
ISPRS Int. J. Geo-Inf. 2013, 2, 135-154; doi:10.3390/ijgi2010135

ISPRS International

Journal of

Geo-Information
ISSN 2220-9964

www.mdpi.com/journal/ijgi/

Article

Spatial Search Techniques for Mobile 3D Queries in Sensor

Web Environments

Junjun Yin and James D. Carswell *

Digital Media Centre, Dublin Institute of Technology, Dublin 2, Ireland;

E-Mail: yinjunjun@gmail.com

* Author to whom correspondence should be addressed; E-Mail: jcarswell@dit.ie;

Tel.: +353-1-4023-264; Fax: +353-1-4023-269.

Received: 26 December 2012; in revised form: 25 February 2013 / Accepted: 26 February 2013 /

Published: 8 March 2013

Abstract: Developing mobile geo-information systems for sensor web applications

involves technologies that can access linked geographical and semantically related Internet

information. Additionally, in tomorrow’s Web 4.0 world, it is envisioned that trillions of

inexpensive micro-sensors placed throughout the environment will also become available

for discovery based on their unique geo-referenced IP address. Exploring these enormous

volumes of disparate heterogeneous data on today’s location and orientation aware

smartphones requires context-aware smart applications and services that can deal with

―information overload‖. 3DQ (Three Dimensional Query) is our novel mobile spatial

interaction (MSI) prototype that acts as a next-generation base for human interaction within

such geospatial sensor web environments/urban landscapes. It filters information using

―Hidden Query Removal‖ functionality that intelligently refines the search space by

calculating the geometry of a three dimensional visibility shape (Vista space) at a user’s

current location. This 3D shape then becomes the query ―window‖ in a spatial database for

retrieving information on only those objects visible within a user’s actual 3D field-of-view.

3DQ reduces information overload and serves to heighten situation awareness on

constrained commercial off-the-shelf devices by providing visibility space searching as a

mobile web service. The effects of variations in mobile spatial search techniques in terms

of query speed vs. accuracy are evaluated and presented in this paper.

OPEN ACCESS

mailto:jcarswell@dit.ie

ISPRS Int. J. Geo-Inf. 2013, 2 136

Keywords: mobile spatial interaction; location-based GeoComputation; GeoSpatial Sensor

Web; iThings

1. Introduction

Geospatial information is increasingly recognized as the common denominator in both today’s

―web 2.0‖ peer-to-peer social network era and tomorrow’s ―web 4.0‖—where it is envisioned that the

Internet becomes connected to trillions of micro-sensors placed into real-world objects of all types

(i.e., mechanical and non-mechanical), all with their own unique 128 bit IP address [1]. In other words,

a location aware Internet of Things (iThings) that could theoretically collect and send time-stamped

data to the cloud continuously about their position, movement, plus any number of other measureable

phenomena, e.g., environmental data such as air/water quality, ambient light/noise/radiation data,

energy consumption, etc. When the potential of such a geospatial sensor web becomes realised, every

feature of every building, every object on every street, every road sign, traffic light, street light, and

shrub could conceivably be individually communicating their whereabouts and local conditions to the

world. In such a world, the ability to find, interrogate, and filter out, both semantically and spatially,

unwanted/unnecessary/unsolicited information while at the same time retrieve task-relevant data for

making informed decisions will be paramount.

Today’s new smartphones (e.g., iPhone, Android Phone) are rapidly evolving as enhanced

computing platforms in terms of hardware/software specifications and capabilities (e.g., more powerful

CPU, larger RAM/storage capacity, touch screen interfaces). In particular, a noticeable trend of

integrating location and orientation aware sensors (i.e., GPS receiver, digital compass and

accelerometer) into mobile devices has significantly promoted the development of smartphones as

tools to retrieve, analyze, and visualize information from the geospatial web. However, even now a

data visualisation problem arises as the amount of Internet information available for spatial query and

display is somewhat overwhelming for these devices and their users alike. For example, when trying to

familiarize oneself in an unknown environment—e.g., ―What are these buildings around me?‖ or,

―What points-of-interest (POIs) are nearby?‖ or, ―What are the air pollution levels along this

street?‖—display clutter or ―information overload‖ can become a significant problem. This can cause

confusion and disorientation for the user, and general annoyance and apathy towards the usefulness of

any Location-Based Service (LBS) application.

In mobile spatial interaction (MSI) research, how to address the problem of optimizing information

to personal needs through intelligent retrieval and display is essentially at the heart of this process.

Previous work in this regard proposed a Local Visibility Model which searches for information by

considering a user’s actual field-of-view [2]. In [3], a 2D directional-query processor is built on a

similar visibility model, where building block outlines are treated as ―footprints‖ used to

geographically clip the visible search space in the horizontal plane. Other approaches for reducing

information overload look at using map personalisation techniques that monitor past user task/map

behaviour to assist and/or recommend next levels of display detail [4–7]. Semantic based filtering

mechanisms are designed to exploit ontologies and RDF (Resource Description Framework)

ISPRS Int. J. Geo-Inf. 2013, 2 137

descriptions of linked data and networked knowledge to essentially de-clutter and adapt the exploration

of the real world to the processing/display limitations of mobile devices [8]. In our era of ever

increasing multi-sensored urban landscapes, we propose yet another way to improve contextual

relevance for users is to spatially filter this mounting data store by intelligently refining the search

space in three dimensions.

3DQ (Three Dimensional Query) is our novel MSI prototype for calculating the three dimensional

visibility shape (Vista space) at a user’s current location out to the horizon in a built environment. 3DQ

then utilizes this shape as a query ―window‖ to retrieve information on only those objects/sensors

enabled ―things‖ visible within a user’s 3D field-of-view as they move through the cityscape. Visibility

shape searching addresses the information overload problem by providing ―Hidden Query Removal‖

(HQR) functionality to heighten situation awareness on these commercial off-the-shelf (COTS)

devices. In 3DQ we extend contemporary 2D buffer type range query functionality found in many of

today’s mobile LBS applications to now incorporate database objects and spaces in the vertical

dimension. More specifically, we move from traditional GIS desktop processing environments to a

visibility query paradigm tailored to function in urban environments on smartphones. The result is a

more accurate and expected search result for mobile LBS applications by returning information on

only those objects visible within a user’s actual 3D field-of-view (Figure 1). Contrary to this visibility

query, retrieving objects that are just out of sight would be possible by subtracting the visible resultset

from a standard 2D range query cast at the same location.

Figure 1. 3DQ search space interacting with a 3D cityscape model; only things intersecting

the dome shaped volume get returned by the query.

ISPRS Int. J. Geo-Inf. 2013, 2 138

Visualisation of 3D built environment datasets on mobile COTS devices (e.g., Google Maps 5 for

Android 2.3+) is now also a reality. This is made possible by rendering the mobile map from a single

set of vector data instead of multiple sets of raster image tiles, thus allowing for smooth and

continuous map viewing and scaling from different perspectives using the same set of vector data.

Although Google Maps 6 is not yet photo realistic, the resulting 3D models are close to being

geometrically accurate as they are derived from extruding building footprints to known heights for

different parts of a building (Figure 2).

Figure 2. 3D tilt, zoom, and rotation enabled mobile map displayed in Google Maps 6 for

Android devices [9].

To make our 3DQ prototype function effectively in real-time requires mobile spatial query

techniques that extend today’s spatial database technology both on the server and on the mobile device

itself. This paper describes the various mobile spatial query algorithms developed and results of tests

carried out on a sample 3D vector dataset of Dublin City. The ultimate goal is for this research to act as

a next-generation base for human interaction with the geospatial sensor web. To facilitate dynamic and

real-time visualisation on a smartphone of 3D search spaces overlaid on a 3D mobile map, together

with links to any returned query results attached to the dome. Therefore, a significant research

challenge was to efficiently and accurately calculate the underlying visibility query shapes (2D and 3D

Isovists) for each user location.

The remainder of this paper is organized as follows: Section 2 introduces 3DQ system design and

implementation, which also includes an introduction to the vector datasets utilized in our work.

Section 3 describes our main contributions by presenting a comprehensive discussion of the query

ISPRS Int. J. Geo-Inf. 2013, 2 139

algorithms and implementation of the 3DQ prototype. This is followed in Section 4 by some

evaluations of the performance of 3DQ in terms of query speed vs. accuracy when using different

search algorithms and parameters. Conclusions and plans for Future Work follow in Section 5.

2. 3DQ System Design and Implementation

2.1. System Architecture

Considering the volumes of geo-referenced data already available in today’s geospatial web—much

of it volunteered [10]—plus the added legacy of various mapping agency built environment datasets, it

is still not practical to accomplish all processor-demanding tasks efficiently on the mobile device itself.

In such cases, a ―client-server‖ architecture is the preferred option where calculation intensive tasks are

carried out server side, leaving the mobile device as a thin client to take care of sending requests,

receiving responses, and displaying query results to the users. In fact, the client-server communication

paradigm remains a key element of many contemporary LBS implementations [11,12].

Figure 3. Component diagram for the overall 3DQ system architecture.

Spatial Database

Location & orientation aware mobile device

 Internet

Wi-Fi

2D Data Models

GSM tower GPS satellite

Mobile Positioning Module

Data Management Module

N
+

x
+

z
+

y

Mobile Orientation Module

Web Services
Web Services

Application

Server

3D Data Models

Due to the variety of competing mobile operating systems in existence (e.g., iPhone OS, Nokia

Symbian/Windows Phone8, Google Android), 3DQ delivers mobile spatial querying as a browser

friendly web-service to avoid multiple proprietary implementations. Our services utilize the RESTful

format, where a mobile device client collects readings from its integrated sensors (e.g., GPS, compass,

accelerometer), constructs them into a standard URL, and sends them to the server for processing. Once

the server finishes with the query operations, the resultset is organized and sent back in GEO-JSON

format, which is OGC standard compatible and completely text based [13]. A component diagram for

ISPRS Int. J. Geo-Inf. 2013, 2 140

the overall system architecture of 3DQ is shown in Figure 3, where communication between client and

server follows the above mentioned approach whilst 2D and 3D spatial datasets (e.g., objects from the

geospatial web, 2D/3D built environment models) reside in spatial databases on the server side.

In addition to the standard LBS client-server approach, we also adopt the latest open source

technologies for client side spatial computing to store and index data, and perform computational tasks

locally on the mobile device itself. For example, with the help of a portable spatial database

(SpatiaLite) and raster map rendering software (TileMill), we can perform all 2D query functionalities

locally and subsequently visualize the results on locally stored mobile maps in ―off-line‖ (i.e., no

network connection) mode [10].

2.2. Vector Dataset Requirements

Before looking at the details of 3DQ functionality, it is important to understand what types of datasets

we are processing and what kind of information we are expecting to retrieve. As discussed previously,

3DQ aims to enable mobile users to retrieve information about their surrounding environment, such as

non-spatial attribute information linked to geo-referenced buildings, points-of-interest (POIs), windows,

doors and any sensors/iThings that may be attached to these objects. Once the physical objects are

identified first, other types of typical Internet information associated with these objects is discovered

and their links presented. For instance, class schedules linked to lecture rooms in a University, or

environmental data from micro-sensors installed in/on objects like buildings. Therefore, detailed

datasets that portray the true 3D built-environment with high physical granularity are a prerequisite for

accurate information discovery and retrieval. In a 2D scenario, many such datasets are readily

available. These include collections of vector geometry which are comprised of footprint polygons or

vertices of physical geo-referenced objects like buildings and street furniture. In a 3D scenario, where

flat 2D footprints no longer contain enough detail of the physical objects they represent, accurate

geometries of different floors of a building are re-constructed to provide links to floor level and even

window/door level detailed information.

To prepare such 3D vector datasets of Dublin Institute of Technology (DIT), we attached

non-spatial attributes (meta-data) to the various floors, windows, and doors of a selection of buildings,

plus affixed a range of simulated environmental sensors to other scattered locations on a building’s

façade. Together this provides the beginnings of a future iThings type environment for human

interaction testing of our mobile 2D/3D visibility-based spatial search techniques in detailed sensor

web landscapes (Figure 4).

To obtain even more geometrically accurate 3D test models of a real-world environment, we also

constructed 3D models using semi-automated techniques on point cloud data collected from laser

scanners. While a description of this modeling process is out of scope for this paper, the results

provided more accurate detail for each building, for instance, covered entrances within a façade,

windows, doors, overhangs and rooflines, etc. An example of one of these laser scanned buildings is

shown in Figure 5, where information on individual features of a building is stored and linked to

external Internet sources in a spatial database.

ISPRS Int. J. Geo-Inf. 2013, 2 141

Figure 4. (a) 2D footprint testbed data of Dublin Institute of Technology (DIT) campus in

Dublin (b) Extruded 3D building models at same location.

(a) (b)

Figure 5. A true 3D (geometrically accurate) model of a campus building derived from

detailed laser scanning. Individual features are stored separately in the database.

Three dimensional indexing is a requirement for storing and querying 3D vector objects efficiently

for real-time processing, which at time of writing limits our spatial database options to Oracle Spatial

11g R2, although PostgreSQL with their anticipated PostGIS 2.0 extension for 3D indexing will be a

useful open source addition to this very short list. However, we’ve uncovered clear limitations with

Oracle’s spatial query operators when trying to determine spatial relationships among 3D geometries.

These include creating 3D R-Tree indexes on 3D geometries using a minimum-bounding cube. Oracle

only considers if these cubes intersect with one another as a method for determining whether their

underlying 3D geometries actually intersect. Unfortunately, retrieving the actual 3D location where

two geometries (vector objects) intersect in 3D is not yet supported.

For example, an important feature of 3DQ is to determine exactly where the intersection between a

generated ray (simulating the 3D pointing direction of a smartphone) and a 3D building occurs. In this

case, Oracle derives the intersection point using the 2D spatial operator SDO_INTERSECTION by first

projecting the query shape (3D ray in this case) and the target (3D building) onto the ground plane and

ISPRS Int. J. Geo-Inf. 2013, 2 142

then only returning the 2D position of this 3D ray/building intersection. Using this information and

combining it with the tilt angle (often approximate) and 2D distance to the nadir of the intersection

point, we are left to compute the actual 3D intersection point of this query ourselves.

Also, for an accurately computed 3D Isovist volume, the generated dome shape will usually have a

large number of surface elements relative to the complexity of the surrounding environment. If we

want to consider this dome as a single 3D query shape (surface) in the form of an Oracle

SDO_GEOMETRY (in order to make use of the SDO_INTERSECTION query operator), we find that

its total number of surface elements will typically exceed the number of elements allowed in the

SDO_ELEM_INFO_ARRAY—where it seems an arbitrary maximum of 999 coordinates (i.e., 333 3D

points) are permitted.

In our case, where each surface element contains 12 coordinates defining its shape (four 3D

vertices), a maximum of only 27 surface elements are then allowed in one SDO_ORDINATE list. As it

happens, this is typically far fewer than what is required to accurately describe the boundary of a

complete 3D visibility dome shape. To get round this limitation, we must first split the complete query

dome into three or more sections and then query them individually against the database—instead of

creating a single 3D volume as the query shape. The returned query results are then a sum of all

object/section intersections after first removing any duplication. Ironically, one beneficial consequence

of this extra processing is that it encouraged us to mirror the spatial database across multiple servers

and then send each individual 3D dome section query to a separate database. The result is a much faster

(~2 seconds) query process which potentially allows for near real-time query dome visualisations and

searching on 3D mobile maps—one of the human interaction objectives for our work.

2.3. Commercial Software Alternatives

Some visibility based spatial analysis methods are also available in contemporary desktop GIS

platforms. For example, ArcGIS provides two main toolkits for 3D visibility analysis; line-of-sight and

3D view-shed. However, these two commercial implementations differ from our approach in that 3DQ

derives the 3D visibility shape first and then uses this 3D shape as a search ―window‖ in a spatial

database to retrieve attribute information about the user’s surrounding environment. Instead, the

ArcGIS line-of-sight function is designed mainly for the purpose of architectural planning, where a single

ray is used to represent visibility in a particular direction to determine whether this ray interests with any

objects (e.g., buildings) in the plane—and which part of the ray is visible and which is not—without

retrieving any information about the objects that it intersects.

In the case of ArcGIS 3D view-shed analysis, it is usually performed over a set of digital elevation

models (DEM) without considering built environment objects. One example application is to

determine an optimal site for setting up a radio station transmitter by taking into account ground

fluctuations in the DEM. In ArcGIS, this DEM is in raster format and results in the calculated

view-shed shape to also be in DEM like raster format, which makes it not usable as a true 3D query

window for searching cityscapes where task-specific attribute information retrieval is required.

Moreover, current commercial visibility-based analysis methods are normally developed for

desktop GIS environments, therefore not ideally suited for deployment in mobile applications. For

example, in desktop GIS a user’s surrounding environment is considered static (i.e., the environmental

ISPRS Int. J. Geo-Inf. 2013, 2 143

setting does not change dynamically). Whereas in our application a user’s surrounding environment is

dynamically pulled from the spatial database based on the user’s current mobile location and other

query parameters. In this way, we can optimize the speed and efficiency of the system without ever

loading the entire dataset, especially important when linking spatial and non-spatial attribute datasets

covering a large region.

3. 3DQ Spatial Search Algorithms

Since the introduction of the ―Isovist‖ concept in [14] for describing the 2D visibility shape or 3D

visibility volume at a given position, there have been a number of developments that employ Isovist-like

approaches for urban environment analysis. The notion of a ―Spatial Openness Index‖ (SOI) developed

in [15,16] measures the volume of visual perception within a surrounding sphere from a given point of

view, but without defining its shape. Other techniques to measure 2D and 3D visibility in an urban

environment are shown in [17], which calculate the visibility of pixel coordinates on Digital Elevation

Models (DEMs). Their proposed ―iso-visi-matrix‖ claims to be very useful from a visual perception

viewpoint. Different to these approaches, visibility modeling algorithms developed in [18,19],

calculate the visibility of local landmarks in an urban context. They determine the visibility of a

―Feature of Interest‖ (FOI) for LBS applications that notify users when they are in a position that can

actually see those landmarks. 3DQ acknowledges the importance and usefulness of carrying out 2D/3D

visibility based analysis in the urban environment and aims to extend this idea by exploiting the actual

3D visibility shape (volume) as a query ―window‖ in a spatial database to retrieve information on only

those objects that a user can physically see from their given viewpoint.

When calculating 3D Isovists, a user’s visual perception is usually simulated and interpreted as a

collection of ―sight lines‖ or ―line-of-sight‖ collisions with spatial objects in the environment [20].

In this regard, the technique of ray casting is a common approach to determine sightline/object

intersections where the collective intersection points of collisions eventually form the visibility shape

used as the 3D query window. In most modern computer gaming applications, collision detection

techniques are very well developed to determine and render only those visible objects in a game scene

to optimize display speed. However, those type of calculations are normally Boolean value based

operations, which means if the ray hits an object the returned value is ―true‖, but without any

coordinate detail. For the purpose of computer graphics layered rendering, this technique (without

further calculation of the intersection point) are proven to be quite efficient [21–23]. However, our

3DQ prototype requires more than just determining which objects constitute a scene from a user’s

viewpoint, we also need the 3D Isovist shape itself to determine where objects (e.g., buildings, sensors,

linked Sensor Web information) are intersected. Therefore, accurate vertices (intersection points) of

the visibility shape are necessarily required to form the corresponding query volume in a spatial

database for subsequent spatial query processing operations.

In a 2D scenario, the vertical dimension of a built environment is ignored in favour of the geometry

of building footprints on the horizontal plane. Ideally, the length of a ray, which simulates a sight line

from a user’s view point, shall be infinite unless it hits an object along its path. However, to speed up

the query calculation, this distance can be user definable from 10 s to 1,000 s of metres. For most cases

in Dublin, we find that a search length (user’s perception distance) of around 200 m is in most cases

ISPRS Int. J. Geo-Inf. 2013, 2 144

still further than a person can actually see in any one direction. The footprints used to load the built

environment around a user’s vicinity in our case, therefore, was limited to a 200 m radius in all

directions. Setting a radius limit helps to speed up considerably the query calculation without

significantly impacting the final shape of the query space in most cases—important if the user is

interested in exploring more their immediate environment only.

An example of a visibility search in a 2D environment (i.e., 2D Isovist) at a given location is shown

in Figure 6(a). The black square represents the user’s current location which is picked up from GPS on

the mobile device. The surrounding built environment is constructed from the footprints of all building

blocks within 200 m. Benefiting from R-Tree indexing in Oracle Spatial 11g, the retrieval of all

buildings from a given location is quite efficient [24]. The filled irregular shaped polygon is the user’s

360° visibility shape at that location. This 2D Isovist shape is then utilized as the query window

(polygon) to retrieve all database objects that intersect it. The Isovist construction process is based on

the method developed in [25], which is an open source library for fast 2D floating-point visibility

algorithms. Moreover, the 360° viewshed can be changed to any angle (via onboard mobile camera

zooming) to simulate a user’s actual 2D ―Field-of-View‖ or to 0° to correspond to a single ray pointed

in the direction the mobile device is facing. This variation of viewshed angle provides flexibility for

users to spatially filter any query results returned from the Sensor Web.

Figure 6. (a) 2D Isovist view (b) Extruded 2.5D Isovist in a 3D environment.

(a)

(b)

The 2D Isovist query is especially useful for conventional 2D mobile map searches, where it can

serve as the preliminary filter to reduce the sometimes overwhelming amount of Internet information

available at a given location. However, as Google Maps 6 has now progressed 2D mobile maps into

3D, a more realistic look and feel of the urban landscape is available. Although, with this added

vertical dimension come 3D visibility calculations that are much more complicated than in 2D. For

instance, the arrow in Figure 6(a) points to a small building block where a 2D Isovist ray originating

from the user's current position (black square) gets truncated. But this building’s height is much lower

than the surrounding buildings so a user’s sight line can in fact see over top of this small block.

Although computationally fast, to simply extrude a 2D Isovist to 2.5D, as shown in Figure 6(b), would

be incomplete as it does not pick up on this height difference. In fact, the results retrieved from an

extruded 2.5D Isovist would be no different than those returned from a 2D Isovist, as the 3D

ISPRS Int. J. Geo-Inf. 2013, 2 145

coordinates for each returned object have the same x and y values. Yet, to derive an accurate 3D

Isovist as described in [26] is far too calculation intensive for real-time visualisation and searching and

therefore not optimal for serving multiple users as a mobile web-service. Therefore, we developed ray

casting techniques on vector datasets using a user defined radius to help save computation effort. Thus

the final query shape of the 3D Isovist appears as the ―dome‖ shape shown in Figure 1 where the

vertices that form the dome are the intersection points between each ray and any objects the ray hits, in

this example out to 200 m.

To overcome this 2.5D Isovist limitation, our first test includes an example demonstrating how 3D

object intersection vertices are detected using Search Algorithm 1 (Figure 7). In this illustration,

assume building blocks with different heights are along the path an Isovist ray travels. On the

horizontal plane, the interval between each ray is predefined at 6° by default (horizontal ray spacing).

While on the vertical plane, we first detect what objects the ray hits and then calculate the

corresponding 3D intersection point. The next ray along this same horizontal direction is cast with a tilt

angle of 15° and so on (vertical ray spacing) up to 90° declination.

As mentioned previously, Oracle Spatial does not return the exact 3D intersection point when a ray

hits the building blocks. Instead, it projects the ray and building blocks onto a horizontal plane and

returns a collection of 2D line segments. The intersection point is then determined by getting the first

intersection point from all the segments, together with the tilting angle θ. The ray then continues to

detect the next intersection point and so on until it stops when titling angle θ reaches 90°. This

approach takes advantage of the 3D spatial indexing and query operators provided by Oracle Spatial

and is a good first approximation of the true dome shape. However, it can be seen in Figure 7 that

constructing an Isovist dome using the tilting angle approach may miss certain intersection points

vertically as a ray may overpass a building block due to the gap between any two fixed tilting angles.

The pseudo code for Search Algorithm 1 follows:

Algorithm 1: Tilting Ray Approach.

Input: radius, horizontal ray spacing, tilt angle, current location

Output: A 3D Isovist dome visibility shape

Function RayTilting3D (radius, raySpacing, initalLocation, tiltAngle):

Initialize ray generator from initialLocation

Initialize final shape list: ShapePtCollect

For each ray start with an initial tiltAngle:

Initialize list: IntersectionPtCollect

Get all the intersections and add to list

Determine the first intersection: intersectionPt

tiltAngle += AngleInterval (15° default)

ShapePtCollect.append(intersectionPt)

Return ShapePtCollect

Our second test improves on Algorithm 1 by removing any vertical gaps in the projected Isovist

rays. Search Algorithm 2 acts like a ―reverse water-flow‖, where the ray does not stop at an

intersection point but instead continues on along the same direction to determine the next intersection

and the next until it finally stops at the specified radius (Figure 8). The process starts by first

determining the intersection points between each Isovist ray and the building block footprints in the

ISPRS Int. J. Geo-Inf. 2013, 2 146

horizontal plane at pre-defined intervals (6° horizontal ray spacing). The actual intersections are a list

of line segments and each of them has a pair of intersection points <Iin, Iout>. The collection of Iin

points gets ordered by their distance from the user’s location. We then determine the first intersection

point Ifirst, which represents the first hit between a ray and a database object. The ray restarts from Ifirst

and a tilting angle θ1 is initialized once it reaches the top of the building. The next calculation happens

at the next Iin point in the list, where if the height of the ray at that point is higher than the height of the

building, the process carries on to the next Iin point in the list, otherwise, a new tilting angle is

established and the same process iterates to the next Iin point.

Figure 7. Search Algorithm 1 determining sight line intersections in a true 3D

environment. The thick black line outlines the final query boundary shape of the 3D Isovist

dome in this direction.

H1 H3

Radius

Ifirst Ilast

H2

H4

θ1 θ2 θ3

Figure 8. Search Algorithm 2 determining sight line intersections in a true 3D environment.

H1 H3

Radius

Ifirst
Ilast

H2

H4

θ1 θ2 θ3

ISPRS Int. J. Geo-Inf. 2013, 2 147

Another advantage of Search Algorithm 2 is that instead of using vertical ray spacing to generate

multiple rays in the same direction, it only needs to process one ray on the horizontal plane and then

collect the height information of all building blocks along its path. In Algorithm 2, the 3D building

objects, which are represented as solids in Oracle Spatial, are replaced as 2.5D data structures with a

height value attached as a non-spatial attribute to each building footprint. Therefore, it can benefit from

2D spatial indexing when deriving the initial intersection list, which has a simpler and much faster data

structure than 3D spatial indexing.

The pseudo code for Search Algorithm 2 follows:

Algorithm 2: Reverse Water-Flow Approach.

Input: radius, horizontal ray spacing, current location

Output: A 3D threat dome visibility shape

Function RaySweeping3D (radius, raySpacing, initialLocation):

retrieve all building block geometries that are within defined radius of

user’s current location

For each ray in the horizontal plane:

initialize lists: HeightsCollect, DistanceCollect,

IntersectionPtCollect

derive all the intersection points from the ray:

determine first intersection of each collision

fill the lists

sort the IntersectionPtCollect according to their distances from the

initial location

tgθ = Height(Ifirst)/Distance(Ifirst)

initialize final shape list: ShapePtCollect

For each point in the list:

If Height(Inext)< Dist(Inext)* tgθ = newHeight:

pass

Else:

ShapePtCollect.append(Inext, Height= newHeight)

ShapePtCollect.append(Inext, Height= Height(Inext)

tgθ = Height(Inext)/Distance(Inext)

Return ShapePtCollect

A common feature found in both 3DQ Algorithms 1 and 2 is a pre-defined horizontal ray spacing.

However, no matter how small this interval is, there is still a risk of missing certain intersection points,

which reduces the ultimate accuracy of the final query shape. As noticed in the 2D Isovist calculation

in Figure 6(a), the 2D visibility shape is continuous at filling every visible corner/gap between building

geometries. Our third test therefore applies Algorithm 2 on top of a 2D Isovist shape. Once the 2D

Isovist is calculated, each vertex of the Isovist polygon together with the user’s location defines a ray

direction. An example is shown in Figure 9, where rays travel through each of the vertices of a 2D

Isovist polygon instead of being evenly spaced by a constant angular value. Although it involves two

steps of processing, Algorithm 3 produces a more accurate representation of true 3D visibility space.

ISPRS Int. J. Geo-Inf. 2013, 2 148

Figure 9. An example of generating horizontal rays out to the user specified radius and

through the vertices of 2D Isovist/building footprint intersections.

The pseudo code for Search Algorithm 3 follows:

Algorithm 3: 2D Isovist Based Ray Sweeping Approach

Input: radius, user’s current location

Output: A 3D threat dome visibility shape

Function RayIsovist3D (radius, initialLocation):

retrieving all the 2D footprints within the radius from current location

calculating 2D Isovist

initialize final shape list: ShapePtCollect

For each vertices of the Isovist generate a ray through the

initialLocation:

apply Algorithm II

Return ShapePtCollect

As mentioned previously, in an accurately computed 3D Isovist, the generated dome will usually

have a large number of surfaces relative to the complexity of the surrounding environment. Due to

feature storage limitations with Oracle Spatial DBMS, we must therefore split the complete dome

shape into three sections and then query them individually against the database—instead of creating a

single 3D volume for the query shape. This led us to mirror the spatial database across three servers

and then send each individual 3D dome section query to a separate database. In today’s cloud

computing era, it may be possible to deploy this approach as a cloud-based service with multiple

spatial databases running in different virtual machines at the same time. The result could be a much

faster query process allowing for near real-time query dome visualisations on 3D mobile maps.

ISPRS Int. J. Geo-Inf. 2013, 2 149

4. Evaluation of Query Speed vs. Accuracy

In this section, we present the performance evaluation of our three mobile Spatial Search

Algorithms implemented in terms of speed vs. accuracy. The datasets used include 2D footprints of

DIT campus with actual heights stored as a non-spatial attribute, 3D wireframe building outlines stored

as 3D multi-polygons, and extruded 3D solids from the 2D footprints up to known building heights. In

addition, 100 3D point objects simulating environmental sensor ―things‖ were attached to the façades

of some buildings (e.g., on windows, walls, and doors) and on other objects (e.g., light posts) in the

database. A screenshot of the combined test dataset is shown in Figure 10.

Figure 10. 3D model of university campus affixed with 100 simulated environmental sensors.

The evaluation of each search algorithm was carried out at five different locations (each labeled in

Figure 10) around the campus. To test our approach on larger datasets, 2D footprints covering most of

Dublin City and consisting of 345,316 polygons with height values attached as an attribute were also

tested. The datasets are stored in three Oracle Spatial databases mirrored on three different machines.

More specifically, machine one is running Windows 7 (32 bit) with 4G RAM and Core2Duo 2.8 GHz

CPU, the other two machines are running virtual machines under Windows XP (32 bit) with 2G RAM

and Core2Duo 2.2 GHz CPU. The programming language is Python 2.7 with the capability of

providing OGC standard compatible GEO-JSON output to mobile devices.

As discussed in Section 2.2, the reason for setting up three spatial databases across different

machines is because of an arbitrary limitation in the number of coordinates allowed for constructing a

3D geometry in Oracle Spatial. Our calculations for the 3D visibility shape itself are always carried out

in one machine’s memory only. When using the calculated shape for the querying window, we split it

into three parts to reduce the I/O load in each machine. Because intersection is such an efficient spatial

database function (requiring only fractions of seconds to compute), the arrangement of spreading a

ISPRS Int. J. Geo-Inf. 2013, 2 150

spatial database among different machines does not make much difference as it is not really a

significant machine dependant calculation.

Figure 11 shows a comparison of query speed for the three different search algorithms. Search

Algorithm 1 was applied to a limited 3D solid dataset of the nearby campus area while Search

Algorithms 2 and 3 were applied against a complete 2D polygon map of Dublin City with building

heights stored as a non-spatial attribute. Notice how 3D querying on 2D datasets proves to be usefully

quicker—even though Oracle Spatial R-tree indexing limits the search space to only those database

objects that are within a specified 2D radius in either case.

Figure 11. Comparisons of query speed for different search algorithms at five positions on

a small 3D solid and large 2D polygon datasets of Dublin City.

The above query speed experiment was run again on a complete Dublin City 3D solid dataset using

all search algorithms. The results of this test are shown in Figure 12. It can be seen that for each search

algorithm, the time taken to complete a 3D query on 3D solid data is noticeably longer than when

performed on 2D data of the same area with height stored as a non-spatial attribute. The reason for

such a large dip in Algorithm 3 timings at Position 4 is because there are only 12 sensors visible due to

the restricted visible search space at this location, illustrating the effectiveness of this approach for

reducing information overload when dealing with large and complex spatial environments.

Table 1 shows a comparison of accuracy for all visibility query algorithms. Compared to a standard

range query, where returning information on all 100 sensored iThings would overload the mobile

display at every test query position, Search Algorithm 3 is shown to return most accurately the visible

sensors in every query position with minimal cost to query speed (~1/2 s).

0.5 1 1.5 2 2.5 3

position 1

position 2

position 3

position 4

position 5

Seconds

Comparison of Speed for 3DQ Search Algorithms (1)

Algorithm III

Algorithm II (3 degree)

Algorithm II (6 degree)

Algorithm I (6 degree)

ISPRS Int. J. Geo-Inf. 2013, 2 151

Figure 12. Comparisons of query speed for different search algorithms at five positions on

large 3D solid dataset of Dublin City.

Table 1. Comparisons of accuracy of three Search Algorithms at five query positions together

with the maximum number of sensors actually known to be visible at each position.

 Position 1 Position 2 Position 3 Position 4 Position 5

Algorithm I

(6°

ray spacing)

19/33 14/32 20/34 5/12 12/26

Algorithm II

(6°

ray spacing)

20/33 18/32 20/34 9/12 13/26

Algorithm II

(3° ray spacing)
25/33 26/32 29/34 10/12 20/26

Algorithm III 30/33 29/32 32/34 11/12 24/26

5. Conclusions and Future Work

3DQ is designed to function in both today’s sensor web environments and tomorrow’s Web 4.0,

where it is envisioned that trillions of micro-sensors throughout the world are capable of broadcasting

all types of environmental conditions, events, and processes. As each iThing has a unique Internet ID

and known coordinates, they are potentially accessible from anywhere on the Web with each event

available for discovery and analysis through intelligent spatial querying. Thus the need for developing

intelligent 3D spatial search techniques is clear to filter and personalise information for display on now

ubiquitous, but still constrained, mobile devices. Such ―situation awareness‖ queries would be very

interesting to bikers, joggers, walkers, city workers, and all citizens who want to know, for example,

the health of their immediate environment at any point in time.

Our mobile three dimensional query (3DQ) prototype provides 2D and 3D visibility based

web-services for exploring today’s myriad of Internet information linked to urban landscapes directly

on location and direction aware smartphones using a combination of pointing gestures and other

visibility parameters. Moreover, 3DQ employs an open web-service orientated architecture that

enables COTS devices to ―Connect and Play‖ through their preferred mobile operating systems via a

standard web browser.

0 5 10 15 20

position 1

position 2

position 3

position 4

position 5

Seconds

Comparison of Speed for 3DQ Search Algorithms
(2)

Algorithm III

Algorithm II (3 degree)

Algorithm II (6 degree)

Algorithm I (6 degree)

ISPRS Int. J. Geo-Inf. 2013, 2 152

This paper presented three mobile Spatial Search Algorithms developed for our 3DQ prototype to

intelligently address the information overload problem specifically by providing ―Hidden Query Removal‖

functionality, which contemporary mobile range queries based on bounding box or circle query shapes

simply fail to do. Speed and accuracy are two very important requirements of any mobile LBS application.

Among the three search algorithms tested, Search Algorithm 3 shows to be the most accurate while

Search Algorithm 2 has the fastest speed. Further study into the trade-offs between speed and accuracy

are underway to find the most suitable approach for deploying 3DQ in a real-world mobile eCampus

application for student/staff users—currently under construction in time for the 2013 school year.

Our ultimate goal for 3DQ is to act as a next-generation base for human interaction within such

geospatial sensor web environments/urban landscapes in real-time: Where the display of the 3D Isovist

dome shape changes dynamically on top of a mobile 3D map as the user walks around their city,

together with links to query results stitched to the dome itself. Currently, the Google Maps 6

visualisation API is not yet publically available for this, although it is expected to be released

sometime in 2013. However, there are alternatives that can be used for testing in the meantime. For

instance, VisioDevKit [27] provides 3D rendering capabilities such that any visibility shape produced by

3DQ can be overlaid on the mobile display. To achieve our real-time 3D Isovist calculation/visualisation

objective, improvements to efficiency in the three Search Algorithms will be further investigated. As

our prototype currently adopts a ―client-server‖ architecture, performance is mainly constrained to the

latency of mobile networks. As mobile devices are becoming in time more powerful computing

platforms, together with advances in open source mobile spatial database options, implementations of

3DQ Search Algorithms 2 and 3 as standalone applications entirely on the mobile device itself are

other future directions for this work.

For efficient spatial querying, we consider only static locations of sensors. Although the sensor

readings constantly change over time, the spatial index on their locations (point geometry in the spatial

database) remains fixed. However, for efficient querying when sensor locations are dynamic (e.g.,

readings from mobile smartphones) the corresponding spatial index must be updated constantly, which

is not optimal as the process of dropping and rebuilding spatial indexes can be time-consuming. To

handle mobile sensors or more general geo-tagged streaming datasets (e.g., ―big data‖), future work

will consider other indexing approaches for storing and retrieving great quantities of data, such as

array based key-value pairs used for NoSQL databases.

In this paper, we focused on 3D algorithms for 3D visibility calculations and did not address related

3D visibility based augmented reality visualisations. Typically, mobile augmented reality applications

utilize the mobile phone’s camera as the interface for users to interact with their surrounding

environment. This is achieved by making use of the embedded digital compass to overlay in the

camera view only information located in the same direction the device is pointing. But, in the

background it uses a simple, all inclusive bounding circle to perform a spatial proximity query (range

query) for retrieving any surrounding information/objects. In 3DQ, we deploy more selective 2D

Isovist views and 3D field-of-view functions that apply actual visibility shapes instead of bounding

circles to further refine the search shape. Future enhancements of 3DQ will also visualize retrieved

results in an augmented reality camera view.

The 3DQ prototype is planned to be released for free download in 2013 on both Android and iOS

platforms as part of the NUIM eCampus Demonstrator. The Demonstrator is currently under final

ISPRS Int. J. Geo-Inf. 2013, 2 153

construction with all project partners integrating the web-service functionalities developed in each

collaborating research group.

Acknowledgments

Research presented in this paper was funded by a Strategic Research Cluster Grant (07/SRC/I1168)

by Science Foundation Ireland under the National Development Plan. The authors gratefully

acknowledge this support.

References and Notes

1. Ball, M. How do Crowd Sourcing, the Internet of Things and Big Data Converge on Geospatial

Technology? Available online: http://www.vector1-media.com/dialog/perspectives/23362-how-do-

crowdsourcing-the-internet-of-things-and-big-data-converge-on-geospatial-technology.html (accessed

on 20 June 2012).

2. Frohlich, P.; Baldauf, P.; Reichl, M.; Tobler, R.F. Visual Presentation Challenges for Mobile

Spatial Applications: Three Case Studies. In Proceedings of Information Visualisation IV ’08 12th

International Conference, London, UK, 8–11 July 2008; pp. 533–538.

3. Gardiner, K.; Carswell, J.D. Viewer-based Directional Querying for Mobile Applications. In

Proceedings of 4th International Workshop on Web & Wireless Geographical Information

Systems (W2GIS2003), Rome, Italy, 13 December 2003.

4. Ceri, S.; Fraternali, P.; Bongio, A.; Brambilla, M.; Comai, S.; Matera, M. Designing

Data-Intensive Web Applications (The Morgan Kaufmann Series in Data Management Systems);

Morgan-Kaufmann Publishers: San Francisco, CA, USA, 2002.

5. Di Martino, S.; Ferrucci, F.; McArdle, G.; Petillo, G. Automatic Generation of an Adaptive

WebGIS. In Proceedings of 9th International Symposium on Web & Wireless Geographical

Information Systems (W2GIS 2009), Maynooth, Ireland, 7–8 December 2009; Volume 5886,

pp. 171–186.

6. MacAodih, E.; Wilson, D.; Bertolotto, M. A Study of Spatial Interaction Behaviour for Improved

Delivery of Web-Based Maps. In Proceedings of 9th International Symposium on Web & Wireless

Geographical Information Systems (W2GIS2009), Maynooth, Ireland, 7–8 December 2009;

Volume 5886, pp. 120–134.

7. Mountain, D.M. Spatial Filters for Mobile Information Retrieval. In Proceedings of 4th ACM

Workshop on Geographical Information Retrieval (GIR’07), New York, NY, USA, 6–10

November 2007; pp. 61–62.

8. SIG.MA. Semantic Information Mashup. Available online: http://sig.ma (accessed on 20 June 2012).

9. Google Maps 6. Available online: https://play.google.com/store/apps/details?id=com.google.

android.apps.maps&hl=en (accessed on 1 March 2013).

10. Yin, J.; Carswell, J.D. MobiSpatial: Open Source Enabled Mobile Spatial Interaction. In Proceedings

of the 27th Symposium on Applied Computing (SAC 2012), Trento, Italy, 26–30 March 2012.

11. Shek, S. Next-Generation Location-Based Services for Mobile Devices. CSC Grants. Available

online: http://assets1.csc.com/lef/downloads/ (accessed on 20 June 2012).

http://www.vector1-media.com/dialog/perspectives/23362-how-do-crowdsourcing-the-internet-of-things-and-big-data-converge-on-geospatial-technology.html
http://www.vector1-media.com/dialog/perspectives/23362-how-do-crowdsourcing-the-internet-of-things-and-big-data-converge-on-geospatial-technology.html
http://assets1.csc.com/lef/downloads/

ISPRS Int. J. Geo-Inf. 2013, 2 154

12. Simon, R.; Frohlich, P. A Mobile Application Framework for Geospatial Web. In Proceedings of

WWW ’07 the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12

May 2007.

13. Carswell, J.D. 3DQ: Threat dome visibility querying on mobile devices. GIM Int. 2010, 24, 24–29.

14. Benedikt, M.L. To take hold of space: Isovists and Isovist fields. Environ. Plan. B 1979, 6, 47–65.

15. Fisher-Gewirtzman, D.; Wagner, I.A. Spatial openness as a practical metric for evaluating built-up

environments. Environ. Plan. B 2003, 30, 37–49.

16. Fisher-Gewirtzman, D.; Burt, M.; Tzamir, Y. A 3-D visual method for comparative evaluation of

dense built-up environments. Environ. Plan. B Plan. Design 2003, 30, 575–587.

17. Morello, E.; Carlo, R. A digital image of the city: 3D isovists in Lynch’s urban analysis.

Environ. Plan. B 2009, 36, 837–853.

18. Bartie, P.; Mills, S.; Kingham, S. An Egocentric Urban Viewshed: A Method for Landmark

Visibility Mapping for Pedestrian Location Based Services. In Geospatial Vision—New Dimensions

in Cartography; Moore, A., Drecki, I., Eds.; Springer: Auckland, New Zealand, 2008; pp. 61–85.

19. Bartie, P.; Reitsma, F.; Kingham, S.; Mills, S. Advanced visibility modelling algorithms for urban

environments. Comput. Environ. Urban Syst. 2010, 34, 518–531.

20. SKYLINEGLOBE. TerraExplorer Viewer for 3D Earth. Available online:

http://www.-skylinesoft.com/ (accessed on 20 June 2012).

21. Bergen, G. Collision Detection in Interactive 3D Environments; CRC Press-Taylor & Francis

Group LLC: Boca Raton, FL, USA, 2003.

22. Ericson, C. Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive 3-D

Technology); CRC Press-Taylor & Francis Group LLC: Boca Raton, FL, USA, 2004.

23. Watt, A.; Policarpo, F. 3D Games: Real-Time Rendering and Software Technology;

Addison-Wesley Publishing: Reading, MA, USA, 2000.

24. Ravada, S.; Kazar, B.M.; Kothuri, R. Query processing in 3D spatial databases: Experience

with Oracle Spatial 11g. 3D Geo-Inform. Sci. 2009, doi:10.1007/978-3-540-87395-2.

25. Obermeyer, K.J. The VisiLibity Library. Available online: http://www.VisiLibity.-org (accessed

on 20 June 2012).

26. 3D ISOVIST. A Grasshopper Extension for Calculating 3D Isovist. Available online:

http://parametricmodel.com/3DIsovist/32.html (accessed on 20 June 2012).

27. VISIODEVKIT. A Real-Time 2D/3D Rendering Engine for Mobile Devices. Available online:

http://www.nn4d.com/site/global/developer_resources/apis_sdks (accessed on 20 June 2012).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

http://www.-skylinesoft.com/
http://www.visilibity.-org/
http://parametricmodel.com/3DIsovist/32.html
http://www.nn4d.com/site/global/developer_resources/apis_sdks

