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Abstract

Geospatial Artificial Intelligence (GeoAI) has been advancing and altering geographic
information systems and Earth observation by enhancing the computation and understand-
ing capabilities of these systems. In this context, the application of GeoAI in topographic
mapping presents a transformative opportunity for national mapping agencies worldwide.
While GeoAI offers significant advantages, its adoption can also introduce new challenges,
necessitating organization-wide transformations for sustainable implementation. Opportu-
nities in the future of topographic mapping include improved data processing and real-time
mapping capabilities. However, the adoption of GeoAI also brings forth various risks,
including data privacy concerns, algorithmic biases, and the need for robust cybersecurity
measures, which are pivotal to the national mapping organizations. Given the rapid tech-
nological advancements in AI and computing, and the challenges that national mapping
agencies currently face, we discuss the potential opportunities and risks of GeoAI from
a multi-perspective view. By examining global examples and trends, and synthesizing
insights from current applications and theoretical frameworks, this paper aims to provide a
comprehensive overview of GeoAI’s impact on topographic mapping within the context
of national mapping, offering strategic recommendations for stakeholders to leverage
opportunities while mitigating risks.

Keywords: GeoAI; topographic mapping; multi-dimension analysis; national mapping
and cadastral agency

1. Introduction
1.1. GeoAI

Geospatial Artificial Intelligence (GeoAI) represents a subfield of spatial data science
and artificial intelligence (AI), focusing on methods, systems, and services that leverage
geographic knowledge. Being an interdisciplinary field, it integrates machine learning,
deep learning, and knowledge graph technologies with high-performance computing and
big data mining, enhancing our understanding of geographic phenomena and human–
environment interactions [1–3]. It also helps solve geographic problems. Recently, a new
perspective has emerged that GeoAI is more than a mere application in the geosciences field.
It not only leverages AI to derive insights from geographic data but also provides the spatio-
temporal perspective to AI, especially when knowledge, behavior, and intelligence are
concerned [4]. In other words, it is about creating AI models that explicitly integrate spatial
thinking and reasoning [5,6]. These models consider unique geospatial characteristics, such
as spatial autocorrelation, heterogeneity, and dependency, which are often overlooked in
traditional AI approaches. GeoAI is gradually changing how topographic data is collected,

ISPRS Int. J. Geo-Inf. 2025, 14, 313 https://doi.org/10.3390/ijgi14080313

https://doi.org/10.3390/ijgi14080313
https://doi.org/10.3390/ijgi14080313
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-2328-6470
https://orcid.org/0000-0002-7093-7435
https://doi.org/10.3390/ijgi14080313
https://www.mdpi.com/article/10.3390/ijgi14080313?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2025, 14, 313 2 of 13

processed, interpreted, and used [7,8]. National Mapping and Agencies (NMAs) are
uniquely positioned to benefit from GeoAI to enhance efficiency, improve data quality,
and respond more flexibly to increasing pressure to deliver faster, smarter, and more cost-
efficient services amid resource constraints, as well as global, societal, and environmental
challenges [9].

1.2. Global Trends in Topographic Mapping

Topographic mapping is evolving due to the convergence of technological advance-
ments, user demands, and global pressures on government institutions. According to the
future trends report published by the United Nations Committee of experts on Global
Geospatial Information Management, the next five to ten years will see five major driving
forces shaping the geospatial information management landscape [10]:

• Technological advancements: Innovations like machine learning, deep learning, and
high-resolution imagery are transforming data collection, processing, and interpreta-
tion. Big data processing and digital infrastructure will further empower geospatial
workflows that are pivotal in topographic mapping.

• Digital Transformation and Real-Time Information: The push toward real-time data
integration and digital platforms enables dynamic map updates and on-demand ana-
lytics, moving away from static datasets toward continuously refreshed information
systems requiring mapping agencies to transform and rethink strategies.

• Rise of New Data Sources and Analytical Methods: New opportunities for data
gathering, like drones and sensors, enrich the topographic mapping process. The
proliferation of data cubes and integration platforms enhances analytical depth
and interoperability.

• Legislative Pressures and Governance Needs: Increasing emphasis on digital ethics,
privacy, and responsible AI frameworks guides how GeoAI can be safely implemented.
Pressures on public institutions to be transparent and efficient will add urgency to
AI governance.

• Changing User Expectations: There is a growing demand for user-centric services,
personalized and interactive visualizations, and responsive infrastructure. This shift
requires agencies to rethink map production and delivery as a two-way engagement
rather than one-way provision.

1.3. Topographic Mapping at the Dutch Kadaster

Topographic mapping involves data collection on the elevation, shape, and features
of the land, as well as documenting the locations of natural and man-made objects such
as mountains, rivers, roads, and buildings. Cartography, the art of map making, focuses
on designing, creating, and interpreting both analog and digital maps to visually and
comprehensibly represent topographical and geographical information. At Kadaster, basis-
registratie topography (key register topography) is produced annually. It is a collection of
topographic maps produced at different scales, the most important being the TOP10NL,
which is produced at a 1:10,000 scale [11]. Rather than starting from scratch each year,
essential changes are captured, and the maps are revised and updated based on these
changes. The production process involves collecting new features or triggers for change
detection, updating the map based on these triggers, followed by map design, which
includes generalization and quality checks. Current workflows are producer-centric, but a
paradigm shift is underway where users take center stage. There is a growing demand for
real-time data, user-friendly data/map visualizations, and interactive products.

Within Kadaster, GeoAI applications are being developed and deployed not only
for use in topographic mapping but also for supporting questions from different internal
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and external stakeholders. Use of object detection models for identifying storage tanks,
solar panels [12], forest trails, building and road detections for helping operators with data
collection for the Multi-national Geospatial Co-production Program, detection of parking
garages from streetview images, change detection and quality analysis of existing registers
have been explored, and a few are already in production (see Figure 1). National Mapping
Agencies (NMAs) within Europe are also actively piloting and operationalizing use cases
such as automated roof and building detection, land cover classification, and road feature
extraction using deep learning models trained on satellite imagery, LiDAR point clouds,
and aerial data [13]. However, the adoption of AI within NMAs is not without challenges.

Figure 1. Examples of current GeoAI applications within Kadaster. Various applications require
different approaches, which in turn have different system and infrastructure requirements. A few of
the examples shown above are the detection and extraction of storage tanks (top left), quality checks
of existing registers (top centre), solar panel installations (top right), buildings and roads (bottom
right), and change detection (bottom left and centre).

1.4. Charting the Path: The Future of Topographic Mapping

Despite the growing body of research on GeoAI applications in general geospatial
analysis, there remains a notable gap in the literature regarding the systematic integration of
GeoAI into national topographic mapping practices. Prior studies have largely focused on
technical advancements such as automated feature extraction, terrain classification, and the
use of deep learning for generalization demonstrating how AI can improve map production
workflows and accuracy [14–18] . With the advent of generative AI, large language-vision
models are also being employed for data collection and interpretation purposes [19–21].
These contributions have been invaluable in advancing technical capabilities and proving
feasibility through pilot projects and case studies.

At its core, GeoAI enables automation in feature detection [3,22], change intelli-
gence [23], 3D data processing [24–26], and map generalization [27,28]. These are processes
traditionally reliant on human interpretation and manual updates. Advancements in the
above-mentioned areas promise considerable gains in the speed, consistency, and scalability
of map production [29].

However, what remains less explored are the organizational, governance, and strate-
gic dimensions required to move from proof-of-concept to sustainable, production-level
adoption of GeoAI within NMAs. Questions about how to structure institutional processes,
manage data governance, align AI use with public mandates, and bridge the cultural gap
between domain experts and data scientists have received comparatively little attention.
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This article aims to address these gaps by mapping the broader dimensions that shape
GeoAI adoption within NMAs. By doing so, we seek to complement existing technical
research with strategic insights that can guide national mapping agencies and policy makers
in effectively integrating GeoAI into their workflows.

For NMAs such as Kadaster, it is essential to understand not only the benefits but also
the risks of implementing these technologies. Moreover, the use of this technology should be
able to tackle real operational challenges created by global trends like fewer subject matter
experts and the competitive labor market, austerity measures, and legacy systems. At the
same time, GeoAI comes with its own challenges calling for significant upfront investments,
the need for specialized expertise to manage and interpret complex models, legal issues,
and the difficulties in the operationalization of pilot projects. Furthermore, establishing
the necessary infrastructure while ensuring compliance with policy, governance, and the
unique responsibilities of NMAs remains a critical concern.

2. Analytical Framework and Methodological Approach
To structure the exploration of opportunities and risks associated with GeoAI adoption

in national topographic mapping, this study develops and applies a five-dimensional
analytical framework. The framework comprises the following thematic dimensions:
Technology & Process, Data, People, Governance, and Policy & Compliance. Together,
these dimensions offer a holistic perspective that connects technical considerations with
organizational factors.

This five-dimensional framework was derived through an iterative process involving
literature review, followed by expert interviews. Peer-reviewed articles, national mapping
agency reports, and AI governance guidelines were analyzed to identify recurrent themes
in GeoAI adoption. The study builds on the research agenda on the future of topographic
mapping within Kadaster [30]. Institutional insights were gathered from dialogues and
expert interviews with peers from other NMAs and research organizations. These discus-
sions helped validate the relevance and practicality of each dimension, and brought to light
issues that go beyond purely technical innovation.

While the importance of ethics in GeoAI has been recognized in broader geospatial AI
research [14,31–33], this study does not address ethical considerations in detail. The focus
here remains on organizational dimensions relevant to topographic mapping, rather than
evaluating ethical frameworks.

This paper is conceptual and exploratory rather than empirical: it does not propose
new algorithms or present experimental results, but instead maps the landscape of op-
portunities and risks to help stakeholders see connections and anticipate challenges. The
approach is qualitative and stakeholder-oriented, aiming to complement existing technical
literature by highlighting the real-world conditions under which GeoAI is being introduced,
evaluated, or scaled.

3. Interdependencies in GeoAI Implementation
Kadaster strives for responsible innovation, transparency and accountability, and up-

holding trust towards citizens. Therefore, the interaction between technical, organizational
and societal factors is central to ensure no crucial dimension is overlooked. Five dimensions
that reflect these factors have been chosen to define and analyze the opportunities and risks:
technology and process, data, governance, people, and policy. These parameters do not
operate in isolation (see Figure 2), instead they are interdependent and therefore valuable
to study for a balanced assessment that aligns with the organization’s strategic goals and
principles. These factors are often used to measure an organization’s ability to deliver in a
technological era [34]. In addition, the challenges mentioned earlier are driven by these
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dimensions. Therefore, evaluations based on these parameters prepares the organization to
adapt to the complexity and inter-dependencies of real-world implementation of GeoAI.
Successful adoption of GeoAI lies in the understanding of how these domains influence
each other and how well it can be integrated into the existing frameworks. Discussed below
is a synthesis of how these domains connect, why they are important, and where the critical
points lie.

Figure 2. Research perspectives and their inter-dependencies. The relationships are mutually
influential, with no single dimension driving the others. These domains interact as a part of a
complex, interconnected system that must evolve together.

The technology and process perspective examines the core AI methods, tools, and
production flows involved in map making. Infrastructure, automation, and optimization
are the key pillars. The data perspective addresses the input quality, structure, and integrity
of geospatial data that fuels the AI systems, in short, the accuracy, access and risk. The
governance perspective explores internal oversight, accountability, trustworthiness, ethical
implementation, and cross-institutional coordination. The people perspective focuses
on the changing roles, expertise needs, and organizational culture impacted by GeoAI
adoption. Finally, the policy and compliance perspective situates GeoAI within current
and emerging regulatory frameworks, privacy laws, and institutional mandates. Each
perspective highlights both opportunities and potential risks, helping to shape a strategic
and sustainable path forward. We can also observe the relationship and inter-dependencies
of these perspectives from the opportunities and challenges that Geo-AI applications bring,
as presented in Table 1. Although most of the opportunities have been analyzed from
Kadaster’s perspective, they are generically applicable to most NMAs.

Table 1. Opportunities and risks of AI adoption in the geospatial domain.

Opportunities Risks

Technology and Process

Automated feature extraction/Map production High computing and storage costs
Accelerated map updates Continuous updates and tech debt
Process optimization with AI workflows Pilots to production gap
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Table 1. Cont.

Opportunities Risks

Data

Assisted and inclusive cartography Innovation without impact
Operational efficiency and cost savings Security and system compatibility
Real-time data ingestion and delivery Data provenance (quality) and lineage
Enhanced accuracy with data fusion of high
resolution imagery Risk of geofencing misuse

Automated data classification Data leaks or bias in training sets
Big data integration across systems Ambiguity in data responsibility between organizations
AI-ready data

People

Collaboration between domain experts and data scientists Reskilling or replacement anxiety
Opportunities for upskilling in AI and spatial analytics Loss of domain knowledge
AI to assist rather than replace human expertise Disparity in digital literacy and communication gaps

Ethics of automation in critical public services

Governance

Control and overview of AI activities Siloed/distributed knowledge of AI capabilities
Policy aligned innovation Innovation without direction (“Innovation in name only”)
Transparency and accountability frameworks to manage
AI lifecycle Fragmented strategy between innovation and operations

Strategic investment prioritization

Policy and Compliance

AI policies can boost trust and ethical use Ambiguity in legal accountability of AI outputs
Compliance accelerates responsible innovation Delay in policy catching up with fast-paced tech
GeoAI can support open data initiatives and SDGs Risk of overregulation slowing down experimentation

Difficulty applying GDPR and AI Act in
geospatial contexts

4. Synthesis of the Inter-Dependencies
The following elaborations help understand the intricate yet strong interconnections

between the dimensions and support the opportunities and risks that have been described.

1. Technology and Process–People: AI capabilities are only as effective as the people
who design, deploy, and monitor them. While GeoAI enables assisted cartography,
feature detection, and process optimization, it still relies heavily on domain-specific
context for accurate interpretation. Loss of domain knowledge, due to over-reliance
on automation or staff attrition, leads to the “black box problem”, where AI makes
decisions no one can fully explain or validate. Use of generative AI for mapping
purposes can pose various risks, especially when the outputs are not evaluated. The
accuracy of the outputs is questioned, or outputs are completely rejected, leading to
loss of trust. The missing link points to this particular relation, and human-in-the-loop
systems with explainability could be a future-proofing strategy.

2. Data–Governance: AI models thrive on large, high-quality datasets, but who owns,
curates, and governs these datasets becomes critical. In the absence of governance,
poor data quality or synthetic data misuse can damage both performance and public
trust. When this link is overlooked, one risk scenario could be a model failing during
production, creating an impact on costs for rework and reputation damage.

3. Governance–Policy: Governance ensures internal oversight, but without alignment
with external regulatory frameworks, it is ineffective. Compliance needs governance
mechanisms to translate laws into operational practice. If a tool violates regulation,
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there might be legal actions, and operations might be halted. Early involvement
of legal and compliance teams, and processes where policy is translated to internal
regulations helps overcome risks associated with this inter-dependency.

4. Technology and Process–Data: Even the most sophisticated AI model is only as good
as the data feeding it. GeoAI-based map updates, real-time change detection, and
inclusive visualizations require clean, current, and context-rich datasets. Mismatches
between data, technology and process could lead to inconsistencies between model
expectations and data structures. This in turn leads to errors, and the high cost of
processing large datasets limits experimentation. Since NMAs deal with privacy
sensitive data, decisions over open source vs proprietary models and infrastructure
solutions is largely discussed and is a major source for stalled innovations. Focusing
on scalable infrastructure planning and cloud optimization (private, public or hybrid)
strategies can help overcome this risk scenario.

5. People–Governance–Policy: People drive ethical behavior. Even with laws in place,
without organizational culture and staff understanding of compliance, policies are
just checklists. This could be problematic for several reasons. Policies are designed to
manage risks, but if employees don’t understand why they exist, compliance becomes
mechanical. A checklist mindset often discourages proactive and adaptable behavior.
For example, if new AI tools are introduced, but because they aren’t yet reflected
in formal policy, staff may avoid using them or could misuse them without proper
controls. Another example of ethical decision making beyond policy compliance
is if an employee sees a privacy breach that technically is not covered by existing
policy, they might ignore it instead of reporting it. This could be because they’re not
empowered by a culture that values responsible data stewardship. Similarly, staff
concerns about AI replacing jobs can lead to resistance. Lack of transparency in how
AI affects employment, or failure to communicate safeguards, may erode employee
trust and result in low adoption.

In practice, several pilots in the topographic mapping domain illustrate how these
inter-dependencies unfold. For instance, an aerial-imagery-based feature extraction tool,
though technically successful, failed to scale due to a lack of training and model oversight
capabilities in production teams. GeoAI-driven models also encountered resistance when
their outputs conflicted with cartographic norms or existing data models. Although such
pushback is often framed as concerns over quality or consistency, it seems to reflect deeper
issues such as limited AI literacy, uncertainty around model behavior, and anxiety about the
impact of automation on existing roles. In other cases, legal uncertainty or established laws
around the reuse of third-party data for training or data fusion led to stalled implementa-
tions, despite their technical promise. Additionally, several well-functioning pilots failed
to operationalize due to fragmented governance and unclear ownership. Infrastructure
limitations, such as the absence of GPU environments, prohibition of certain cloud envi-
ronments have either delayed or hindered the deployment of computationally intensive
models or in scaling. These examples underscore that without coordinated progress across
organizational, technical, and governance domains, GeoAI innovations risk remaining
isolated proofs of concept.

The risks associated with GeoAI adoption across the five thematic dimensions are often
interdependent and shaped by institutional context. Table 2 outlines a set of mitigation
strategies tailored to the nature of these risks. These are not one-size-fits-all solutions but
ideas that can support national mapping agencies and similar institutions in designing
context-specific responses.
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Table 2. Strategies to reduce risks across key dimensions of GeoAI adoption in topographic mapping.

Dimension Example Risk Mitigation Strategy

Technique & Process
Pilot models remain siloed

due to lack of
production readiness

Develop end-to-end
pipelines early; Use

scalable infrastructure;
engage operations teams

from the start.

Data Limited training data

Use synthetic or open
training data; co-create or

share data among
organizations; develop AI
ready data and standards.

People
Production teams lack
skills to evaluate and
monitor AI models

Cross-train GIS specialists
and data scientists;

co-design workflows;
embed explainable

AI tools.

Governance Model responsibility
unclear post-deployment

Assign ownership through
MLOps roles; define

lifecycle stages; establish
internal AI

oversight groups.

Policy and Compliance
Regulatory uncertainty

around
AI-generated outputs

Engage compliance teams
early; create internal

policies and regulations
and brief the employees;

align projects with national
AI strategies.

5. Towards Strategic GeoAI
While the previous section outlined individual opportunities and risks across five

key perspectives—technology and process, data, people, governance, and policy and
compliance—it is at the intersection of these dimensions where the most critical challenges
often emerge. For example: Loss of domain knowledge or experts has internal and external
drivers (think about organizational culture, austerity measures, technological develop-
ments, competitive labor market). Failures are rarely due to a single weak point but instead
result from misaligned dependencies or gaps in coordination. Considering and evaluating
the interconnected dimensions carefully, can lead to successful implementation or scaling
of GeoAI. This section also draws inspiration from NMAs with best practices.

5.1. Integrated Strategic Vision

For successful GeoAI adoption in topographic mapping, a clear and organized strategy
is key. With evolving technology, its impact and changing user needs, how to keep up
and stay relevant? Serving trustworthy data is one side, but how can this be carried out
efficiently and promptly? In an era dominated by Google Maps and instant geospatial
content, topographic maps, an essential information source for navigational and spatial
understanding, are often overlooked or misunderstood by this generation. Many users are
unaware of the accuracy, purpose and value that topographic mapping represents. To re-
main relevant and future-oriented, transforming public perception of mapping institutions
is as important as investing in technological capabilities. SwissTopo sets a good example
of this with their SwissTopo mobile app, catering to the needs of the younger generation,
engaging a digitally native audience with interactive and useful products [35]. Long-term
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vision considering influencing factors helps integrate the changing landscapes into existing
workflows. Ordnance Survey Great Britain’s vision and work towards a MasterMap is
worth acknowledging [36]. A strategic vision balances top-down implementation with
feedback and innovations from bottom-up initiatives.

5.2. Principles for GeoAI Adoption

The success or failure of technology depends on organizational principles that vary
across organizational cultures and governance contexts. This is particularly true of dis-
ruptive technologies such as AI, where reliance on technology alone does not guarantee
success. To ensure transparency and explainability towards both customers and internal
stakeholders, frameworks for the sustainable and responsible deployment of AI are recom-
mended. Within the context of Kadaster, we identified a few key organizational principles
that play a key role in integrating GeoAI. These go beyond purely technological innova-
tions, ensuring that trust in mapping organizations is retained. The provided framework is
intended to guide organizations in developing their own evaluation tools, aligned with
their organizational principles and institutional capacities.

• Purpose over technology: GeoAI adoption must begin with clarity of purpose, not
merely because it is cutting edge and an appealing innovation. Rather than use deep
learning because it is state of the art, NMAs should ask the following: how does this
enhance data quality, accessibility, or public trust? Is it about speeding up processes
and technical efficiency or does it serve a broader purpose?

• Human-centric by design: AI should be incorporated to assist and not to replace hu-
mans. At least in the topographic domain, it is hard to replicate the domain expertise
completely and automatically without human intervention. Using AI to support car-
tographers in repetitive tasks helps retain human judgment in ambiguous or high-risk
contexts. Co-designing and implementation with experts from various backgrounds
ensures data relevance and usability. Human-in-the-loop also accounts for oversight
and maintaining documentation to preserve institutional knowledge and avoid over-
reliance on models to overcome fake geography or inaccurate representations [37,38]
as not all art and science can be fully automated.

• Open and transparent systems: Trustworthy AI systems depend on transparency and
explainability, especially in public-sector institutes like the NMAs. Prioritizing open
data standards and clear documentation of process steps and model logic, making
the outputs interpretable to technical and non-technical stakeholders, and building
feedback loops or traceability in decision making supports sustainable adoption. The
users should be aware of which outputs were generated using AI, the quality of these
outputs and the extent of autonomy of the models. Algorithm registers are a way of
accomplishing this and in the Netherlands, public-sector organizations are obliged to
register impactful and high-risk algorithms used within the organizations [39] and
soon this could be a norm in many countries [40].

• Ethical foundations: Ethics is widely recognized as a foundational concern in the
development and deployment of AI. While we cannot explore the topic here in depth,
we acknowledge its importance and aim to offer some insights into the complexities
involved. Given recent developments in AI, society at large, as well as collectives and
individuals, are calling for ethical reflection and consideration of legal and moral as-
pects that encompass societal and environmental concerns. A more in-depth treatment
of ethical frameworks, particularly in the context of national mapping, remains an
important area for future research [41].

The temptation here is to approach ethics in isolation: One could start with fundamen-
tal ethical questions of what constitutes “good” or “bad” use of AI. While important, such
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discussions could quickly become abstract, arguing about fairness, justice and truth, all
of which vary across cultural, societal and legal contexts. In the geospatial domain, data
ethics that concerns bias in training data, misuse of sensitive geospatial information, and
informed consent can be examined [14]. Environmental ethics has emerged as another area
of concern, especially regarding sustainability and resource demands.

The institutionalization of ethical principles within NMAs, is complex due to di-
verse roles and responsibilities of these institutions. It requires not only policies but also
monitoring mechanisms and leadership commitment [42,43].

In the end, the definition of ethics itself remains questionable. Philosophers offer
various approaches from various perspectives. These approaches are either outcomes-based
(teleological), rule-based (deontological), or character-based (aretaic) perspectives [44]. Each
offers valuable insights but also limitations. Navigating ethical concerns in practice may
require combining these approaches in a context-based and balanced manner [45].

5.3. Leveraging Strengths

GeoAI adoption does not require starting from scratch. The success of it lies in
amplifying what already works well. Most of the organizations already have robust
mapping workflows and the necessary domain expertise. The critical point is the AI
transformational journey. Instead of scrapping existing processes, the focus should be to
embed AI where it enhances value, not where it introduces unnecessary complexity and
risk. Initiatives should focus on identifying quick wins and tipping points for the biggest
impact, that is, focusing on low-risk, high-impact opportunities, especially when faced
with monetary constraints. Areas where there is already a clear business case, good quality
data for training and where domain experts can guide the outputs effectively are low-
hanging fruits for quick wins, for example, automated feature extraction in well-known or
small areas of interest. Embedding AI tools into existing operational workflows minimizes
disruption or the need to redesign the whole process around AI. Change detection or
feature updates can be integrated within current map maintenance or update cycles. The
cartographic department of Cantabria, Spain is an example of how one could leverage
strengths despite of being a small team to create space for innovation without compromising
what already delivers public value [46].

5.4. Governance Models

For successful GeoAI adoption governance is vital. Important questions to consider
are where should innovations related to GeoAI be organized? Who should steer these?
How can successful innovations be operationalized? When there is a problem, who is
the point of contact? How can experimentation be encouraged while managing risks?
In the context of topographic mapping, data sources span multiple administrative levels
and policies are set nationally or internationally. Alignment across various domains is
needed to produce topographic information that is reliable. Governance determines where
innovation is housed, how it is monitored and how risks are managed. Many organizations
including Kadaster are now focusing on this aspect to take GeoAI from being a hopeful
experiment to a sustainable operation. Another important aspect of governance is the room
for co-creation and collaboration. When key strengths are missing in-house, reliance on
other organizations, peers, research or industry to learn and co-create could really boost
Geo-AI adoption. Recently, a Nordic initiative for research and innovation on responsible
and ethical use of AI has been started [47]. Such initiatives help in sharing and learning
from the experiences of other organizations, co-creation or reusing models, which is not
only efficient but also tackles the issue of energy consumption while training models.
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5.5. Organizational Readiness

Even with a compelling vision, cutting-edge technologies, guiding principles, and
sound governance, the adoption of GeoAI will fall short without institutional readiness.
GeoAI introduces new ways of working that require continuous learning and upskilling.
GIS experts would need AI skills to interpret model outcomes or retrain models to obtain
the required outputs. Topographic data operators would have to understand how to
effectively integrate outputs from GeoAI to assist them in their work. Thus, AI literacy
across roles, from operators to management, can lead to the required pragmatic outlook for
AI deployments. In addition, technical expertise in siloed units must be distributed across
the organization. Cross-functional teams break these isolated units and foster collaborative
innovation that is easier to put in production. As part of this shift, institutions may require
new roles that reflect governance strategies and ethical principles. AI ethics officers, data
stewards or AI strategy leads can help in aligning innovation with production thereby
reducing the current gap. Practical steps towards shift may include internal training
programs, peer learning sessions across teams and organizations or mandatory basic AI
courses tailored for GIS professionals or data operators. These initiatives can bridge
knowledge gaps and improve skill development and equip staff with the necessary critical
thinking needed to adopt GeoAI effectively.

6. Outlook
Adoption of AI in the topographic domain is complex and requires organization-wide

transformation. From a change in our perspective towards technological advancements
to process, organizational, and behavioral change. These changes do not occur overnight
but might take years or even decades. GeoAI presents a transformative opportunity for
national mapping and cadastral agencies. Its potential depends on how well we integrate it
into our work processes. Successful implementation of GeoAI requires a holistic approach;
balancing innovation with governance, and automation with accountability. In addition to
technology and data, people, governance and policy play a central role in the successful
adoption of GeoAI. To harness GeoAI in topographic mapping processes and contribute
effectively to society with regard to the sustainable development goals, it is recommended
that NMAs embrace collaboration, transparency, and adaptability. The authors foresee
a strong focus on developing AI data standards and frameworks, ensuring data lineage
and quality. Collaboration across public, private and academic sectors will also be at the
forefront as NMAs strive for digital sovereignty.
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