Quantifying Percent Traffic Congestion (pTC) and Mobility Bottleneck Dynamics at Atlanta’s Spaghetti Junction
Abstract
1. Introduction
2. Methods
2.1. Study Area
2.2. Data Collection
2.3. Congestion Metrics
2.4. Analytical Framework
2.4.1. Spatial and Temporal Congestion Patterns
2.4.2. Validation of pTC Against Travel Time
2.4.3. Prediction with pTC
2.4.4. Crashes and Anomaly Detection
3. Results
3.1. Congestion Patterns
3.2. pTC vs. Travel Time
3.3. Congestion Prediction
3.4. Crashes and Anomalies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| pTC | Percent Traffic Congestion |
| RRR | Raster Route Reference |
| LSTM | Long Short-Term Memory |
| STL | Seasonal-Trend decomposition using Loess |
| API | Application Programming Interface |
References
- Rodrigue, J.-P. The Geography of Transport Systems, 5th ed.; Routledge: New York, NY, USA, 2020; ISBN 9780429346323. [Google Scholar] [CrossRef]
- Wang, J.; Duan, X.; Wang, P.; Qiu, A.-G.; Chen, Z. Predicting Urban Signal-Controlled Intersection Congestion Events Using Spatio-Temporal Neural Point Process. Int. J. Digit. Earth 2024, 17, 1. [Google Scholar] [CrossRef]
- Lomax, T.; Turner, S.; Shunk, G. NCHRP Report 398: Quantifying Congestion: Volume 1—Final Report; Transportation Research Board, National Research Council: Washington, DC, USA, 1997; Available online: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_398.pdf (accessed on 16 September 2025).
- Schrank, D.; Lomax, T. The 2005 Annual Urban Mobility Report; Texas A&M University, Texas Transportation Institute: Bryan, TX, USA, 2005. [Google Scholar]
- U.S. Federal Highway Administration. Alternative Intersections/Interchanges: Informational Report; FHWA-HRT-09-060; U.S. Department of Transportation: Washington, DC, USA, 2009.
- American Transportation Research Institute (ATRI). The Nation’s Top Truck Bottlenecks; ATRI: Washington, DC, USA, 2025. [Google Scholar]
- Chetouane, A.; Mabrouk, S.; Mosbah, M. Traffic Congestion Detection: Solutions, Open Issues and Challenges. In Distributed Computing for Emerging Smart Networks; Madria, S.K., Kolani, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–22. [Google Scholar]
- Seong, J.; Kim, Y.; Goh, H.; Kim, H.; Stanescu, A. Measuring Traffic Congestion with Novel Metrics: A Case Study of Six U.S. Metropolitan Areas. ISPRS Int. J. Geoinf. 2023, 12, 130. [Google Scholar] [CrossRef]
- Kelly, T.; Gupta, J. Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling. arXiv 2024, arXiv:2404.08838. [Google Scholar] [CrossRef]
- Google. Google Maps Platform. Available online: https://mapsplatform.google.com/ (accessed on 12 September 2025).
- Muñoz-Villamizar, A.; Solano-Charris, E.L.; AzadDisfany, M.; Reyes-Rubiano, L. Study of Urban-Traffic Congestion Based on Google Maps API: The Case of Boston. IFAC-PapersOnLine 2021, 54, 211–216. [Google Scholar] [CrossRef]
- Wei, P.; Hao, S.; Shi, Y.; Anand, A.; Wang, Y.; Chu, M.; Ning, Z. Combining Google Traffic Map with Deep Learning Model to Predict Street-Level Traffic-Related Air Pollutants in a Complex Urban Environment. Environ. Int. 2024, 191, 108992. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Y.; Hu, J.; Zhao, Y.; Li, S.; Hu, J. Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Sensors 2019, 19, 2229. [Google Scholar] [CrossRef]
- Kim, Y. Prediction of Traffic Congestion Using a Time-Series Model and Spatiotemporal Data: A Case Study of the Atlanta Downtown Connector. Georgr. Bull. 2023, 64, 7. [Google Scholar]
- Seong, J.C.; Lee, S.; Cho, Y.; Hwang, C. Beyond the Road: A Regional Perspective on Traffic Congestion in Metro Atlanta. ISPRS Int. J. Geo-Inf. 2025, 14, 61. [Google Scholar] [CrossRef]
- Ji, S.; Seong, J.; Stanescu, A.; Hwang, C.S.; Lee, Y. Spatiotemporal Traffic Database Construction with Google Real-Time Traffic Information and Spatiotemporal Congestion Pattern Analysis: A Case Study of Montgomery County, Maryland, U.S.A. J. Korean Geogr. Soc. 2021, 56, 265–276. [Google Scholar] [CrossRef]
- Georgia Department of Transportation (GDOT) GDOT Traffic Data. Available online: https://gdottrafficdata.drakewell.com/publicmultinodemap.asp (accessed on 12 September 2025).
- Georgia Office of Legislative Council. Georgia Code § 40-6-51—Restrictions on Type of Vehicle That May Travel on Certain Major Interstates and Highways Inside the Interstate 285 Perimeter. Available online: https://law.justia.com/codes/georgia/title-40/chapter-6/article-3/section-40-6-51/ (accessed on 12 September 2025).
- Georgia Department of Transportation (GDOT). I-285 Top End Express Lane Project: A Major Mobility Project—PI Number 0001758; GDOT: Atlanta, GA, USA, 2025. Available online: https://www.dot.ga.gov/systems/ProjectDocuments/Projects/0001758_I285TopEnd_ExpressLanes/FactSheets/I-285_TopEndEL_FactSheet.pdf (accessed on 16 September 2025).
- Atlanta Regional Commission (ARC). 2024 Atlanta Regional Freight Mobility Plan Report; ARC: Atlanta, GA, USA, 2024; Available online: https://cdn.atlantaregional.org/wp-content/uploads/2024-atlanta-regional-freight-mobility-plan-1.pdf (accessed on 16 September 2025).
- Zhao, P.; Hu, H. Geographical Patterns of Traffic Congestion in Growing Megacities: Big Data Analytics from Beijing. Cities 2019, 92, 164–174. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, L. LSTM Network: A Deep Learning Approach for Short-Term Traffic Flow Prediction. IET Intell. Transp. Syst. 2017, 11, 444–450. [Google Scholar] [CrossRef]
- Nguyen, H.; Bentley, C.; Kieu, L.M.; Fu, Y.; Cai, C. Deep Learning System for Travel Speed Predictions on Multiple Arterial Road Segments. Transp. Res. Rec. 2019, 2673, 145–157. [Google Scholar] [CrossRef]
- Abduljabbar, R.L.; Dia, H.; Tsai, P.W. Development and Evaluation of Bidirectional LSTM Freeway Traffic Forecasting Models Using Simulation Data. Sci. Rep. 2021, 11, 23899. [Google Scholar] [CrossRef]
- Fu, F.; Wang, D.; Sun, M.; Xie, R.; Cai, Z. Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval. Sustainability 2024, 16, 1818. [Google Scholar] [CrossRef]
- Waqas, M.; Abbas, S.; Farooq, U.; Khan, M.A.; Ahmad, M.; Mahmood, N. Autonomous Vehicles Congestion Model: A Transparent LSTM-Based Prediction Model Corporate with Explainable Artificial Intelligence (EAI). Egypt. Inform. J. 2024, 28, 100582. [Google Scholar] [CrossRef]
- Naheliya, B.; Redhu, P.; Kumar, K. A Hybrid Deep Learning Method for Short-Term Traffic Flow Forecasting: GSA-LSTM. Indian J. Sci. Technol. 2023, 16, 4358–4368. [Google Scholar] [CrossRef]
- Naheliya, B.; Redhu, P.; Kumar, K. Bi-Directional Long Short Term Memory Neural Network for Short-Term Traffic Speed Prediction Using Gravitational Search Algorithm. Int. J. Intell. Transp. Syst. Res. 2024, 22, 316–327. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Zhu, X.; Guo, D. Urban Event Detection with Big Data of Taxi OD Trips: A Time Series Decomposition Approach. Trans. GIS 2017, 21, 560–574. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Z.; Yang, Y.; Jiang, W.; Jiang, X. Short-Term Passenger Flow Prediction with Decomposition in Urban Railway Systems. IEEE Access 2020, 8, 107876–107886. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Hua, X.; Zhao, D. Survey of Decomposition-Reconstruction-Based Hybrid Approaches for Short-Term Traffic State Forecasting. Sensors 2022, 22, 5263. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, Z.; Zhu, L.; Jiang, H. Determinants of the Congestion Caused by a Traffic Accident in Urban Road Networks. Accid. Anal. Prev. 2020, 136, 105327. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Transportation, Federal Highway Administration. Manual on Uniform Traffic Control Devices for Streets and Highways, 11th ed.; FHWA: Washington, DC, USA, 2023. Available online: https://rosap.ntl.bts.gov/view/dot/73253 (accessed on 15 September 2025).
- Saka, A.A.; Jeihani, M.; James, P.A. Estimation of Traffic Recovery Time for Different Flow Regimes on Freeways; MD-09-SP708B4L; Morgan State University, Department of Transportation and Urban Infrastructure Studies: Baltimore, MD, USA, 2008. Available online: https://rosap.ntl.bts.gov/view/dot/17158 (accessed on 15 September 2025).
- Gomes, B.; Coelho, J.; Aidos, H. A Survey on Traffic Flow Prediction and Classification. Intell. Syst. Appl. 2023, 20, 200268. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, J.; Chen, C.; Wang, J.; Li, D.; Guo, K. Weather Interaction-Aware Spatio-Temporal Attention Networks for Urban Traffic Flow Prediction. Buildings 2024, 14, 647. [Google Scholar] [CrossRef]
- Mahmassani, H.S.; Dong, J.; Kim, J.; Chen, R.B.; Park, B. Incorporating Weather Impacts in Traffic Estimation and Prediction Systems; FHWA-JPO-09-065; United States. Federal Highway Administration: Washington, DC, USA, 2009. Available online: https://rosap.ntl.bts.gov/view/dot/3990 (accessed on 15 September 2025).
- Shi, X.; Qi, H.; Shen, Y.; Wu, G.; Yin, B. A Spatial–Temporal Attention Approach for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4909–4918. [Google Scholar] [CrossRef]
- Yao, W.Q.S. From Twitter to Traffic Predictor: Next-Day Morning Traffic Prediction Using Social Media Data. Transp. Res. Part. C Emerg. Technol. 2021, 124, 102938. [Google Scholar] [CrossRef]
- Göçmen, Z.A.; Ventura, S.J. Barriers to GIS Use in Planning. J. Am. Plan. Assoc. 2010, 76, 172–183. [Google Scholar] [CrossRef]












| Total | pTC > 50 | pTC > 60 | pTC > 65 | pTC > 70 | |
|---|---|---|---|---|---|
| Total anomalies | 420 | 151 | 61 | 32 | 14 |
| Crash-related anomalies | 124 | 54 | 32 | 20 | 8 |
| Crash-related anomalies (%) | 29.5% | 35.8% | 52.5% | 62.5% | 57.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, J.C.; Yang, J.; Jang, J.; Choi, S.H.; Vann, B.; Hwang, C.S. Quantifying Percent Traffic Congestion (pTC) and Mobility Bottleneck Dynamics at Atlanta’s Spaghetti Junction. ISPRS Int. J. Geo-Inf. 2025, 14, 482. https://doi.org/10.3390/ijgi14120482
Seong JC, Yang J, Jang J, Choi SH, Vann B, Hwang CS. Quantifying Percent Traffic Congestion (pTC) and Mobility Bottleneck Dynamics at Atlanta’s Spaghetti Junction. ISPRS International Journal of Geo-Information. 2025; 14(12):482. https://doi.org/10.3390/ijgi14120482
Chicago/Turabian StyleSeong, Jeong Chang, Jiwon Yang, Jina Jang, Seung Hee Choi, Brian Vann, and Chul Sue Hwang. 2025. "Quantifying Percent Traffic Congestion (pTC) and Mobility Bottleneck Dynamics at Atlanta’s Spaghetti Junction" ISPRS International Journal of Geo-Information 14, no. 12: 482. https://doi.org/10.3390/ijgi14120482
APA StyleSeong, J. C., Yang, J., Jang, J., Choi, S. H., Vann, B., & Hwang, C. S. (2025). Quantifying Percent Traffic Congestion (pTC) and Mobility Bottleneck Dynamics at Atlanta’s Spaghetti Junction. ISPRS International Journal of Geo-Information, 14(12), 482. https://doi.org/10.3390/ijgi14120482

