations in the semantic model. We have chosen this average because we want to emphasize the most 

relevant association while deemphasize the less relevant association that have only a marginal effect.  

Finally, for each of the experiments we then compute the fitness function as the MAP of ranking, 

which provides an aggregate measure of precision (how many of the images retrieved in a search by 

semantic are actually relevant) across all the recall levels for each model    for     over a feature 

space  . The MAP measure is shown below:  
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In this formula,     is the set of ranked j images from the top to the kth image. 

2.2. Encoding  

Each generated membership function is considered an exon   and it is encoded as a decimal string 

for the sequence ( ,   
 ,   

 ,   
 ,   

   using a total 20 decimal digits. The feature   is recorded as the 

index of the feature in the feature space using four decimal digits, while for each of the sigmoid parameters 

we store the most significant four digits after the decimal point that resulted after the process of 

normalization. For readability of the article, we will break a genetic sequence in smaller parts as well as 

highlight each group of four digits by alternating between italicized and bolded text. For example, 

       
 

 
      

      

    
       

       

    
   over a feature F1 will be encoded as   = 0001 0100 0500 

6240 0100.  

A gene   is a set of conjunctive exons and it is encoded by the sequence (        ,        in which   is 

the number of exons in the gene and             represents the relevance of the full membership allowed 

by the gene. For example, consider a gene having            and containing two exons on a  

two-dimensional feature space {F1, F2}. Each exon is equivalent to the following sigmoid functions: 

         
 

 
      

       

     
       

       

     
   and         

 

 
      

      

    
       

       

    
  . 

This gene is encoded   0002 7210 0001 8870 0150 9980 0010 0002 0100 0500 6240 0100. For this 

gene, each point in the feature subspace F1   [0.887, 0.998] ˄ F2   [0.01, 0.624] has a relevance of 

   0.721 while feature points outside this area will have smaller relevance as dictated by the 

sigmoid functions. 

A chromosome   is a set of disjunctive genes that can be aggregated using the         function and 

it is encoded as a concatenation of the constituent genes   = (       ). For example, consider that we 

have a chromosome with two genes:    = 0002 7210 0001 8870 0150 9980 0010 0002 0100 0500 6240 
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0100, which was described in the previous paragraph and   = 0001 2018 0001 6670 8810 0121 0040, 

that contains one exon equivalent to           
 

 
      

       

      
       

       

     
   over feature F1 

and with             . This chromosome is encoded   = 0002 7210 0001 8870 0150 9980 0010 

0002 0100 0500 6240 0100 0001 2018 0001 6670 8810 0121 0040. Each chromosome represents a 

customized region of the feature space. The purpose of our methodology is to identify the optimal 

region that can maximize the quality of ranking for a semantic. This set of associations will constitute 

a semantic model for that semantic and will be used for ranking new, unlabeled images that are added 

to the database. 

Finally, a population is a set of chromosomes ( 1,…,  n) that compete to explain the association 

between a feature space and a semantic, while a genetic material is a set of chromosomes that return 

the highest performance in modeling all the semantics of interest. 

2.3. Genetic Operations 

We perform genetic operations at three levels: exon, gene, and chromosome. Below we enumerate 

the genetic operations that are performed on each population which are exemplified in Figure 1 on a 

simplified two-dimensional feature space composed of object convex area kurtosis (F1) and 

orientation skewness (F2). In this figure, the vertical axis is the relevance feature points to a semantic 

of interest. 

Figure 1. Example of a sequence of genetic operations: (a) random; (b) exon shift lambda 1; 

(c) exon shift lambda 2; (d) gene growth mutation; (e) gene relevance mutation; (f) gene 

constant mutation; (g) gene cross by replacing the second exon in (e) with the first exon in 

(a); (h) gene shrink mutation; (i) chromosome growth mutation; (j) chromosome constant 

mutation; (k) chromosome cross over with first gene at (d); (l) chromosome shrink mutation. 

   

(a) (b) (c) 
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Figure 1. Cont. 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Chromosome Random generation: The first population uses completely random generation of 

chromosomes. The number of genes in each chromosome is randomly chosen between three and 

twelve, while each gene has at most five exons. The range of genes in an exon was empirically shown 

by our experiments to be returned by the associative model while we want to maintain the number of 

exons in a model to preserve the white-box nature of our semantic models. Figure 1(a) shows relevance 

of the feature space when using a randomly generated chromosome with one gene, one exon on the F2, 

and with the code 0001 6510 0002 1012 3410 0200 0513. This is equivalent to a sigmoid function 

       
 

 
      

        

    
       

        

      
  . 
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Exon Shift of λ1 Parameter: This operation adds variation to the feature interval of maximum relevance 

by randomly changing   
  and   

  with up to ±5%. Figure 1(b) shows relevance of the feature space when 

genetically transforming 0001 6510 0002 1012 3410 0200 0513 into 0001 6510 000 23763 4586 0200 

0513. This is equivalent to a new sigmoid function        
 

 
      

        

    
       

        

      
   with 

variation in   
  and   

  over the previous generation. 

Exon Shift of λ2 Parameter: This operation adds variation to the feature interval of maximum relevance 

by randomly changing   
  and   

  with up to ±5%. Figure 1(c) shows relevance of the feature space when 

genetically transforming 0001 6510 0002 1012 3410 0200 0513 into 0001 6510 0002 3763 4586 2130 

0500. This is equivalent to a new sigmoid function        
 

 
      

        

     
       

        

    
   with 

variation in   
  and   

  over previous generation. 

Gene Grow Mutation: This operation adds a new exon to a randomly selected gene in the 

chromosome. Figure 1(d) shows relevance of the feature space when adding the exon with the code 0001 

2001 6011 0100 0055 on feature F1 to the gene in the existing chromosome. The new genetic code of the 

chromosome is 0002 6510 0002 3763 4586 2130 0500 0001 2001 6011 0100 0055. This is equivalent to 

a chromosome with relevance   = 0.651 and           
 

 
      

        

     
       

        

    
   and 

          
 

 
      

        

    
       

        

      
  . 

Gene Relevance Mutation: This operation adds variation to a gene by randomly changing the    

weight of a gene in the chromosome. Figure 1(e) shows relevance of the feature space when increasing 

the relevance      from 0.651 to 0.9999. The new genetic code of the chromosome is 0002 9999 0002 

3763 4586 2130 0500 0001 2001 6011 0100 0055.  

Gene Constant Mutation: This operation replaces an exon in a randomly selected gene. The 

selection of the new exon is performed by a random operation. Figure 1(f) shows relevance of the 

feature space after replacing the exon 0002 3763 4586 2130 0500 with 0001 5160 7613 0501 0500. 

The new exon is equivalent to          
 

 
      

       

      
       

        

    
  . The final code of the 

chromosome is 0002 9999 0001 5160 7613 0501 0500 0001 2001 6011 0100 0055.  

Gene Cross Over: This operation switches subsets of exons between two randomly selected genes. 

Each subset of exons to be switched is also randomly selected. Figure 1(g) shows relevance of the 

feature space after replacing the second exon in previously described gene 0001 2001 6011 0100 0055 

with the exon from the first random mutation 0002 1012 3410 0200 0513. The final code of the 

chromosome is 0002 9999 0001 5160 7613 0501 0500 0002 1012 3410 0200 0513.  

Gene Shrink Mutation: This operation removes an exon in a randomly selected gene. The selection 

of the exon to be removed is performed by a random operation. Figure 1(h) shows relevance of the 

feature space after removing the exon 0002 1012 3410 0200 0513 from the gene described above. The 

final code of the chromosome is 0001 9999 0001 5160 7613 0501 0500.  

Chromosome Grow Mutation: This operation adds a gene to a randomly selected chromosome with 

a probability directly proportional with chromosome’s relevance. The new gene is generated randomly. 

Figure 1(i) shows relevance of the feature space after adding a new gene with two exons: 0001 1210 

4100 0200 0500 and 0002 6200 8522 0300 0050 and weight    = 0.712. The newly added gene has 

the code: 0002 7120 0001 1210 4100 0200 0500 0002 6200 8522 0300 0050 while the final code of 
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the chromosome is 0001 9999 0001 5160 7613 0501 0500 0002 7120 0001 1210 4100 0200 0500 0002 

6200 8522 0300 0050.  

Chromosome Constant Mutation: This operation randomly selects a chromosome and changes the 

associated feature for one of its genes. Figure 1(j) shows relevance of the feature space after the feature 

of the first gene was changed from F1 to F2 with the resulting code: 0002 9999 0002 5160 7613 0501 

0500. The new chromosome has the code 0001 9999 0002 5160 7613 0501 0500 0002 7120 0001 1210 

4100 0200 0500 0002 6200 8522 0300 0050.  

Chromosome Cross Over: This operation switches subsets of genes between two randomly selected 

chromosomes. Each subset of genes to be switched is also randomly selected. Figure 1(k) shows 

relevance of the feature space after switching the first gene of the chromosome in Figure 1(d) with the 

first gene in the previously described chromosome. The final code of the chromosome is 0002 6510 

0002 3763 4586 2130 0500 0001 2001 6011 0100 0055 0002 7120 0001 1210 4100 0200 0500 0002 

6200 8522 0300 0050.  

Chromosome Shrink Mutation: This operation removes a gene from a chromosome with the intent 

to reduce the complexity of the DNA sequence. The probability of this operation is inversely 

proportional with the relevance of each chromosome. Figure 1(l) shows relevance of the feature space 

after removing the second gene from the chromosome. The final code of the chromosome is 0002 6510 

0002 3763 4586 2130 05 00 0001 2001 6011 0100 0055  

Chromosome Reproduction: This operation makes an exact copy of a chromosome and adds it to 

the new DNA sequence. The selection of chromosomes used in genetic operations is determined using 

the roulette wheel selection algorithm [44], which allocates a chance of selection proportional to the 

fitness of each semantic model in the population.  

Figure 2. Flowchart for generating a semantic model using genetic operations. 
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Figure 2 shows the flowchart for generating a semantic model using genetic operations. The input 

parameters for this process are a training set containing image features that were labeled by image 

analysts with one or multiple semantics    . This algorithm also takes, as input, the following 

parameters: the number of chromosomes in each generation of population, the maximum number of 

generations (iterations) the algorithm will execute, and a threshold on the quality of ranking for which 

the algorithm would terminate. The algorithm starts with a population in which each chromosome, 

gene, and exon was randomly generated. The quality of ranking is then evaluated using the MAP 

measure and it is shown in Equation (6). The top chromosomes are then selected as parents for the 

chromosomes in the next generation, which is generated using the genetic operation explained in 

Section 2.3. Finally, when the termination criterion was met—either the quality of ranking of the top 

chromosome exceeded the preset threshold or the maximum number of iterations was completed—the 

algorithm returns the most fitted chromosome. This chromosome is converted to a semantic model that 

is used for ranking of new, unlabeled images. 

3. Evaluation  

We designed three experiments to evaluate the relevance of applying genetic optimization methods 

to ranking images by semantics: (1) we evaluate the performance of the proposed approach over a 

large number of genetic operations; (2) we perform an in-depth comparative evaluation of 

Associative & SFFS and the proposed approach (Associative & Genetic); and (3) we compare the 

performance of the proposed method with that of six other methodologies. For each experiment we 

followed the procedure shown in Figure 3: First, the original data was separated into ten subsets using 

a stratified strategy [45] to ensure that each semantic class in proportionally represented in each fold. 

Next, using a ten-fold iteration approach, data was separated into testing containing a different subset 

for each fold and training containing the remaining folds. Then, ranking models were built on the 

training data and evaluated on testing data. This approach is different from the Associative & SFFS in 

that the latter uses the following procedure: (1) use Apriori algorithm to generate a large number 

candidate feature subspaces; (2) sort the generated associations by a harmonic average of confidence 

and support; (3) generate the parametric sigmoid model using least square method using data 

distribution over the feature subspace; and (4) generate candidate semantic models by repeatedly 

adding and applying SFFS methods to the best candidate model.  

For our experiments we used two datasets: 2010 WROC satellite imagery of Wisconsin [46] and 

UCI Statlog Landsat Multi-Spectral satellite [47]. The 2010 WROC satellite imagery contains 18  

3-band GeoTIFF image tiles 15,678 × 11,105 pixels collected in spring 2010. Each of these tiles was 

further partitioned in minimal overlapping 1,000 × 1,000 tiles. For each tile, a feature extraction 

algorithm was applied to include the following: For color we extract features from the gray, R, G, B, 

H, S, V channel as well as color texture. For texture, we extract autocorrelation, contrast, correlation, 

energy, entropy, Inverse difference moment, and homogeneity. For objects, we extract gray mean, 

area, centroid, bounding box, major and minor axis length, eccentricity, orientation, convex area, filled 

area, Euler number, equivalent diameter, solidity, perimeter, and phase congruency. We perform the 

feature extraction using the Image Processing Toolbox from MatLab. For each of these features 

average, quartile, standard deviation, skewness, and kurtosis were calculated resulting in a 292 feature 
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vector for each tile. Further, we selected a number of 100 tiles that were labeled with one or more 

labels from the Urban Area (L100), Agriculture (L110), Grassland (L150), Forest (L160), Open 

Water (L200), Wetland (L210), Barren (L240), Shrubland (L250). In this subset, a number of 72 tiles 

were labeled with two semantics: Barren (L240) overlaps with Agriculture (L110) in 26 tiles, with 

Grassland (L150) in 4 tiles, with Forest (L160) in 5 tiles, and with Wetland (L210) in 4 tiles. Also, 

Shrubland (L250) overlaps with Grassland (L150) in 4 tiles and with Forest (L160) in 29 tiles. The 

second data set is the UCI Statlog Landsat Multi-Spectral satellite dataset that contains 6,435 satellite 

images that were labeled with one of six different soil types: red soil (L1), cotton crop (L2), grey soil 

(L3), damp grey soil (L4), soil with vegetation stubble (L5), or very damp grey soil (L7). For each 

image, a 36-dimensional feature space was extracted with the feature corresponding to the 9 intensity 

values of a 3 × 3 pixel region (with overlapping regions) in two visible and two near infra-red spectral 

bands. Semantic models were trained on a randomly selected training set that contains 90% of data 

while testing was performed on the remaining 10% of data.  

Figure 3. Flowchart for the experimental setting.  

 

3.1. In-Depth Evaluation of Genetic Operations in the Proposed Method 

For the proposed method, we have recorded each genetic operation that was performed on the 

genetic population. This resulted in a number of 90,000 genetic operations for the experiments over the 

UCI Statlog Landsat data set and 120,000 genetic operations for the experiments over the WROC data 

set. The percentage for each individual operation performed is shown in Figure 4. For example, the 

crossover operations accounted for 57% of all the operations equally distributed over chromosome and 

gene mutations. Due to the randomness of the genetic operations, we observed minimal percentile 

variations for the experiments on the two data sets.  
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Figure 4. Genetic operations performed as percentage when ranking images by semantics. 

 

We have also recorded the genetic operation that resulted in the best performing chromosome for 

each mutated population for each data set-semantic-fold combination. Out of the 21,000 mutated 

populations, only 6,491 returned better fitted models with 3,517 and 2,974 populations for the UCI 

Statlog Landsat and WROC data set respectively or a 30.9% genetic mutation success rate. Figure 5 

shows the percentage of operations that returned improved semantic models. For example, this figure 

shows that overall crossover mutations tended to contribute less than average for improvements in 

semantic models. They returned the best models in 44% and 34% for the UCI Statlog Landsat data set 

and WROC data sets respectively. On the other end, exon shifts were the most successful in improving 

semantic models with percentages of 22% and 33% respectively, although they accounted for only 

14% of the total genetic operations. It is also noted that the least likely to improve are the models with 

percentages of less than 0.5%.  

Figure 5. Relevant genetic operations as percentage when ranking images by semantics on 

the (a) UCI Statlog Landsat data set and (b) WROC data sets. 

  

(a) (b) 

3.2. In-Depth Evaluation of Associative Methods for Ranking 

To evaluate the difference between the two associative methods (Associative & SFFS and 

Associative & Genetic) we have recorded the MAP measure at each iteration for both the training and 
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the testing dataset. In this experiment, each generated model is considered one iteration. For example, 

the Associative and Genetic method with a population of 10 chromosomes and 150 generations will 

generate 1,500 iterations. At each iteration a new chromosomes/semantic models is evaluated. 

Similarly, for the Associative & SFFS method, a new iteration is generated by adding a new 

association to the model. Figures 6 and 7 show the range of MAP when ranking images from the 

WROC data set for the Associative & SFFS and Associative & Genetic respectively. The results from 

the UCI Statlog Landsat data set were omitted due to lack of space, but are similar in behavior. For 

example, in Figure 6, at iteration 1,250 the average MAP returned by the Associative & SFFS method 

on the training set was 72.33% and 59.99% on the testing set. This shows that on average the 

Associative & SFFS method overfits the model to the training data by 12.32%. For the same iteration, 

the MAP value ranged between 49.94% and 98.54% on the training set and between 30.81% and 

87.71% for the testing set. Also, this figure shows that the last 150 iterations that produced a better MAP 

on the training set overfitted the model because they reduced the MAP on the testing set by 0.4%. 

Figure 6. Range of MAP by iteration for the (a) training and (b) testing data sets when 

ranking images from the WROC data set using the Associative & SFFS. 

  

(a) (b) 

Figure 7. Range of MAP by iteration for the (a) training and (b) testing data sets when 

ranking images from the WROC data set using the Associative & Genetic.  

  

(a) (b) 
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Figure 7 shows similar results for Associative & Genetic method. At iteration 1,250 the average 

MAP returned by this method were 78.06% and 72.34% on the training and testing set, respectively. 

This shows that on average the Associative & Genetic method overfits the model to the training data 

by 5.72% on average, which is less than half of the variation measured for the Associative & SFFS. 

Similarly, the range of MAP values was smaller than in the case of Associative and SFFS method with 

values between 53.09% and 98.86% for the training set and 44.45% and 97.27% for the testing set. For 

the same iteration, the MAP value ranged between 49.94% and 98.54% on the training set and between 

30.81% and 87.71% for the testing set.  

The results in these figures show that the advantages of the Associative and Genetic method are 

two-fold: (a) better trained models that achieve higher average MAP on the training data and (b) less 

overfitting of the models to the training data. To further evaluate the reasons the Associative and SFFS 

methods overfit, we also recorded the number of rules in the semantic models generated by the two 

methods. The results of this experiment are shown in Figure 8 for the UCI Statlog Landsat data set and 

in Figure 9 for the WROC data set. For example, in Figure 8(a), the average number of rules in a 

semantic model generated by Associative and SFFS at iteration 1,250 on the UCI Statlog Landsat data 

set is 65.25% with a minimum and maximum of 27 and 1,224 rules, respectively. For the same 

iteration and data set, the Associative & Genetic method returned on average 12.85 rules with a 

minimum and maximum of 4 and 18 rules respectively. This shows that the advantage of the proposed 

method over the Associative & SFFS is given by its parsimonious models [48] which, on average, are 

five times smaller in size.  

Figure 8. Range of rule count by iteration ranking images using Associative & SFFS 

method on the (a) UCI Statlog Landsat and (b) WROX data sets. 

  

(a) (b) 
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Figure 9. Range of rule count by iteration ranking images using Associative & Genetic 

method on the (a) UCI Statlog Landsat and (b) WROX data sets. 

  

(a) (b) 

3.3. Comparative Study of Ranking Performance 

For this experiment, we designed seven, ten-fold ranking experiments: (1) additive associative 

combined with SFFS [8], (2) ensemble ranking using artificial neural networks (ANN) [49] with 

AdaBoost [50], (3) ensemble ranking using C4.5 decision tree (C4.5) [27] with AdaBoost, (4) Logistic 

Model Trees [51], (5) ensemble ranking using TreeRank with a SVM kernel [52], (6) ensemble 

ranking using Tree Forest with a SVM kernel [52], and (7) additive associative ranking combined with 

genetic operations as described in Section 2. All these experiments were implemented in the R 

statistical environment [53]. For experiments (2) to (6) we have used packages available in R. For 

experiments (1) and (7) we have used 1,500 optimization steps. The data were preprocessed by 

applying the Boruta algorithm [54] for variable selection. 

Figure 10 shows a comparison of the seven methods for ranking of images in the two data sets 

described above using mean average precision (MAP) of ranking. When ranking images from the UCI 

Statlog Landsat dataset, the proposed method retrieved the best results with an average MAP of 

87.93%, followed by LMT with a MAP of 86.11%. Both these methods returned a low standard 

deviation of 2.49% for the Associative & Genetic method and 3.44% for LMT. Low performance was 

returned by ANN & Adaboost—which is prone to overfitting—and SVM & TreeRank—which is a 

non-ensemble method—with an average MAP of 66.01% and 71.79%, respectively. These two 

methods also returned a higher standard deviation of MAP with 6.56% and 6.61%, respectively. When 

ranking images from the WROC data set, the proposed method retrieved second to best results with an 

average MAP of 73.30% next to SVM & TreeForest with a MAP of 74.26%. However, the proposed 

method returned a slightly lower standard deviation at 9.55% as compared to 10.29% for the SVM & 

TreeForest. LMT ranked fourth for this dataset behind C4.5 & Adaboost. Similarly to the previous 

results, low performance was returned by ANN & Adaboost, Associative & SFFS, and SVM & 

TreeRank, with an average MAP of 59.06%, 60.12% and 60.47%, respectively. 
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Figure 10. MAP results for comparative experiments for ranking images by  

semantics using different ranking methods on (a) the UCI Statlog Landsat data set and  

(b) WROC data set. 

 

(a) (b) 

When examining the MAP results for each semantic label, we observe wide variations in 

performance. For example, the Associative & SFFS method returns a MAP of 51.25% when ranking 

the semantic red soil (L1) on the UCI Statlog Landsat data set. This is 24.65% lower than the next 

performing method (SVM & TreeRank). On the same data set, the ANN & Adaboost method show 

very low MAP for the damp grey soil (L4) and soil with vegetation stubble (L5) with MAP values of 

37.40% and 37.80% respectively. The ANN & Adabost also returned low performance for the 

Grassland (L150), and Barren (L240) semantics of the WROC data set with MAP values of 27.92% 

and 29.15% respectively. Variations are also observed in the top performing methods: The proposed 

method is the best when ranking five semantics across the two datasets, while the SVM & TreeRank is 

the best when ranking nine semantics across the two datasets. However, on average, the proposed 

method returned the best results across the two datasets with an average of 80.61%, followed by LMT 

with 78.85% and SVM & TreeForest with 78.69%. This shows a more consistent behavior of the 

proposed method with less likelihood of overfitting/underfitting.  

For a more in-depth analysis of accuracy of the ranked results we provide precision and recall 

metrics. Precision measures how many of the images retrieved in a search by semantic are actually 

relevant, while recall measures how many of the images that are relevant to the target semantic have 

actually been retrieved. Figure 11 shows in-depth interpolated precision-recall measures for the seven 

ranking methods. For example, when ranking images from the UCI Statlog Landsat data set, the 

proposed method returns on average a precision of 95.47% when 20% of the relevant images were 

recalled. For the same data set and recall level, LMT returned 94.76% while SVM & TreeForest 

returned 86.61%. The results over the WROC data set show that the proposed method returns the best 

precision at lower recall rates of less than 30% but performs worse at higher levels of recall. For 

example, on the WROC data set and a recall of 60%, the Associative & Genetic method ranks fourth 

with a precision of 68.81% behind SVM & TreeForest, C4.5 and Adaboost, and SVM & TreeRank that 

returns precisions of 77.09%, 75.85%, and 74.01%, respectively. This trend is noticed also for the 

Associative & SFFS method which is top three in performance for recalls less than 20% but exhibits 

performance degradation at higher levels. Associative & SFFS, Associative & Genetic, and LMT show 

the lowest precision levels at 100% recall which hints to the fact that these methods fail to cover the 
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whole feature universe, and consequently do not rank some images. This suggests some overfitting 

issues of models created using these methods which are less evident for methods such as SVM & 

TreeForest, SVM & TreeRank, or C4.5 and Adaboost. 

Figure 11. Average precision-recall results for comparative experiments for ranking 

images by semantics using seven different ranking methods on (a) the UCI Statlog Landsat 

data set and (b) WROC data set. 

  

(a) (b) 

Overall, our conclusion for this experiment is that there are several reasons that cause variations in 

performance for the methods that we have analyzed. For example, the Associative & SFFS is able to 

rank only those images for which the Apriori algorithm returned strong associations and athe drop in 

precision at high recall values signifies that there are some images that are not mapped into any 

generated feature subspace. The SVM & TreeRank algorithm is the only algorithm that does not use 

ensemble methods and it is likely to overfit. We observe that ranking quality increases significantly, 

once ensemble procedures replace TreeRank. Overfitting is likely to be the cause of poor performance 

returned by ANN & AdaBoost which heavily depends on the characteristic of the neural network while 

the C4.5 and AdaBoost returns poor result due to its greedy nature.  

4. Conclusions and Future Work  

We have developed an approach for generating associative models for ranking satellite image regions 

by land cover. The results of our comparative studies show that the proposed method performs better or 

has similar performance to that of other ensemble methods. Our method applies genetic methods to 

return better precision on new untested data while avoiding overfitting by reducing the local minima 

issues existent in additive models. Overall our results show that the genetic method discovered better 

association rules faster than the existent additive method. This shows that associative methods offer 

promising alternatives to visual patterns found in images, although they are prone to overfitting. The 

key to their success is an adequate learning procedure that is able to avoid local minima. Previous 

associative approaches use association rule mining algorithms to identify relevant feature spaces but 

suffer from inadequate measure of association rule relevance, such as support and confidence, which 

are not optimal for ranking problems. Although our experiments did not provide a clear evidence of the 
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superiority of the proposed method when compared with other state-of-the-art approaches, the easy to 

understand nature of the generated models provide a benefit for future research into areas such as 

expertise and training of image analysts. Genetic models have also the advantage of randomly selecting 

and testing new feature subspaces which result in better models in shorter time. Although not specifically 

measured, training time is an important component in any ranking algorithm. As with any other 

ensemble method, training the proposed method is proportional to the size of the training set, number of 

rules in a semantic model and number of iterations. This is an improvement over SFFS methods for 

which reducing the number of rules in a model requires quadratic complexity of number of rules.  

Our future work includes a more comprehensive evaluation on different image modalities and 

semantic sets, especially for data sets that exhibit overlapping visual patterns and which are more 

difficult to rank. Specifically to genetic operations, we plan to evaluate a better mix of genetic 

operations that would further improve the performance. We also want to address the training time, 

which is a well-known drawback of ensemble methods. Cross-region image ranking is also an area of 

future research since ranking methods are known to return lower precision on data from different 

regions of the globe. 
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