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Abstract

Street design quality and socio-economic factors jointly influence housing prices, but their
intertwined effects and spatial variations remain under-quantified. Housing prices not
only reflect residents’ neighborhood experiences but also stem from the spillover value
of public streets perceived and used by different users. This study takes Tianjin as a case
and views the street environment as an immediate experience proxy for through-travelers,
combining street view images and crowdsourced perception data to extract both subjective
and objective indicators of the street environment, and integrating neighborhood and loca-
tion characteristics. We use Geographical-XGBoost to evaluate the relative contributions
of multiple factors to housing prices and their spatial variations. The results show that
incorporating both subjective and objective street information into the Hedonic Pricing
Model (HPM) improves its explanatory power, while local modeling with G-XGBoost fur-
ther reveals significant heterogeneity in the strength and direction of effects across different
locations. The results indicate that incorporating both subjective and objective street infor-
mation into the HPM enhances explanatory power, while local modeling with G-XGBoost
reveals significant heterogeneity in the strength and direction of effects across different
locations. Street greening, educational resources, and transportation accessibility are con-
sistently associated with higher housing prices, but their strength varies by location. Core
urban areas exhibit a “counterproductive effect” in terms of complexity and recognizability,
while peripheral areas show a “barely acceptable effect,” which may increase cognitive
load and uncertainty for through-travelers. In summary, street environments and socio-
economic conditions jointly influence housing prices via a “corridor-side-community-side”
dual-pathway: the former (enclosure, safety, recognizability) corresponds to immediate
improvements for through-travelers, while the latter (education and public services) cor-
responds to long-term improvements for residents. Therefore, core urban areas should
control design complexity and optimize human-scale safety cues, while peripheral areas
should focus on enhancing public services and transportation, and meeting basic quality
thresholds with green spaces and open areas. Urban renewal within a 15 min walking ra-
dius of residential areas is expected to collaboratively improve daily travel experiences and
neighborhood quality for both residents and through-travelers, supporting differentiated
housing policy development and enhancing overall quality of life.
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1. Introduction

With the accelerating process of urbanization, over 55% of the global population now
resides in urban areas, and this proportion is expected to increase to 68% by 2050 [1]. Future
urban growth will primarily occur in developing countries, leading to an increased demand
for housing [2]. Urban expansion not only intensifies the demand for housing but also raises
the requirements for the quality of the living environment. As a core issue related to people’s
livelihoods, housing in urban areas has long faced inequality due to factor agglomeration [3].
Housing prices are not only influenced by factors such as employment opportunities,
accessibility to public facilities, and quality of life but also, to some extent, reflect these
socio-economic disparities [4], which can be used to identify urban development patterns
and support livability-oriented policies [5]. Although housing prices are not a direct
measure of livability or environmental equity, their spatial distribution can indirectly reflect
residents’ assessments of living environment quality. Existing studies struggle to explain
how these disparities manifest in different regions and contexts, particularly in rapidly
urbanizing cities in developing countries. Therefore, it is crucial to comprehensively assess
how multi-level factors influence the distribution of urban housing prices.

The spatial imbalance of urban housing prices is particularly evident in the contrast be-
tween central and non-central districts [6,7]. Existing research typically characterizes these
significant differences from three attributes: structure, neighborhood, and location [8,9].
At the structural level, features such as area, building age, floor, and apartment type influ-
ence prices. Simultaneously, location and accessibility-related factors (e.g., distance to the
CBD, functional and economic activity clusters, and accessibility to public services such
as education, healthcare, and leisure) have been repeatedly validated [10-13]. The supply
of environmental and open spaces, as well as residents’ and through-travelers’ subjective
impressions of the environment, have also been observed to be related to price differentia-
tion [14,15]. Although these factors can explain the macro-level differences within the city,
a significant “explanation gap” remains at the fine-grained level: on one hand, commonly
used location and accessibility measures are often mid-to-macro indicators, which fail
to capture the micro-environmental cues that residents and through-travelers encounter
during their travel and stay [16,17]; on the other hand, the spatial scales of statistical units
and perceived behaviors are inconsistent, often masking the heterogeneity at the parcel
and interface levels at district or street scales, leading to a mismatch between “variables
and behavioral pathways” [18]. While existing research can identify price differentiation,
it struggles to answer which perceivable environmental features drive these differences,
where they are most significant, and why they occur. Based on this, it is necessary to
introduce environmental representations that are directly linked to actual experiences at
the micro scale to enhance the explanatory power of fine-grained price differences.

How people perceive streets can influence their daily travel experiences and neigh-
borhood evaluations, which in turn enter the housing price formation mechanism (i.e.,
“visual capital”) [19]. Street views not only reflect objective environmental quality but also
influence spatial differences through the subjective perceptions of residents and through-
travelers. For example, Ferreira et al. [20] demonstrate that at the street scale (e.g., street
width and interface continuity), risk perceptions related to visibility and exposure vary
with pedestrian and vehicular flow, leading to divergent experiential outcomes that affect
the daily experiences of pedestrians, cyclists, bus passengers, and drivers [21]. Street view
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assessments typically combine both objective and subjective indicators: the objective side
primarily measures greening, visibility, and other metrics [17,22-24], while the subjec-
tive side supplements with dimensions such as imaginability, complexity, human scale,
and safety [15,25]. However, physical elements and perceptions are not always directly
aligned, and solely relying on objective measurements cannot fully cover the complex
mapping relationships [26-28]. The four dimensions of urban design—imaginability, com-
plexity, human scale, and recognizability—reveal the differential experiences people have
when recognizing, understanding, and using streets. Particularly in the context of pedes-
trian and cycling safety, perceptions of safety are closely related to path choices, willingness
to stay, and neighborhood evaluations [15]. Since street views form a public visual interface
along streets, in addition to residents, through-travelers are also key audiences. Therefore,
enclosure, safety, and recognizability can be understood as “corridor-side” exposure cues,
complementing the neighborhood factors’ perspective. Research on human perception in
housing prices has traditionally focused on homebuyers’ assessments of the surrounding
environment. Existing studies often use crowdsourced data like Place Pulse to capture
emotional dimensions [29,30], but such datasets are insufficient for covering cities in main-
land China and have significant contextual differences [31]. Recent studies have begun to
construct resident perception data based on local SVI and incorporate city design-oriented
dimensions (imaginability, complexity, human scale, and recognizability) [15,25], to more
closely reveal the mechanisms by which street perception differences affect housing value
in a local context, while considering both residents” and road users’ perceptions, thus
providing new empirical support for urban design and housing policy.

The Hedonic Pricing Model (HPM) is widely used to quantitatively identify the value
contribution of housing attributes by decomposing prices into quantifiable factors such
as structure, neighborhood, and location. Empirical evidence on street-level information
has been preliminarily accumulated through this approach [32-35]. Objective environ-
mental elements (e.g., greening, landscape openness) have been empirically shown to
have premium associations in various locations. For instance, Michael [36] found that
blue-green spaces have a premium effect on housing prices by evaluating urban facilities.
Ye [37] found a significant positive correlation between street greening, street accessibility,
and housing prices, with street greening achieving the second-highest coefficient in the
HPM model. Chen [38] found a nonlinear relationship between housing prices and GVI in
Shanghai. Subjective dimensions related to actual experiences (such as safety) also show
stable positive relationships [39]. Further comparative studies indicate that subjective
and objective representations are not simple substitutes in explaining price differences;
they may complement each other or present inconsistent directions for individual factors.
Xu [15] measured six perceptions (greenness, safety, walkability, imaginability, enclosure,
and complexity) both subjectively and objectively, and found that the collective strength of
subjective scores and their objective counterparts was almost equal. Both subjective and
objective indicators showed opposite individual tendencies in explaining price differences,
and perceptions cannot be fully represented by objective indicators. Building on this, there
is still room for further investigation into how to assess their incremental explanatory
power and relative effects within the same quantitative framework, and how these factors
manifest differently within the city.

To fairly compare the incremental explanatory power and relative effects of subjective
and objective street elements within the same quantitative framework, and to identify their
differentiated manifestations within the city, the key lies in the choice of econometric imple-
mentation. In pursuit of this goal, existing empirical research typically uses the Hedonic
Pricing Model (HPM) as the basis, with differences primarily in the implementation of
parameter estimation and spatial treatment. In HPM empirical modeling, Ordinary Least
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Squares (OLS), due to its simplicity and interpretability, is widely applied in housing price
regression analysis. However, the uniform coefficient assumption can obscure relationship
differences across locations and introduce the risk of reversal due to aggregation in the
handling of geographical data (the “Simpson’s Paradox”) [40]. To address this issue, Geo-
graphically Weighted Regression (GWR), as a local modeling method, has been widely used
to reveal variations in variable relationships under spatial heterogeneity [41]. Unlike the
global OLS model, GWR allows model parameters to vary with geographical location and
estimates a set of local regression coefficients for each observation point, thus better captur-
ing spatial non-stationarity [42]. However, its linear nature still makes it difficult to capture
nonlinear structures and higher-order interactions between variables, and it is sensitive to
settings like bandwidth. In recent years, researchers have begun integrating machine learn-
ing with spatial modeling, developing methods such as Geographical Perception Random
Forest (Geo-RF) and Geographically Weighted Gradient Boosting Trees (Geo-XGBoost),
which retain the local modeling concept while introducing non-parametric learning capa-
bilities to effectively capture nonlinear features, variable interactions, and heterogeneous
distributions in spatial processes [43,44]. Therefore, the application of nonlinear geographi-
cal algorithms in housing price research can reduce Simpson’s Paradox and address spatial
heterogeneity, thereby providing a more accurate understanding of the economic benefits
of environmental policies and their spatial distribution characteristics. Based on this, this
study adopts Geographical-XGBoost to compare the relative effects of subjective and ob-
jective street elements within the same framework and to characterize their heterogeneity
within the city.

This study aims to provide a comprehensive assessment of the factors influencing
housing prices by integrating multi-source data and machine learning algorithms. Using
local Street View Imagery (SVI) as a basis, the study compares the complementary roles
and relative importance of objective views and subjective visual perceptions. In this
study, we take Tianjin, China, as a case study and use locally collected SVI to train a
perception scoring model that predicts human perceptions of the street environment.
A deep learning model is employed to segment the SVI and extract objective view indices.
Additionally, a geographically weighted nonlinear method is introduced to relax traditional
linear assumptions, enabling a better explanation of the spatial heterogeneity and impact
differences of housing price determinants. The study quantifies and reveals the incremental
explanatory power of both subjective and objective street view variables on housing prices
and their spatial differences, further demonstrating the interplay and heterogeneity of
influencing factors across different regions.

This study makes three main contributions. First, it integrates local SVI subjective and
objective information with a geographically weighted nonlinear approach to quantify the
perceptible link between street view elements and housing price signals across different
locations, revealing their spatial heterogeneity and relative effects. This provides empirical
evidence for understanding the interplay and differences in housing price determinants
within the city. Second, without being confined to a single linear assumption, this study
offers a replicable assessment framework to identify spatial heterogeneity and enhance
explanatory power, providing references and priority judgments for evidence-based, zoned
housing and street renewal. This study transforms the concept of a “good street” from
an abstract judgment into quantifiable design clues, and, through housing prices as a
market signal, tightly links changes in street view features with improvements in the
quality of life for residents and through-travelers. Third, by incorporating the differences
in human perceptions of the street environment into the analysis, it highlights the plan-
ning implications of equity and experience, enriching traditional urban design and policy
evaluation. It should be noted that this study does not claim causal conclusions; our goal



ISPRS Int. ]. Geo-Inf. 2025, 14, 391

5 of 36

is to assess the incremental explanatory value of micro-level street view information in
existing housing price models, aiming to provide interpretable evidence to support the
improvement of livability and service accessibility, enhance the walking experience for
residents and through-travelers (e.g., bus passengers, cyclists, and electric two-wheeler
riders), and promote more equitable spatial resource allocation.

2. Study Area and Data
2.1. Study Area

There are significant differences in street configurations and interface morphology
between the core and suburban areas of Tianjin, primarily reflected in the variations in
vehicular, pedestrian, and cycling spaces, as well as commercial interfaces. The core area
(Heping, Hexi, Nankai, Hedong, Hebei, Honggiao) features a framework of multi-lane main
roads and narrower secondary roads (main roads typically have 6-8 lanes, with sidewalks
3-5 m wide). Street trees and protected cycling facilities are commonly found, and commer-
cial corridors are lively. Parallel parking is mainly seen on secondary roads. Suburban areas
(Dongli, Xiging, Jinnan, Beichen), as the primary zones for urban expansion, have more
diverse street forms with larger setbacks (the distance from the building to the sidewalk is
about 5-10 m). There is a higher proportion of newly planted street trees, and sidewalks
are wider, but the continuity of protected cycling lanes is relatively weaker. Buildings are
primarily high-rise residential complexes, with discontinuous street walls and more open
space, creating a clear distinction from the core area.

This study focuses on the central urban districts (the six districts within the city) and
suburban areas (the four districts surrounding the city) of Tianjin, a municipality directly
under the central government of China, as the empirical study area Figure 1. Tianjin is
located in the northern part of the North China Plain, between 116°43’ to 118°04’ East
longitude and 38°34’ to 40°15’ North latitude, making it an important economic and port
city in northern China. In 2020, the total area of Tianjin was approximately 11,966 square
kilometers, with a permanent population of about 13.82 million and an urbanization rate of
82.57%. In the rapid process of urbanization, Tianjin has formed a distinct “core-periphery”
spatial structure, which is particularly evident in the differentiation between central and
non-central urban areas. This study focuses on these ten districts, using street view images
(SVI) and housing price data collected on-site, to reveal the differentiated patterns of
housing price determinants in both regions. This serves as a typical case to support the
analysis of how urban visual environments affect the spatial distribution of housing prices.
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Figure 1. Overview of study area for the present study. (a) Tianjin is located in the north of China.
(b) Tianjin overview. (c¢) Names of districts in the study area, CBD locations.
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2.2. Research Framework

The main steps of the research framework are outlined below, as shown in
Figure 2, summarizing the workflow of this study, which includes data collection, fea-
ture extraction, property price modeling, and analysis. First, we collected a multi-source
dataset consisting of street view images, Points of Interest (POI), neighborhood information,
and basic property attributes. Second, we extracted multiple features from these datasets
and collected subjective perception scoring data from 45 participants in Tianjin through
a crowdsourced visual survey. Third, we established a basic property price model using
Ordinary Least Squares (OLS) and tested spatial autocorrelation, dependency, and potential
spatial heterogeneity using Moran’s I test and the Lagrange multiplier test on its residuals.
We then explored the spatial relationships between property prices and related factors
using Geographical-XGBoost (version 1.0.9). Finally, we compared the impact of property
price determinants on property prices, considering geographical location, using the global
model. We also analyzed the strength of these determinants through SHAP interpretability
analysis, and visualized the spatial heterogeneity of the study area using SHAP values
from the local model.
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Figure 2. Research framework. (a) Data collection, (b) feature extraction, and (c) modeling and
analysis. Arrows represent data flow between steps, and colors denote different components and
relationships in the process.

2.3. Data

Table 1 provides the descriptive statistics for all the variables used in this study. As of
December 2024, the data for this study was collected through web scraping techniques from
“Anjuke,” a leading real estate platform in China (https:/ /tianjin.anjuke.com/, accessed on 3
May 2025), covering average listing prices of second-hand homes from 5100 communities in
Tianjin (Figure 3a). Anjuke is a real estate information service platform covering 300 major
cities across China and is one of the most popular real estate service providers in the country.
Taking into account data availability and relevant literature [45,46], variables were selected
and defined based on practical demand using automated web scraping.The structural
attribute variables include property type (Property_T), building age (House_Age), year
of construction (Year_Built), floor area ratio (Floor_Area), greening rate (Greening_R),
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building type (Building_T), and property fees (Property_F). Property type (e.g., regular
residential, apartment) and building type (e.g., low-rise, mid-rise, high-rise) are categorical
variables, which were converted into dummy variables using one-hot encoding to prevent
information loss or bias in the model due to categorical variables. To ensure the consistency
and representativeness of the sample, duplex apartments and villas were excluded from
the study to avoid potential biases, thus enhancing the reliability of the results. Price refers
to the average listing price of homes currently for sale in each community. Geographic
coordinates of the residential communities were collected using the Baidu Map geocoding
service, and the structural attributes were integrated with the property price data.

Table 1. Descriptive statistics of all variables.

Variable Description Mean Std Data Source
Dependent variable
Prices RMB (Chinese currency)/m?, original price 26.586 20.435 Anjuke.com
Structural attributes
Property_T Property type 1: Apartment house 0 for non-apartment house 0.05 0.22
House_Age Age of the building 22.6 11.2
Year_Built Year of completion of the house 2001 11.2 Web scrapine from
Floor_Area Floor area ratio of the house 1.74 0.73 An'ulfe Cgm
Greening R Green floor area ratio of the house 1.74 0.73 ) ’
Building_T Type of construction of the house, 1: multi-story 0 for non-multi-story ~ 0.34 0.48
Property_F Property charges (RMB/m?/month) 114 1.18
Locational attributes
Distance_t Distance to CBD (m) 8694.1 6614.5 Calculated in
QGISs
Neighborhood attributes
HubDist Distance to the nearest bus and metro station (m) 1969  136.8 CalCSlGaISed in
recreation_n Number of recreational and commercial amenities within 1000 m 25.4 19.45
school_n Number of schools in 1000 m 24 24.5
POI Data

hospital_n Number of hospitals in 1000 m 20.4 14.4
Subjective perceptions
Enclosure Enclosure perception 0.67 0.06 Predicted by ML
HumanScale HumanScale perception 0.66 0.10 Ll

. - . models with view
Complexity Complexity perception 0.70 0.05 .

o o - indices extracted
Imageability Imageability perception 0.65 0.05

) fromSVIs

Safety Safety perception 0.62 0.06
Objective view index
CoreStruct_A Building + Skyscraper view index 0.46 0.15
StreetSpace_B1 Road + Sidewalk + Bridge view index 0.28 0.08 Scores derived
TrafficInfra_ B2 Car + Bicycle + Minibike + Person view index 0.08 0.03 from combining
Vegetation_C1 Tree + Plant + Grass view index 0.05 0.03 selected physical
OpenNatural C2  Sky + Earth view index 0.23 0.09 feature view
StreetFurn_D Fence + Streetlight + Signboard + Awning + Ashcan view index 0.02 0.01 indices
ArchDetail E Wall view index 0.007  0.008

Furthermore, neighborhood attribute data primarily came from the Points of Interest
(POI) data provided by Baidu Map (version 3.0), obtained through web scraping. Accord-
ing to the requirements of HPM modeling for neighborhood environments, this study
extracted the following indicators from the POI data: the distance to the nearest subway
and bus stations (HubDist), the number of schools (school_n), medical facilities (hospital_n),
and recreational services (recreation_n) within a 1000 m radius around the residential points,
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using QGIS spatial analysis tools for calculation (Figure 3b); see Table 1. These indicators
were used as core metrics to measure neighborhood accessibility and public service levels.
Regarding location attributes, the shortest network distance from the residential area to the
Central Business District (CBD) was introduced as a spatial centrality indicator. The CBD
of Tianjin was defined as the Xiaobailou Commercial District in Heping District, which
houses financial, commercial, and high-end office resources, representing the city’s main
functional core. The distance from each community to the CBD was obtained using the
road network from OpenStreetMap (OSM, https:/ /www.openstreetmap.org/).

(a) (b)
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- 30k-50K Recreational
* 20k-30k * Transportation Stations
* 10k-20k ™
* 1k-10k =3 Regional Boundary .
s i;;:xg.:\:t:;v:;:fnry Road Networks
Housing price data points and transaction price distribution Spatial distribution of neighbourhood attribute variables
The map shows the ,
significant locations- F \\,
color coded by type Beichen * .}
of spatialautocorrela- * b s
tion.Moran Scatter ti 4 5
PlotThe scatter plot : = 3
shows p<0.001 +Donglix =
and999permutationg. N\
Moran's I: 0.78***; ; o kLY Sy
4 e ; :
L8 Xiging. "8 1
3 cBD ‘-\5\?
Average house prices(RMB/m2)
by neighborhood
[ 80K-100K (\S
B 50K-80K a
B 30K-50K
[ 20K-30K - 4
[ 10K-20K * LOW-LOW
[ 1K-10k N oo 7 1 ke [=3 Regional Boundary ] 1 1 ke
£ NoData N —— Road Networks ’ N
I3 Regional Boundary . Local Indicator of SpatialAutocorrelation (LISA)
Average house price (RMB/m2 by neighbourhood (street level)| ClusterMap of LN(PRICE)

Figure 3. Spatial distribution of (a) housing transaction price, (b) neighborhood attributes including
amenities and service POlISs, transportation stations, hospitals, and schools, (c) average housing
price (RMB/m?) by municipal neighborhood boundary, and (d) LISA cluster analysis (hotspot) of
price.Moran Scatter Plot: *** indicates statistical significance at the 0.001 level. The red line in the
scatter plot represents the linear regression line for the spatial autocorrelation values.

2.4. Street View Feature Extraction

To capture both the subjective human perceptions and objective view indices of
the street environment, this study employs the Street View Imagery (SVI) method for
information extraction. The street view images are sourced from Baidu Maps, which, as one
of China’s leading map service providers, offers an Application Programming Interface
(API) that allows users to programmatically retrieve street view images in bulk, as shown
in Figure 4. In this study, we first used Python’s OSMnx library (version 2.0.6) to obtain
the UTM coordinate system road network data for the study area. Points were sampled
at 50 m intervals, and the KDTree algorithm was employed to select street view points
with a proximity of less than 50 m, resulting in a total of 143,956 candidate sampling
points. Using Baidu’s geocoding API, the WGS84 coordinates were converted to BD-
09 (Baidu’s coordinate system), with four collection directions (0/90/180/270°) for each
sampling point. Images were stitched together, with each image having a resolution
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of 1024 x 768 pixels. We retained only the images captured from June to August 2023
and filtered them based on quality control standards such as location consistency and
image clarity. Due to factors such as third-party street view supply and on-site conditions
(e.g., areas without coverage, road closures/construction zones, temporary obstructions,
or images outside the specified time window), the final dataset contained 74,324 valid
panoramic images. These images adequately cover the main streets, various functional
zones, and diverse street design characteristics of Tianjin’s central urban and suburban
areas, ensuring spatial representativeness of the study area and comprehensiveness of
the data.
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0( e §

Y
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Figure 4. Example of the BSVIs collection process. (a) Street view images were collocated based on
OSM, and we established street view collection points at 50 m intervals.The green dots represent
the locations of these collection points. (b) Boxed area in (a). (c) Panoramic street view of the points
circled in (b).

This study employs the SegFormer-B5 model, based on the Transformer architecture,
to extract semantic features from the Street View Imagery (SVI) [47]. SegFormer-B5 is part
of the SegFormer series, specifically designed for efficient semantic segmentation tasks.
By predicting the category label for each pixel in the input image and incorporating a
pyramid pooling module to provide additional contextual information, SegFormer-B5
effectively avoids segmentation errors. This model has been widely adopted in various
urban studies [48,49]. The ADE20K dataset, which includes street view data from 50 cities
and annotations for 150 urban landscape object categories, was used as the training data
for semantic segmentation of street view images [50].

For the selection of subjective perceptions, this study draws on urban design the-
ory [51] and selects four design qualities: “1. enclosure,” “2. human scale,” “3. complexity,”
and “4. imageability.” In addition, we refer to the urban scene understanding from the Place
Pulse project [52] and add “5. safety” as a perceptual dimension, as it has been shown to
significantly influence residents’” behavior [16,53]. In total, five design qualities were chosen
to measure subjective perceptions of street scenes. Inspired by Place Pulse 1.0 [54], we
randomly sampled 300 SVIs to ensure coverage of both the six central urban districts and
the four suburban districts in Tianjin, as seen in Figure 4b, and established a crowdsourced
visual survey platform. Participants could choose a preferred photo from two randomly
selected SVIs and answer questions such as “Which place has a better enclosure?” Each
question provided a clear qualitative definition; the evaluation process was double-blind,
with the geographic location of the images not revealed (Figure 5a). Since non-expert pedes-
trians may have a vague conceptual understanding of the five design qualities, this study
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involved participants with relevant training backgrounds to conduct pairwise comparison
assessments, in order to reduce measurement noise and ensure construct validity. A total
of 45 master’s-level urban design researchers participated (26 males, 19 females; average
age = 24). Participation was voluntary and anonymous, with informed consent obtained
prior to participation. No personally identifiable information was collected. The TrueSkill
Bayesian scoring system was used to convert pairwise votes into ranking scores. This
system generates scores for winners and losers after each comparison, and standardizes the
scores to a 0-1 range. The results from the 300 SVIs were used to construct and evaluate
the perceptual prediction model [55,56]. Furthermore, the dataset achieved a passing
rate of over 75%, indicating good internal consistency of the manual ranking process.
Each SVI was compared between 20 and 36 times on average (Figure 5c), and a total of
4321 pairwise ratings were collected (Figure 5d). Compared to similar studies, the results are
reliable [55,56].

(€) Q1: Enclosure Q2: Human Scale Q3: Complexity Q4: Imageability Qs: Safety
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Figure 5. Collecting perceptions. (a) Online survey system. (b) 300 Samples. (c) High/low score
examples. (d) Score distribution histogram, with blue bars representing the frequency of each score
level. The green and red lines indicate the mean and median scores.

3. Methodology
3.1. Housing Price Models

The Hedonic Pricing Model (HPM) conceptualizes housing as a heterogeneous good,
with its price determined by three main attributes: structure, location, and neighborhood
attributes. Structural attributes describe the physical characteristics of the property itself
(e.g., building area, age, building type). In empirical analysis, it is necessary to include
structural attributes as control variables in the model to ensure that the effects of the street
environment are more reliably identified. Location attributes refer to the geographical
position of the property within the city, reflecting accessibility and spatial advantages.
Neighborhood attributes reflect the accessibility of essential facilities and services around
the property. In this study, recognizing the growing importance of street environment
quality and perceptual experiences in urban research, we extend the HPM framework.
Although subjective perception scores and objective view indices are considered part of
the neighborhood attributes, in order to more systematically assess the impact of street
environment quality on housing prices, we classify them into a new attribute group,
referred to as STRE. The STRE group captures the public interface along streets through
SVI, with its exposed subjects not only including residents but also through-travelers
(e.g., bus passengers, cyclists, and commuter drivers). This group reflects both residential
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experiences and the influence of high-frequency exposure on price formation. The HPM is
extended as shown in Equation (1).

PRICE = & 4 B1STRU + B,LOCA + B3NEIG + B4STRE + ¢ (1)

where a represents the constant term; 81 to B4 represent the attributes of structural (STRU),
location (LOCA), neighborhood (NEIG), and street environment perception (STRE); and ¢
represents the error term.

To assess the independent explanatory power of each type of variable on housing
prices, we first include the five groups of variables separately in individual OLS models
for preliminary testing. It should be noted that OLS theoretically assumes the error term
is independently and identically distributed, with no spatial correlation. However, in ur-
ban spatial data, this assumption is often violated due to spatial dependence and spatial
heterogeneity, which may lead to biased coefficients and distorted significance tests [57].
Nevertheless, OLS is still widely used as the starting model, serving three main purposes:
(1) OLS provides a benchmark framework for comparing subsequent spatial regression
models; (2) Moran’s I and Lagrange multiplier tests, calculated from the OLS residuals, pro-
vide theoretical justification for introducing spatial interaction terms; and (3) OLS is simple
and efficient, allowing for the preliminary identification of key factors, guiding variable
selection, and offering early predictions of potential multicollinearity or specification issues
in spatial regressions. To avoid multicollinearity interfering with regression results, we
conducted a Variance Inflation Factor (VIF) test and excluded variables with a VIF value
exceeding 10 and weak explanatory power [58]. Next, a baseline model was constructed us-
ing structural, location, and neighborhood attributes, with insignificant variables (p > 0.05)
removed, in order to measure the explanatory power of the traditional HPM framework
on housing prices. For instance, the “distance to subway and bus stations” was removed
due to its weak explanatory power and high correlation with neighborhood attributes.
Based on the baseline model, the five types of subjective perception scores and the seven
objective view index indicators, classified according to urban morphology, were added to
systematically compare the explanatory power differences of street environment quality
in housing price modeling. To detect spatial effects, Moran’s I and Lagrange multiplier
tests were performed on the OLS residuals to verify the spatial autocorrelation and spatial
dependence of the residuals.

3.2. Geographical-XGBoost

Geographically Weighted XGBoost (G-XGBoost), as proposed by Grekousis Grekousis [59],
is used in this study to address the limitations of Geographically Weighted Regression
(GWR) and its semi-parametric extension (SGWR). Although GWR and SGWR have sig-
nificant advantages in revealing spatial non-stationarity of variables, they rely on linear
assumptions and struggle to capture nonlinear relationships and higher-order interactions,
which limits their ability to handle complex spatial relationships [59]. To overcome these
limitations and capture both the overall trend of housing price determinants and local spa-
tial heterogeneity, this study adopts the G-XGBoost model, which combines the nonlinear
modeling capabilities of XGBoost with the local regression mechanism of geographically
weighted modeling. By introducing spatial weights, constructing local sub-models, and in-
tegrating global and local prediction frameworks, G-XGBoost effectively models the spatial
heterogeneity of feature-response relationships. In G-XGBoost, the traditional XGBoost
model is used as the global model to capture the overall nonlinear trend of housing prices.
The model improves predictions by adding trees iteratively in a “tree-by-tree” manner:
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in each round, a new regression tree f; is learned to minimize the error of the current
prediction. The training objective is given by Equation (2):

N
'~ L[+ 1] + 08 @

where g; represents the direction and magnitude of error change when adjusting the
prediction for sample j (first-order information), h; reflects the curvature of the error surface
(second-order information), f; is the output increment of the new regression tree in the
current round, and Q(f;) is the regularization term (to prevent overfitting by limiting
the number of leaves T and the leaf values). After multiple iterations, the global model’s
prediction is represented as the sum of several trees, as shown in Equation (3):

P = ka freF 3)

where ]}igl is the global prediction for sample i, f; is the k-th CART regression tree, K is the
total number of trees, and F is the set of all possible regression trees. The global model is
estimated without spatial weights to capture the overall nonlinear relationship at the city
scale and serves as the benchmark for subsequent local (geographically weighted) modeling
to capture spatial heterogeneity. In this unified optimization framework, spatial kernel
weights (w;; > 0) are used to adjust sample contributions to reveal spatial heterogeneity. G-
XGBoost builds local models within the neighborhood of each spatial unit i, and the optimal
bandwidth b is selected via cross-validation (CV). Using wj; as instance weights, the first-
and second-order terms of the standard XGBoost objective Equation (2) are introduced to
derive the local objective function, as seen in Equation (4):

1

1
£ =} |8j wij - filx) + 5k wi - fE(x)) | +Q(f) @
j=1

where g; and /; are the first- and second-order gradients, and fi(x;) is the prediction of
the t-th regression tree for sample j. The regularization term Q(f¢) is included to prevent
overfitting. This weighted second-order objective function is isomorphic to the standard
XGBoost model: the solution method remains unchanged, except that the summation over
samples is replaced by a spatially weighted summation (which degrades to global XGBoost
when w;; = 1). The optimal leaf values and split gains for the local tree are then given by
Equation (5):

. YjeT Wij 8

wh = - = 12 Gain =
! A+ Ljez wijh;

2 2 2
1( G | G G 5
2\A+H, " A+Hg A+Hyp

where Gy = Yic()wij &j, Hi) = Lje(.) wijhj. Optionally, to enhance comparability be-

tween dlfferent nelghborhood scales, } ic \r(j) wij = 1 (row normalization) can be applied.

When w;; = 1 (or the neighborhood covers all samples), Equation (4) degrades to the

global XGBoost objective and solution process. Unlike the original XGBoost, G-XGBoost

embeds spatial weights directly into the gradient calculations, making the model focus

more on nearby samples that contribute more to prediction errors during training. Finally,

G-XGBoost dynamically integrates global and local predictions using a weighted coefficient
€ [0,1], as seen in Equation (6):

N N Aol
P = g + (1-w) 9%,  a;€[0,1] 6)
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where &; can be a constant or adaptively adjusted based on local and global residuals: when
the local model error is large, «; is reduced to emphasize global information; conversely, «;
is increased to better capture fine-grained spatial heterogeneity.

To transparently identify the “Street View—-Housing Price” mechanism within a nonlin-
ear learning framework, this study combines the global G-XGBoost (Equations (2) and (3))
and local G-XGBoost (Equation (4)) with the SHAP (SHapley Additive exPlanations) in-
terpretability framework. This approach analyzes the contribution and impact of various
features on the model’s predictions, thereby enhancing the model’s interpretability and
comprehensibility. SHAP improves the transparency of “black-box” models by calculating
the marginal contribution of each feature to the model’s output, offering insights into
feature importance from both global and local perspectives. Each feature is treated as a
“contributor” to the prediction, with its value reflecting the positive or negative influence of
that feature on the prediction for a specific instance, providing an intuitive and quantifiable
explanation mechanism [60]. Following the method proposed by Li [60]. For data process-
ing, we split the dataset into 70% training and 30% testing sets to ensure model robustness
and generalization ability. During the training phase, we used nested cross-validation
combined with grid search to select key hyperparameters for the global G-XGBoost model,
thereby reducing overfitting and improving generalization performance. Subsequently,
adaptive kernels were used to systematically search for the optimal bandwidth within a
given range and fix it at the best value. Finally, we trained the local models using spatial
weights and a weighting strategy with variable strength coefficients.

The local G-XGBoost model introduces spatial weights when calculating feature im-
portance, which results in a weighted correction of XGBoost’s “gain” metric, yielding
spatially weighted feature importance. This allows us to quantify the contribution differ-
ences of each feature across different locations. Unlike the traditional parametric linear
framework of Geographically Weighted Regression (GWR), the local model of G-XGBoost
is a non-parametric tree ensemble: for each spatial location, a set of local tree structures is
fitted under a given bandwidth and weight. The prediction function consists of a piecewise
nonlinear combination of multiple trees. Therefore, this framework does not generate
linear coefficients and cannot directly produce a “coefficient map” like GWR. To bridge this
interpretative gap, we adopt SHAP as a unified interpretability layer: it precisely quantifies
the positive or negative marginal contribution of each feature to the prediction at the
single-sample level, and spatial visualizations are generated based on these contributions.
The Shapley value for local G-XGBoost at each sample’s geographic location i is calculated
as Equation (7), and its spatial visualization results replace the regression coefficient map
of the traditional GWR model. Compared to traditional feature importance metrics, SHAP
has the advantages of consistency and additivity. It not only reflects the relative importance
of features in the overall model but also reveals the local effect differences of these features
across different geographic locations.

_ LkeN(s) Wek £ (x)
LkeN (s) Wsk

P
Yo (x) = s + Y957, o @)
j=1

In the local model at location s, the prediction for sample i is the sum of the “local
weighted baseline” ¢y and the local SHAP contributions of each feature, where ¢ is
the weighted average of the local predictions f1°°(x;) using neighborhood weights w.;.
To further reveal spatial heterogeneity and nonlinear contributions within the city, we
calculate the Shapley values at the sample level {¢;;} on the global G-XGBoost model
(Equations (2) and (3)) and perform comparisons at the regional level: we calculate the
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regional importance for the six central urban districts and the four suburban districts,

as shown in Equation (8):

1
Imp i =

o5 ®

Equation (8) defines the “regional importance” metric: for region (or sub-sample) 7,
we take the absolute value of the global SHAP values 4)5151) of feature j for all samples i
in region r and average them to obtain the average marginal impact of that feature on
the prediction within the region. This quantifies the relative strength and ranking of the
dominant factors in different regions, thus identifying inter-regional differences in the
“Street View—Housing Price” mechanism. Further, to identify nonlinear marginal effects
and their potential thresholds, we visualize and test the dependency relationship between
(xij, ¢ij) across the entire region, thereby characterizing the nonlinear response of feature
value changes on prediction contributions.

3.3. Subjective Perception Modeling

The training data for the perception model comprise 300 SVIs obtained from an on-
line visual survey, with five ranked perception scores serving as labels and view indices
extracted from street view images as explanatory variables. The dataset was split into
training and test sets using an 80/20 split [61]. Among tree-based models, this study
adopts the Random Forest (RF) algorithm, as previous research has demonstrated its high
predictive accuracy and robustness in urban scene perception modeling [62]. For exam-
ple, Yao et al. [63] successfully employed an RF model to fit and predict expert-assessed
perception scores, achieving favorable results. Following this approach, the present study
trains a separate RF model for each subjective perception category. Model performance is
evaluated using the coefficient of determination (R?), mean absolute error (MAE), and root
mean square error (RMSE). Following the framework proposed by [64], an MAE within
10% of the range of the training data is considered indicative of good predictive ability
Equation (9), whereas an error exceeding 25% suggests that the model or data may require
re-evaluation (Equation (10)). The best-performing model is then used to predict subjective
perception scores for the remaining 74,324 unrated SVIs and to calculate the average per-
ceived score for all SVIs within a 1 km radius (equivalent to a 15 min walking distance) of
each residential location.

MAE < 0.1 x trainingsetrange, AND, MAE + 3 x std.dev. ©)

< 0.2 X trainingsetrange

MAE > 0.15 X trainingsetrange, OR, MAE + 3 x std.dev. (10)
> 0.25 x trainingsetrange

To assess the relative importance of different street scene features in prediction, we
employed the Gini Importance (GI) index to quantify each feature’s contribution within
the Random Forest model, computed using the Scikit-learn library. Based on the objective
view indices from the perception model training results and the GI values of subjective
perceptions, the top 20 feature categories were aggregated into seven urban morphological
indicators, which were subsequently used as explanatory variables. The proportion for a

single category was calculated as follows in Equation (11):

YLy Areagp),

Vovj =
m
/ i=1 Areatotali

x 100 (11)
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where Area,,;, denotes the number of pixels corresponding to a specific object (e.g., build-
ings, sky, or trees) in the i-th street view image, obtained via a deep learning-based semantic
segmentation algorithm; Area,,,, represents the total number of pixels in the entire image;
and m is the total number of SVIs.

Given that subjective perceptions may exhibit strong intercorrelations—for instance,
Zhang et al. [65] found that "repression-safety" and "beauty—wealth" perceptions are highly
correlated—we calculated the Pearson correlation coefficients between the five subjective
perception scores and the seven morphological indicators to identify and mitigate multi-
collinearity. In selecting explanatory variables for the HPM model, variables with strong
correlations and high variance inflation factors (VIF) were excluded to avoid multicollinear-
ity in the regression analysis. Finally, to validate the reliability of the results, we randomly
selected four SVIs and manually inspected their original images, segmentation outputs,
and corresponding score distributions [66,67].

4. Results
4.1. Modeling and Spatial Analysis of Street Perceptions

Table 2 shows the Gini Importance of 30 objective view indices for five perceptions
in training the perception prediction model. Combining the outputs of the perception
model with urban morphological theory [68], it is evident that not all visual elements have
a significant impact on perception scores. Therefore, based on theGini Importance ranking
(Figure 6a), we selected the top twenty most explanatory visual elements and classified
them into seven street view spatial groups: Core Building (CoreStruct_A), Street Space
(StreetSpace_B1), Traffic Flow (TrafficInfra_B2), Vegetation (Vegetation_C1), Open Nature
(OpenNatural_C2), Street Furniture (StreetFurn_D), and Architectural Details (ArchDe-
tail_E). These indices were then incorporated into the HPM model, along with subjective
perception scores, to compare their explanatory power on housing prices. In the usage
context, StreetSpace_B1, TrafficInfra_B2, CoreStruct_A, and ArchDetail_E primarily serve
as “corridor-side” exposure elements, while Vegetation_C1, OpenNatural_C2, and Street-
Furn_D carry signals related to neighborhood livability and travel comfort. Together, they
provide explanatory value for the experiences of both residents and through-travelers.
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Figure 6. Gini Importance and correlation analysis. (a) Important features in predicting five subjective
perception scores. (b) Pearson correlation analysis of subjective perception scores. (c) Pearson
correlation coefficient of the 7 objective indicators.
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Table 2. Data summary of (a) view indices and (b) Gini Importance.
(a) Descriptive Summary (b) Gini Importance
Sort I\I‘,l 1;:2\)7( Mean Std. Enclosure HSuC I:lzn Complexity Imageability  Safety
1 Building 15.7% 13.6% 0.28 0.27 0.22 0.24 0.26
2 Sky 31.1% 10.9% 0.23 0.24 0.1 0.12 0.21
3 Earth 1.9% 5.7% 0.08 0.07 0.1 0.09 0.02
4 Car 7.2% 4.7% 0.07 0.09 0.1 0.11 0.08
5 Sidewalk 2.4% 5.0% 0.05 0.06 0.05 0.04 0.05
6 Person 0.7% 0.3% 0.02 0.06 0.3 0.4 0.01
7 Minibike 0.0% 0.2% 0.02 0.03 0.02 0.01 0.00
8 Fence 3.0% 4.2% 0.03 0.04 0.02 0.02 0.03
9 Road 28.3% 9.2% 0.02 0.02 0.04 0.07 0.10
10 Skyscraper 28.3% 9.2% 0.05 0.03 0.02 0.02 0.03
11 Tree 5.8% 6.2% 0.02 0.04 0.07 0.02 0.09
12 Ashcan 0.0% 0.1% 0.02 0.01 0.01 0.00 0.01
13 Bicycle 0.0% 0.2% 0.01 0.01 0.02 0.03 0.01
14 Streetlight 0.0% 0.01% 0.02 0.01 0.02 0.00 0.01
15 Signoboard 0.2% 0.6% 0.01 0.01 0.00 0.01 0.01
16 Grass 0.4% 1.5% 0.04 0.01 0.02 0.01 0.02
17 Wall 0.8% 3.2% 0.01 0.00 0.01 0.01 0.02
18 Bridge 0.7% 3% 0.00 0.00 0.00 0.01 0.01
19 Plant 0.7% 2.0% 0.00 0.00 0.00 0.00 0.01
20 Awning 0.0% 0.1% 0.00 0.01 0.00 0.01 0.01
21 Van 0.0% 0.3% 0.00 0.01 0.00 0.01 0.00
22 Railing 0.0% 0.4% 0.00 0.00 0.00 0.00 0.00
23 Mountain 0.0% 0.1% 0.00 0.00 0.00 0.00 0.00
24 Fountain 0.0% 0.0% 0.00 0.00 0.00 0.00 0.00
25 Column 0.0% 0.1% 0.00 0.00 0.00 0.00 0.00
26 Ceiling 0.1% 2.2% 0.00 0.00 0.00 0.00 0.00
27  Windowpane 0.0% 0.0% 0.00 0.00 0.00 0.00 0.00
28 Chair 0.0% 0.0% 0.00 0.00 0.00 0.00 0.00
29 Sculpture 0.0% 0.0% 0.00 0.00 0.00 0.00 0.00
30 Booth 0.0% 0.0% 0.00 0.00 0.00 0.00 0.00

Figure 7 presents the validation results on randomly selected SVI samples. Different
SVIs exhibit distinct perception scores and view indices, confirming the accuracy of various
visual elements in street scene perception. The first and third images show high “enclosure”
scores when CoreStruct_A scores are high, while the second and fourth images display
significant “safety” differences, more clearly influenced by the combined effect of “Open
Nature” (OpenNatural_C2) and “Traffic Flow” (TrafficInfra_B2). The last three images
perform similarly in human scale and imaginability dimensions, or are related to the “Street
Space” (StreetSpace_B1) structure. Analyzing all four images, the average scores and
variance increase with higher “enclosure” and “safety” scores, as shown in Figure 7c,d.
The results indicate that well-defined perception dimensions, particularly “enclosure” and
“safety,” show higher distinguishability and lower prediction error in our model. This
may reflect stronger preferences in the visual assessments of residents and street users.
Corridor-side elements (such as clearer sightlines and more stable enclosure) provide more
discernible safety and predictability cues for through-travelers, thereby influencing their
experience and evaluation across street segments.

The specifications of the perceptual prediction model and the prediction performance
for each perceptual dimension are presented in Table 3. The results show that the MAE is
lowest for “enclosure” and “safety,” suggesting that these two perceptual dimensions are
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easier for raters to recognize. Their smaller scoring variances contribute to higher model
accuracy [65]. This finding is partly consistent with [63], which reported that “Beauty”
and “Boredom” exhibited the lowest prediction accuracy due to larger scoring differences.
Overall, the models achieve strong predictive accuracy. The coefficient of determination
(R?) exceeds 0.50 for all five perceptual dimensions, representing a substantial improvement
over the 0.21-0.37 reported in [25]. Under the 0-1 standardized scoring system, the MAE
of each model ranges from 0.07 to 0.10, with errors falling within an acceptable range.
Referring to the error tolerance framework proposed by [64], the “enclosure” dimension
approaches the “Good” threshold (R? > 0.80), indicating high predictability. In contrast,
“imaginability” and “human scale” show lower accuracy, suggesting greater difficulty in
prediction. This may be attributed to the abstract nature of these perceptual constructs,
which makes their conceptual boundaries harder to define. Although none of the five
perceptual models fully meet the “Moderate” standard in the error tolerance framework,
their accuracy is already comparable to models developed with large samples in prior
studies, such as [55].
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Figure 7. (a) Original SVI sample, (b) semantic segmentation results, (c) predicted subjective percep-
tion scores, and (d) aggregated objective perspective metrics. The radar chart displays scores and
perspective metrics on a scale from 0 to 1, from the inside to the outside.

Table 3. Performance and parameters of Random Forest models across perceptual dimensions.

. Std. Estimators Min Split Max Feature Roy [64]
Perception R? MAE RMSE Dev. (Bootstrap) (Lea?) (Depth) (2)(,)16)
Enclosure 0.79 0.0789 0.0953 0.1694 300 (False) 2(1) sqrt (20) Moderate
Human Scale 0.63 0.0990 0.1109 0.1555 100 (True) 5(2) sqrt (10) Bad
Complexity 0.67 0.0955 0.1183 0.1700 100 (False) 10 (1) sqrt (10) Moderate
Imageability 0.53 0.0911 0.1144 0.1765 200 (False) 2 (1) sqrt (30) Bad
Safety 0.70 0.0833 0.1218 0.1754 100 (True) 2(1) sqrt (10) Moderate

Note: Roy (2016) [64] classifies models with R? > 0.65 as Moderate, and R? > 0.80 as Good. Only Enclosure is
close to the “Good” threshold but does not meet it.

According to the Pearson correlation matrix results for the seven objective street
scene structural features in Figure 6¢, most groups exhibit significant positive correla-
tions (p < 0.001). In particular, the correlation coefficients between “CoreStruct_A” and
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“StreetSpace_B1” and between “CoreStruct_A” and “Traffic Infrastructure” (TrafficInfra_B2)
reach 0.87 and 0.86, respectively, indicating that the skeletal features of urban space are
strongly interlinked within the visual landscape. This is likely because the primary ele-
ments forming the basic framework of urban space—such as buildings, roads, sidewalks,
vehicles, and pedestrians—tend to co-occur and co-distribute, thereby forming the back-
bone of street scene structures. By contrast, vegetation (Vegetation_C1), open natural areas
(OpenNatural_C2), and street furniture (StreetFurn_D) show weaker correlations with the
main structural components (r < 0.51), reflecting their greater spatial independence and
distinctiveness. Architectural details (ArchDetail_E) display the lowest correlations with
all other categories, primarily appearing as independent visual features at the structural
detail level. Although their overall weight is relatively small, they may hold unique value
in enhancing perceptual dimensions such as recognizability.

The spatial distribution of the seven objective street scene features (Figure 8) collec-
tively shows a spatial gradient that follows a “compact-center, loose-periphery” pattern.
The six central urban districts generally contain high-value clusters of core structures (Core-
Struct_A), traffic flow (TrafficInfra_B2), street space (StreetSpace_B1), and architectural
details (ArchDetail _E), particularly along the continuous belt spanning Heping, Nankai,
and Hexi, as well as the corridor of the Hai River. These high-value zones correspond
to areas of high-density building fabric, continuous street walls, historically significant
architectural ensembles with rich facade details, and nodes of intense traffic activity. By
contrast, the four suburban districts primarily exhibit high-value clusters of vegetation (Veg-
etation_C1) and open natural areas (OpenNatural_C2), which are extensively distributed
along ecological corridors and in low-density residential areas. Street furniture (Street-
Furn_D) reaches high values in localized areas along major thoroughfares and gateway
nodes, while in most other areas it serves primarily functional rather than decorative roles.
Core structures (CoreStruct_A) and traffic flow (TrafficInfra_B2) remain generally low in
the periphery, with only localized high-value clusters emerging around district centers and
transportation hubs.

Based on the correlations between subjective perceptions and spatial patterns, signif-
icant positive relationships were observed among the five perception dimensions over-
all (Figure 6b). In particular, the correlations between “enclosure-safety” (r = 0.85),
“human scale-complexity” (r = 0.81), and “recognizability—safety” (r = 0.82) are espe-
cially pronounced, suggesting that certain perceptions may be driven by similar spatial
environmental factors [25]. By contrast, relatively weaker correlations, such as “com-
plexity—recognizability,” suggest divergences in how these dimensions are understood.
The strong interrelations between perception dimensions also expose blurred conceptual
boundaries, highlighting the need for further theoretical refinement to reduce semantic
ambiguity in subjective perception measurement. Figure 9 illustrates the spatial distribu-
tion of subjective perceptions across the study area. The six central urban districts exhibit
high-value core zones across all five perceptual dimensions, whereas the four suburban
districts display generally lower levels, with improvements only in specific new district
centers, industrial parks, and recently developed residential areas. This differentiation
closely aligns with the spatial patterns of objective features: the mature street networks,
functional mix, and historical character of the central districts contribute to higher posi-
tive perceptions, while the low density, fragmented land uses, and diffuse boundaries of
peripheral districts constrain perceptual improvements.
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4.2. Spatial Hedonic Model Results

Figure 3a,c demonstrates the pronounced spatial clustering of housing prices. At both
the apartment unit and community levels, prices follow a spatial gradient that declines
with increasing distance from the Central Business District (CBD). Moran’s I reaches 0.78
(p < 0.001), indicating strong positive spatial autocorrelation, with high- and low-priced
residential areas clustering together. The LISA map (Figure 3d) further reveals that high-
priced zones are concentrated within the inner ring and near the CBD, whereas low-priced
areas are densely distributed beyond the outer ring.

In the spatial context outlined above, we first incorporate structural attributes, location
attributes, and neighborhood attributes into the initial OLS regression model to construct
the baseline model. The baseline model explains 54% of the price variation. Building
on this, we further incorporate five types of subjective perception variables (Model 1)
and seven types of objective street view feature indicators (Model 2) into the regression
framework to examine their marginal effects in improving housing price modeling. Table
4 reports important regression diagnostic metrics. In terms of regression performance,
Model 1 and Model 2 increase R to 0.550 and 0.577, respectively, improving by 0.011 and
0.038 compared to the baseline model. This suggests that incorporating both subjective
and objective street measures enhances the predictive power of the model. It shows that
both types of street view indicators contribute to improving the model’s explanatory
power, with a larger improvement from the objective features, consistent with findings
from existing health and walkability studies [69]. It is worth noting that objective street
features often correspond to visible /accessible exposure for commuters in corridors (e.g.,
StreetSpace_B1, TrafficInfra_B2, and Vegetation_C1), and the explanatory power gain they
provide is linked to the impact of the surrounding environment on the experience of
through-travelers, which also enters the price formation process.

To better capture this spatial non-stationarity and enhance prediction accuracy, this
study applies the Geographical-XGBoost (G-XGBoost) model. Separate global models
were constructed for the six urban districts and the four suburban districts, alongside both
global and local models for the full study area. Table 5 reports their predictive performance.
Among the global models, the urban model (Model 1) outperforms the suburban model
(Model 0), with R? values of 0.710 and 0.598, respectively. The combined global model
(Model 2) achieves an R? of 0.763, though with relatively high MAE and RMSE values.
In contrast, the local model (Model 3), which employs an adaptive kernel to estimate each
observation using the 177 nearest neighbors, fully reflects spatial heterogeneity. Its overall
r? reaches 0.781, substantially surpassing all global models, underscoring the advantage of
explicit spatial modeling for predictive performance.

Table 4. Regression performance and diagnostic results across different models.

Model 0 Model 1 Model 2
Attributes Baseline Subjective Objective
Method OLS OLS OLS
Adjusted R? (Pseudo R?) 0.539 0.550 0.577
Moran’s I on Residual (p-value) 0.01 *** 0.01 *** 0.01 ***
Robust LM (lag) 601.947 *** 576.633 *** 648.214 ***
Robust LM (error) 2174.761 *** 2119.758 *** 1944.270 ***

Note: p values are shown in parentheses; *** < 0.01.
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Table 5. Predictive performance of XGBoost Global and local models based on Geographical-XGBoost.

Model 0 Model 1 Model 2 Model 3
Attributes Suburban Central Urban Urban Core Urban Core
Ring Districts  Districts (10 Districts) (10 Districts)
Method Global Model Global Model Global Model Local Model
Test R2 0.598 0.710 0.763 0.781
MAE (RMB) 918.838 3494.125 6191.972 -
RMSE (RMB) 2277117 6957.690 10,139.574 -

Note: Model 3 is a local Geo-XGBoost model trained per observation; therefore, aggregate MAE and RMSE are
not applicable.

4.3. Spatial Heterogeneity and Nonlinear Effects in Housing Price Drivers

Given the significant spatial autocorrelation and non-stationarity of the OLS residuals,
we further employ G-XGBoost for localized modeling and use SHAP metrics to spatially
characterize the heterogeneity of price determinants. Figure 10 illustrates the spatial distri-
bution of positive and negative local SHAP contributions of each variable to housing prices
across the entire city. To facilitate understanding of the complex visualization, we divide
the maps into four conceptual groups: Subjective, Objective, Location, and Neighborhood,
and rank them according to SHAP values from high to low. All panels use a unified color
scale (warm colors for positive, cool colors for negative). To ensure the readability of the
visualization, the main text focuses on presenting the 15 “key variables,” covering four
dimensions and forming a complementary information structure. The complete maps
for other variables (Hospital_n, Recreation_n) are provided in the Appendix A Figure Al
for reference. Overall, for the Subjective dimension (Figure 10a), Enclosure, Complexity,
Imageability, HumanScale, and Safety show larger positive patches in the core urban areas
such as Heping, Nankai, and Hexi, while the positive patches in the peripheral areas are
relatively scattered. In the Objective street view dimension (Figure 10b), Vegetation_C1
predominantly exhibits positive patches in most urban areas. StreetSpace_B1 and TrafficIn-
fra_B2 show denser positive values around main roads and nearby nodes. CoreStruct_A,
OpenNatural_C2, and ArchDetail E appear with adjacent positive and negative patches
in certain areas, indicating differences in the contribution direction across regions. In the
Location and Neighborhood dimensions (Figure 10c), the spatial map of location attribute
variables does not show a simple gradient trend of “the farther from the center, the lower
the housing price.” The higher values of HubDist are mainly concentrated around sev-
eral transportation nodes and their adjacent street segments, forming localized hotspot
distributions. Positive hotspots for School_n are primarily found in the educational district
clusters in the core urban areas. The maps in the Appendix A show that Hospital n and
Recreation_n exhibit larger positive patches in the peripheral areas. The larger positive
patches appearing along the main corridors in the core urban areas can also be understood
as the market’s spillover reflection of more traveler-friendly and safer continuous street
segments for through-travelers. This spatial heterogeneity suggests that the same variable
characteristics in different regions may have entirely different impacts and marginal effects
on housing prices, reflecting the joint influence of social-spatial structures and market
demand differences on housing prices.
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Figure 10. Spatial Distribution of local SHAP Values for housing price determinants based on
G-XGBoost. (a) Subjective perception. (b) Objective street scene indicators. (c¢) Location and Neigh-
borhood attributes.

To further investigate this heterogeneity, G-XGBoost global models were trained
separately for the six urban and four suburban districts (see Table 5, Model 0, and Model 1).
The SHAP summary plot visualizes each variable’s importance, direction, and impact
distribution (Figure 11). Gray bars indicate the average contribution of each variable,
with SHAP values on the X-axis representing positive or negative effects, and features
sorted by importance on the Y-axis. Colors range from light yellow (low) to dark blue (high),
reflecting feature magnitudes. Considerable differences in feature rankings between the
urban districts (Figure 11b) and suburban districts (Figure 11a) suggest that homebuyers’
preferences vary markedly across regions.
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Figure 11. SHAP-based comparison of feature importance across different urban zones.

Regarding neighborhood and location attributes, notable contrasts emerge. Educa-
tional resources dominate in the six urban districts, with School_n ranking first (average
SHAP value 8203); its positive effects are concentrated in high-value samples, underscoring
the importance of education in core areas. By contrast, hospitals (Hospital_n) rank lowest
in the inner districts (SHAP values near zero), but third in the suburban districts, where
they exert stronger positive effects, highlighting the role of medical access in peripheral
housing markets. Commercial and recreational facilities (Recreation_n) rank mid-level
(10th) in urban districts but rise to seventh in suburban districts, reflecting greater concern
for lifestyle convenience among suburban buyers. The effect of distance to metro/bus
stations (HubDist) shows spatial duality: in the urban core, dense transit networks limit its
explanatory power, with SHAP values narrowly distributed (—2000 to 2000). In contrast,
the distribution in suburban districts is wider (—3500 to 3000), indicating that transport
accessibility remains important, though ranking slightly below medical and locational vari-
ables. This aligns with the daily commuting logic of through-travelers: in peripheral areas,
marginal improvements in hub accessibility more directly affect inter-district travel costs
and experiences, thereby reflecting in the price signals. Distance to the CBD (Distance_t)
ranks second in the urban districts, confirming its strong influence there; in suburban
districts, it remains stable as the dominant locational determinant.

For objective urban form and street scene characteristics, vegetation (Vegetation_C1)
ranks among the top five in both the six inner districts and the four suburban districts,
with average SHAP values of 4216 and 982, respectively. This shows that green cover-
age strongly boosts property prices across both regions. Within the inner districts, core
structures (CoreStruct_A, average SHAP value 3845), architectural details (ArchDetail _E,
2982), and street furniture (StreetFurn_D, 2541) also rank highly, suggesting that home-
buyers place greater emphasis on design aesthetics and the structural qualities of street
spaces. These variables display a wide SHAP value range (approximately —5000 to 8000),
with both positive and negative contributions. This pattern indicates a stratified response
from homebuyers to design details, including a potential backlash from over-design. In
the suburban districts, by contrast, the SHAP distributions for these indicators are more
concentrated (approximately —2000 to 3000), showing a “passing grade” effect: once a
certain threshold is met, a price premium is achieved, but additional improvements yield
diminishing returns. In the inner districts, Complexity and Imageability rank fifth (average
SHAP value 2316) and tenth (1245), respectively, indicating that perceived complexity and
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recognizability strongly affect property prices in the urban core. In the suburban districts,
subjective perception variables rank lower overall, except for HumanScale. Safety ranks
last (average SHAP value 86). This suggests that homebuyers and through-travelers in
peripheral areas are less sensitive to street view design and perceptual quality, with the
street view effect being more dependent on basic accessibility and functional conditions.
Overall, street scene features in the inner districts play a differentiated and decisive role in
shaping housing market outcomes, whereas, in the suburban districts, their influence is
supplementary, acting mainly through infrastructure and transit accessibility.

To further explore the nonlinear variation characteristics and potential threshold ef-
fects within different value ranges, the SHAP dependence plot in Figure 12 is plotted based
on the Geographical-XGBoost global model, as shown in Table 5, Model 2, systematically
illustrating how subjective perception features, objective street view characteristics, and lo-
cational and neighborhood attributes contribute positively and negatively to housing prices
at different value levels. This helps identify key turning points and nonlinear relationships
at the global scale. In this study, all subjective perception variables exhibit pronounced
nonlinear effects with clear thresholds (Figure 12a). Enclosure, HumanScale, and Safety
show near-zero contributions in the low-value ranges (<0.6), with SHAP values fluctuating
within 42000 CNY/m?. Once the feature values reach approximately 0.66, 0.68, and 0.64,
respectively, their contributions increase sharply (exceeding +8000 CNY/m?), reflecting the
strong positive effect of improvements in enclosure, human scale, and safety on housing
attractiveness. The enclosure, safety cues, and recognizability related to through-travelers
exhibit stronger positive and threshold effects on public transportation corridors (e.g.,
limited impact below 0.60, with a significant enhancement in the 0.64-0.68 range). Notably,
Enclosure reverses around 0.70, turning negative (about —4000 CNY/m?), possibly due to
a sense of spatial oppression caused by excessive enclosure. Imageability and Complexity
show negative effects in the low-value range (as low as —6000 CNY/m?), but rapidly shift
to strong positive contributions (around +10,000 CNY /m?) after their respective thresholds,
indicating that enhanced recognizability and design complexity can substantially increase
housing desirability.

By contrast, objective street scene variables display more diverse threshold patterns
(Figure 12b). CoreStruct_A is negative below 0.54 (-8000 CNY/m?) but rises steeply
above this threshold to +12,000 CNY/m?, highlighting the strong positive correlation
between building density and property prices. StreetSpace_B1 shows relatively modest
effects overall (2000 CNY/m?), whereas TrafficInfra_B2 exhibits steady positive growth
in the mid-to-high range (up to +9000 CNY/ mz), confirming the significant impact of
improved transport accessibility. Vegetation_C1 maintains a consistently positive con-
tribution across all ranges (+5000 to +7000 CNY /m?), underscoring the importance of
urban greenery. In contrast, OpenNatural_C2 and ArchDetail_E shift from positive to
negative at high values (down to —6000 CNY/m?), suggesting that excessive proportions
of open sky, bare ground, or wall surfaces may reduce housing values, consistent with
prior findings [17]. StreetFurn_D shows a marked positive effect in the low-to-mid range
(+4000 to +6000 CNY /m?), after which the effect levels off.

Locational and neighborhood attributes (Figure 12c¢) also reveal strong nonlinear pat-
terns. Distance to the CBD (Distance_t) has a clear threshold effect: within shorter distances
(<7000 m), SHAP values remain above +10,000 CNY/m?, but around 7050 m, they shift
sharply downward, becoming strongly negative (as low as —20,000 CNY/m?). Distance
to the nearest metro or bus hub (HubDist), the number of hospitals within 1 km (Hospi-
tal_n), and the number of recreational /commercial facilities within 1 km (Recreation_n)
all exhibit relatively small fluctuations (within £2000 CNY/m?), suggesting that their
marginal influence is limited once certain thresholds are met (approximately 142.42 m,
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3 hospitals, and 13.88 facilities, respectively). By contrast, the number of schools within
1 km (School_n) shows a strong and sustained positive impact: SHAP values rise
steadily with increasing school counts, from about +5000 CNY/m? in the low range to
+15,000 CNY/m? at higher values, highlighting the crucial role of educational accessibil-
ity in driving housing prices. Compared to corridor-side street view features, HubDist,
Hospital_n, and Recreation_n primarily reflect neighborhood and service accessibility,
with limited direct relevance to through-travelers. In contrast, the significant and sus-
tained positive effect of School_n aligns more closely with the quality of life dimension for
residents (e.g., access to education and school commute convenience).
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Figure 12. SHAP dependence plots of housing price drivers of subjective perception, objective street
view, and neighborhood attributes to housing prices.

5. Discussion
5.1. The Impact of Street Design Quality on Property Prices

The adjusted R? values for OLS in Table 4 show that Model 2 (R?> = 0.577) improves by
2.7% compared to Model 1 (R? = 0.550), with objective indicators explaining more variance
overall than subjective indicators. This suggests that built environment factors have a
stronger explanatory power for housing prices, which is consistent with the findings of Qiu
etal. [26]. At the same time, OLS is constrained by the inherent limitations of global linearity
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and variable simplification [70]. In contrast, G-XGBoost captures nonlinear relationships
and variable interactions within a unified framework and reveals the differences in feature
importance across spatial units through local modeling. Previous studies also highlight its
advantages in housing price prediction and mechanism interpretation [59]. In this study,
Model 3 (local modeling of G-XGBoost) in Table 5 achieves an out-of-sample R? =0.781,
outperforming all global models, while the spatial structure of the residuals is significantly
reduced (see Table 4). This suggests that simultaneously incorporating nonlinearity and
spatial heterogeneity within a unified framework is the key source of improved explanatory
power, rather than simply model complexity [8].

For example, typical studies using the hedonic price model show that objective street
view features (or more broadly, the built environment) often have stronger explanatory
power compared to subjective perceptions [26], which is also confirmed by the OLS compar-
ison in this study, as shown in Table 4. However, three common limitations of traditional
approaches exist: first, in linear settings, non-monotonic relationships such as thresh-
olds, platforms, and reversals, as well as higher-order interactions, are “linearized” and
weakened; second, while GWR/SGWR relax spatial stationarity, they are still constrained
by linear links and are unable to capture nonlinear margins and non-additive relation-
ships [70]; third, introducing nonlinearity at the global level (tree models) while assuming
spatial homogeneity makes it difficult to capture local preferences and facility endow-
ment differences [8]. In the unified evidence framework of this study, these discrepancies
are reformulated as two testable phenomena: G-XGBoost, through nonlinear marginal
characterization (Figure 12), naturally reveals common reaction forms of street view el-
ements, such as thresholds, platforms, and reversals (e.g., the insensitivity of Enclosure,
HumanScale, and Safety in the low-value range, followed by gains after thresholds, and the
“under-design” range turning negative for Imageability and Complexity); second, it outputs
location-specific contribution distributions, visualizing the differences in the effects of the
same feature across different locations and explaining the “same object, different effects”:
in the core areas, complexity /recognizability over-design leads to marginal decline in the
context of high density and functional mix, while in the peripheral areas, the “satisfactory”
return occurs (benefits are gained once a threshold is reached, then decline afterward),
accompanied by a shift in the dominance of the “accessibility—facility” channel (core areas
benefiting more from educational accessibility, while peripheral areas expand in trans-
port/medical accessibility), and a sensitivity distance shift to the CBD (Figure 11). These
mechanized patterns align with the overall improvement in explanatory power observed
in Table 5 and corroborate the conclusions on street view capitalization [26], the limitations
of linear settings [70], and spatial effect heterogeneity [8].

The spatial consistency between subjective perceptions and objective street scene
metrics (Figures 8-10) indicates that the physical attributes of the built environment and
residents’ visual experiences are closely intertwined in shaping housing prices. Neverthe-
less, this “form—perception” synergy varies significantly across locations. In central urban
districts, high-value clusters of objective features such as core buildings (CoreStruct_A),
traffic flow (TrafficInfra_B2), and street space (StreetSpace_B1) strongly overlap with per-
ceptual dimensions such as enclosure, complexity, and imageability. This suggests that
high-density, interconnected, and functionally mixed street forms simultaneously struc-
ture the physical environment and enhance residents’ perceptions [15,26]. By contrast,
in peripheral districts, high-value clusters are more strongly associated with vegetation
(Vegetation_C1) and open space features (OpenNatural_C2), corresponding to perceptions
of safety (Safety) and human scale (HumanScale). This indicates that natural elements and
open spaces are the primary drivers of positive perceptions in low-density areas [17]. These
findings align with Xu’s [15] research, which showed that streets with clear spatial bound-
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aries and diverse land uses are often associated with higher perception scores, and that
such perceptions are significantly and positively correlated with housing prices.

The heterogeneous effects of subjective perceptions and objective street scenes on
housing prices (Figure 11) demonstrate that the influence of environmental elements is
strongly moderated by locational context and resident preferences. Street scene features
that are scarce and desirable in central districts may lose their appeal in peripheral areas
due to insufficient infrastructure or mismatched functions. For example, Yu [71] found
in Wuhan that in peripheral areas, weak transportation and public services substantially
diminish—and in some cases eliminate—the capitalization effect of landscape resources.
Similarly, this study finds that green coverage yields a strong housing price premium in
both regions, though with different magnitudes (4216 in inner districts and 982 in peripheral
districts), consistent with prior research. Russell [72], for instance, found that in Baltimore,
parks within half a mile generate a premium of 7.73-11.01%, while community-level open
spaces yield premiums of about 5.93%.

This study finds that street design quality results in “over-design” in the core urban
areas, while a “barely acceptable” effect is observed in the four surrounding districts.
Hamidi [73] notes that “while the recognizability and transparency of streets can enhance
property values, overly complex designs may have negative effects,” which provides
theoretical support for the phenomenon of “over-design leading to negative SHAP val-
ues” observed in the core urban areas. This finding also aligns with research on how
visibility and exposure influence risk perception and path choice, suggesting that in un-
familiar environments, increased interface complexity may raise information load and
reduce predictability [20]. For different users, this mechanism is particularly relevant for
through-travelers (pedestrians, cyclists, bus passengers, and drivers): they are less familiar
with the street segments and rely more on clear interface cues and continuous sightlines for
rapid recognition and path decision-making. In line with our SHAP spatial results, core cor-
ridors are more likely to exhibit negative contributions in the “complexity /recognizability”
high-value range, indicating that information saturation and decreased predictability under
travel exposure may pose adverse factors. Conversely, in peripheral corridors, nonlinear
thresholds indicate that once basic human-scale, lighting, and coherent cycling network
thresholds are met, marginal benefits are most significant, and further increases in deco-
rative complexity yield limited additional benefits. These differences provide empirical
evidence for “simplifying the interface information density of core corridors and improving
the basic elements of peripheral corridors.”

This study reveals that the effect of most street view features on housing prices is
not linearly increasing, but rather exhibits an optimal range and diminishing marginal
effects, which is also reflected in existing studies [74]. On the subjective perception level,
enclosure (Enclosure), human scale (HumanScale), and safety (Safety) have little significant
impact on housing prices at low levels, but once key thresholds are reached, they bring
about a noticeable price premium, reflecting the rigid demand of homebuyers for basic
perceptual quality. Furthermore, street cues related to “enclosure” and “safety” not only
benefit residents but may also improve the travel experience for through-travelers (such as
bus passengers and electric bicycle riders) by reducing perceived risk and cognitive load.
This conclusion aligns with existing studies on how street enclosure/safety and greenery
enhance walking and cycling comfort [20,75]. Therefore, enclosure/safety can be considered
priority design elements at the corridor level, with applicability across different user groups.
However, excessive enclosure may cause a sense of spatial oppression, consistent with
Hamidi’s (2020) conclusion that “excessive design complexity and recognizability can
reduce livability” [73]. Similarly, imageability (Imageability) and complexity (Complexity)
show negative effects at low levels, suggesting that inadequately designed street views
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may reduce market preference, with their positive effects only being realized once an
appropriate threshold is reached. Among objective street features, the premium effect of
core buildings (CoreStruct_A) is not significant when density is low, but once it exceeds
a certain threshold, its positive impact on housing prices significantly increases. On the
other hand, open natural spaces (OpenNatural_C2) and architectural details (ArchDetail_E)
have a positive effect at moderate levels, but when their proportions are too high, they
may lead to a decline in value due to a mismatch between function and demand. Notably,
vegetation coverage (Vegetation_C1) maintains a stable premium effect across its entire
range, consistent with a large body of empirical research on the capitalization effect of
urban greenery [76], showing that its value is not constrained by a threshold.

5.2. The Intertwined Effects of Factors Influencing Housing Prices

In this study, the impact of educational resources on housing prices demonstrates a
significant and robust premium effect, particularly in the core urban areas. The number
of schools within a 1-kilometer radius (School_n) has an average SHAP value of 7800
in the central six districts, ranking first among all variables. Its positive contribution is
concentrated in high-value samples, indicating that educational accessibility is the most
competitive public resource in the central areas. This finding is consistent with studies
in first-tier cities such as Beijing, Shanghai, and Shenzhen, suggesting that high-quality
educational resources are highly capitalized due to the school district system, enrollment
thresholds, and scarcity. Liu’s empirical study in Shanghai shows that a high-quality
elementary school can bring about a 15.6% housing premium, directly quantifying the
impact of education capitalization [77]; Zhou [78] further points out that school district
premiums in Beijing and Shanghai are approximately 8.1% and 6.5%, respectively, high-
lighting the significant value of educational resources in first-tier cities and emphasizing
the powerful driving effect of educational resources on housing prices in core areas. This
indicates that this capitalization mechanism is not limited to traditional first-tier cities like
Beijing, Shanghai, and Guangzhou, but is also applicable to rapidly developing emerg-
ing metropolises. In the central six districts, this premium effect not only reflects the
rigid demand for high-quality education from homebuyers but is also amplified by the
concentration of high-income families and families with school-aged children, further
increasing the price elasticity of educational resources. It is noteworthy that, unlike the
“enclosure” and “safety” cues discussed earlier (which can simultaneously improve the
immediate commuting experience for both residents and through-travelers along com-
muting corridors), educational accessibility primarily affects the long-term quality of life
and school district choice for residents, with a weaker association with through-travelers.
Therefore, we interpret the findings related to schools as a resident-oriented benefit chan-
nel, while enclosure and safety are considered corridor-level channels that apply across
different population groups. Together, they form complementary “long-term—short-term”
pathways [79]. In contrast, in the peripheral four districts, the importance of School_n
significantly decreases, and the overall supply of educational resources is insufficient,
with considerable quality variation. As a result, an increase in the number of schools
does not necessarily lead to an improvement in quality. At the same time, homebuy-
ers’ decisions in the peripheral areas are more dependent on transportation accessibility,
healthcare facilities, and commercial convenience, with educational accessibility relatively
lower in the decision-making priority. This finding is consistent with Liu [80] in Wuhan,
which indicates that in peripheral areas with inadequate transportation and public services,
the capitalization effect of educational resources significantly weakens or even disappears.

Beyond education, this study also reveals the “dual natur” of transportation ac-
cessibility, locational factors, medical facilities, and commercial/recreational amenities.
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In the six urban districts, where subway, bus, and medical resources are already satu-
rated, the marginal contributions of HubDist and Hospital_n to housing prices are limited,
as reflected by narrow SHAP fluctuations. In contrast, in the four suburban districts, their
influence expands considerably. This finding aligns with Jin’s research in Beijing [81], which
shows that in core areas with abundant transit and healthcare resources, these accessibility
indicators have limited explanatory power for price variation, whereas in peripheral areas
with weaker infrastructure, transportation and healthcare accessibility become primary
drivers of housing premiums. In the six inner districts, housing prices also show very high
sensitivity to distance from the CBD, ranking second in SHAP values, and decline signifi-
cantly with increasing distance. This result is consistent with the classic Bid-Rent Theory,
which posits that proximity to the city center drives higher land values [82]. Empirically,
Chen and Hao’s analysis of new residential data in Shanghai confirms that housing prices
decline as distance from the CBD increases, underscoring that locational advantage in core
areas remains a fundamental driver of housing price formation [11].

Taken together, housing prices are shaped by the interplay of locational advantages,
public service provision, and street scene quality. In core areas, educational resources,
proximity to the CBD, and high-quality street environments often co-occur, creating a
“bundling premium effect.” By contrast, in peripheral areas, weak infrastructure such as
limited transit and healthcare may diminish—or even reverse—the positive impact of
features like green space and open areas. This interdependence helps explain why certain
street scene variables shift from positive to negative contributions across regions, reflecting
the moderating influence of market demand and functional matching on the housing
price effect.

5.3. Implications for Urban Planning

This study provides an evidence-based foundation for urban planning from a mor-
phological perspective, suggesting that planning and design should integrate the compre-
hensive effects of street environments, building quality, and surrounding facilities. These
factors not only influence housing prices and residents’ livability but are also closely related
to urban sustainability. Furthermore, streets have cross-community passage attributes:
public transit passengers, cyclists, and through-traffic from other neighborhoods also use
these streets. Therefore, “corridor-side” cues such as enclosure and safety (continuous
street walls, transparent interfaces, clear sightlines, lighting, facade maintenance, and tree
cover) not only enhance residents” experience but also immediately improve the comfort
and safety of through-travelers, thus expanding the beneficiaries from homebuyers and
residents to a broader population. In terms of public service and opportunity distribution,
efforts should be made to promote balanced educational resources between the core and
peripheral areas: in peripheral areas, high-quality schools should be added, and transporta-
tion and public services should be improved to enhance residential attractiveness. At the
same time, attention should be paid to the over-capitalization of school district systems.
By optimizing school district planning and promoting educational equity, it is important to
avoid long-term price distortions and spatial inequality caused by resource monopolies.

This study identifies the “over-design” effect in street views within the core areas
and the “minimal” effect in the suburban areas. This finding suggests that urban design
should adopt differentiated strategies based on location: in core areas, the focus should be
on functional integration and moderate design complexity to avoid negative perceptions
caused by excessive decoration or high density; in suburban areas, priority should be
given to ensuring the basic quality and functionality of street views, providing residents
with a fundamental livable experience, and enhancing attractiveness through appropriate
greening and open space configurations. For policymakers, this means that urban land-
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scape optimization should establish a “best design range” based on location characteristics
to achieve a win-win scenario for both real estate value and residents” perceptions.This
study comprehensively compares the influence of subjective perceptions, objective street
indicators, neighborhood attributes, and location on housing prices, revealing their inter-
twined roles and practical significance in urban planning. It provides valuable reference
for real estate developers, policymakers, researchers, and urban planners. While subjective
street perceptions and objective street indices are not the ultimate determinants of housing
prices, they significantly influence them. Therefore, governments and decision-makers
should prioritize the design of street quality surrounding residential areas, particularly
within a 15 min walking radius, to enhance both the functionality and perceived quality of
street environments, thereby improving residents” quality of life and satisfaction with their
living conditions.

The results of this study provide researchers with a more comprehensive understand-
ing when analyzing urban heterogeneity patterns, helping to reveal the differences in
housing price determinants between cities. Researchers can more accurately identify the
conditions necessary for different housing price levels, providing theoretical support for
further urban housing price studies and policy formulation. For policymakers, this means
setting the “optimal design range” based on location characteristics: prioritizing passage ex-
perience and safety in street corridors, and prioritizing long-term quality of life and public
services in neighborhood areas, thereby achieving dual benefits of “immediate-long-term,
cross-group-resident” effects. It is recommended to establish regular impact assessments
(such as travel perception and satisfaction, cycling/walking usage rates and accident rates,
public transit waiting experience index, education accessibility and enrollment opportunity
indicators) to support design iteration and policy optimization in a closed loop. Finally,
this study reveals new directions for street design guidelines, particularly through the inte-
grated analysis of subjective perception scores and objective environmental features. Urban
designers and planners can more deeply examine individual perceptions of street envi-
ronments, thereby providing guidance for sustainable public transportation infrastructure
planning, urban micro-renovation, and vibrant, safe neighborhood design. By integrating
these factors, urban design can not only better cater to homebuyers’ preferences but also
enhance residents’ quality of life, promoting sustainable urban development.

5.4. Limitations and Potential Improvements

This study still has several limitations that need to be addressed in future work.
First, the analysis is based on correlation identification, and does not directly infer causal
relationships. This is because there may be bidirectional causality between housing prices
and street environments, or overlooked confounding factors (e.g., infrastructure investment
policies). Future research could incorporate methods such as instrumental variables and
natural experiments to enhance causal inference capabilities. The study is based on a case
study of Tianjin, and while it reveals the differences in the importance of housing price
determinants across different geographic areas, urban spatial heterogeneity is often more
complex and may be influenced by multiple factors such as historical, cultural, and policy
backgrounds. Therefore, a cross-city comparison should be conducted to validate the
robustness and generalizability of the conclusions.

Second, the perceptual evaluators mainly come from professional backgrounds such
as architecture, planning, and landscape design, and thus do not fully encompass the
perspectives of potential homebuyers. Moreover, the limitations of the current online
platform restricted the consistency check among evaluators. In the future, the evaluator
pool should be expanded and the crowdsourcing platform design optimized to improve
data representativeness and reliability.
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Third, while this study includes the number of schools within a 1000 m radius around
residential points (school_n) as a neighborhood attribute, and the results show its significant
positive impact on housing prices in the central districts, it does not fully address the
complexity of the concept of “school district housing” in Tianjin. It fails to reflect the
complexity of school district boundaries, school hierarchy, and enrollment policies, which
may have oversimplified the premium mechanism of school district housing. Future
research could incorporate administrative data on school districts and school quality
indicators to more precisely capture the role of educational resources in housing prices.

Finally, while the Geographical-XGBoost algorithm, as the core analytical tool of this
study, performs excellently in capturing spatial heterogeneity and nonlinear relationships,
it also has some limitations. On one hand, the construction of local models in Geographical-
XGBoost depends on spatial kernel functions, and the neighborhood parameters (such
as the k-value or bandwidth) are usually optimized through cross-validation methods.
However, the choice of bandwidth can still be influenced by data characteristics and the
parameter range, which may impact the stability and generalizability of the results. On the
other hand, large-scale geographic data processing incurs high computational costs and
relies heavily on high-quality training data and feature engineering. Future research could
explore better-supported weight functions and adaptive parameter selection mechanisms,
introduce high-performance computing to improve operational efficiency, and integrate
automated feature selection and dimensionality reduction methods to enhance model
robustness and interpretability, thereby further expanding its application potential in urban
spatial modeling.

6. Conclusions

This study integrates subjective street perception, objective visual elements, and
neighborhood-location attributes into the Geographical-XGBoost framework, which ac-
counts for both nonlinearity and spatial heterogeneity. It systematically compares the
comprehensive impact of street design quality and socio-economic factors on housing
prices in Tianjin, and examines the differences in the importance and interplay of hous-
ing price determinants across different geographical spaces. Compared to the traditional
Hedonic Pricing Model (HPM), the inclusion of both subjective and objective street view in-
formation significantly enhances explanatory power and transforms the concept of a “good
street” from a conceptual judgment into quantifiable design clues, such as the effective
ranges and marginal effects of enclosure, safety, human scale, and recognizability.

The results of this study indicate that most street environment variables have a positive
relationship with housing prices, which aligns with the preferences of Chinese homebuyers
for good street landscapes, pleasant scales, and open spaces [83], emphasizing the impor-
tance of considering street environment quality in housing value assessments. Enclosure,
human scale, and safety contribute nearly zero to housing prices at low levels, but show
significant gains once a threshold is surpassed, with excessive enclosure potentially leading
to negative effects. These findings point towards the “moderately optimal” design princi-
ple. On top of this mechanism, a clear core—periphery contrast emerges spatially: the core
area often features the co-occurrence of “core buildings, street space, and transportation
infrastructure” with “complexity and recognizability,” while the peripheral area primarily
couples “greening, open spaces, safety, and human scale.” Further, the over-design of
“complexity and recognizability” in the core area is more likely to impose recognition
burdens and path uncertainty on through-travelers (pedestrians, cyclists, bus passengers,
and drivers), while residents, due to their familiarity, are less sensitive to these factors. This
difference explains the divergent effects of the same design on different users. Therefore,
in practical terms, differentiated “corridor—district” implementation pathways can be estab-
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lished based on these insights. Specifically, for commuter corridors, cross-group, immediate
benefits can be achieved through street interface continuity and visible safety elements.
These elements not only improve the walking and stopping experience for residents but
also immediately reduce the perceived risk and cognitive load for through-travelers. For
residential districts, long-term benefits primarily depend on school accessibility and the
balanced provision of community public services, which should be enhanced in periph-
eral areas through improved accessibility and equitable distribution mechanisms to avoid
spatial inequality resulting from the over-capitalization of educational resources.

In summary, this study not only provides empirical evidence but also translates the
impact of “street view—mneighborhood—location” on housing values into actionable urban
design and governance pathways. Future research could verify the robustness of thresholds
and spatial heterogeneity across multiple cities and contexts, combining instrumental
variables or natural experiments to strengthen causal identification, and further refine
the implementation of Geographical-XGBoost in neighborhood adaptation and model
interpretation. Additionally, it is recommended to establish regular monitoring indicators,
such as travel perception and satisfaction, walking and cycling usage rates and accident
rates, bus passenger waiting experience index, and educational accessibility and enrollment
opportunity indicators, to support rolling evaluations and policy optimization.
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Figure A1. Neighborhood Attributes: Local G-XGBoost shape value; space distribution; medical
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