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Abstract: Extracting geoscientific dataset names from the literature is crucial for building a literature–
data association network, which can help readers access the data quickly through the Internet.
However, the existing named-entity extraction methods have low accuracy in extracting geoscientific
dataset names from unstructured text because geoscientific dataset names are a complex combination
of multiple elements, such as geospatial coverage, temporal coverage, scale or resolution, theme
content, and version. This paper proposes a new method based on the hierarchical temporal
memory (HTM) model, a brain-inspired neural network with superior performance in high-level
cognitive tasks, to accurately extract geoscientific dataset names from unstructured text. First, a
word-encoding method based on the Unicode values of characters for the HTM model was proposed.
Then, over 12,000 dataset names were collected from geoscience data-sharing websites and encoded
into binary vectors to train the HTM model. We conceived a new classifier scheme for the HTM
model that decodes the predictive vector for the encoder of the next word so that the similarity of
the encoders of the predictive next word and the real next word can be computed. If the similarity
is greater than a specified threshold, the real next word can be regarded as part of the name, and
a successive word set forms the full geoscientific dataset name. We used the trained HTM model
to extract geoscientific dataset names from 100 papers. Our method achieved an F1-score of 0.727,
outperforming the GPT-4- and Claude-3-based few-shot learning (FSL) method, with F1-scores of
0.698 and 0.72, respectively.

Keywords: geoscientific dataset; named-entity recognition; hierarchical temporal memory; word
encoding

1. Introduction

Geoscientific datasets include data describing the state, properties, and distribu-
tion characteristics of phenomena or entities in specific layers or geographic locations
on Earth [1–3]. These datasets are widely used in atmospheric, oceanic, geological, terres-
trial surface, and solar–terrestrial space science research [4]. The scientific and technical
literature [5] is essential for the acquisition of knowledge by researchers as an important
source of recorded scientific discoveries and innovations. With the rise and rapid devel-
opment of open science [6], an increasing number of geoscientific datasets and papers are
being published and shared on the Internet. In the field of geoscience, scientific research is
increasingly dependent on geoscientific datasets in the context of a data-intensive scientific
research paradigm [7]; thus, the literature contains extensive geoscientific dataset names.
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However, in most cases, geoscientific datasets and papers are scattered in different corners
of the Internet, and correlations between them have not been established.

Extracting the names of geoscientific datasets from the literature can clarify which
datasets are used in research. It can further help us to discover these datasets through
the Internet and establish correlations between studies and datasets. Consequently, this
can help readers quickly access research data when they read the literature online and
rapidly reproduce studies [8,9]. Furthermore, extracting geoscientific dataset names can
assist data-publishing journals, such as Earth System Science Data, in tracking the citations
of their published datasets [10,11].

The name of a geoscientific dataset generally contains elements such as geospatial
coverage, temporal coverage, scale or resolution, theme content, and version [12,13]. For
example, “San Francisco 5-m resolution land use data v1.0 for the years 2015–2020” repre-
sents a typical name for a geoscientific dataset. In this instance, “San Francisco” denotes
the geospatial coverage of the dataset, “5-m resolution” indicates the spatial resolution
of the dataset, “land use data” describes the content of the dataset, “v1.0” signifies the
dataset’s version, and “years 2015–2020” indicates the temporal coverage of the dataset. Ex-
tracting dataset names from the literature is also the task of domain-specific named-entity
recognition methods [14,15]. Although existing methods have made some progress in
named-entity recognition (NER), they still face many challenges in extracting geoscientific
dataset names. Because the names of geoscientific datasets contain many elements and
there can be many combinations of elements, it is hard for existing methods to understand
the rules in the names. Therefore, existing methods often can only extract some elements of
the name, not the complete name, which results in low extraction accuracy.

To address these problems, this study proposes a method for extracting geoscientific
dataset names based on the hierarchical temporal memory (HTM) model. The HTM model
is a brain-inspired artificial neural network [16,17] that has excellent abilities in high-level
cognitive activities, such as language understanding, spatial cognition, and navigation [18].
The elements of dataset names are encoded into binary vectors by our proposed new
encoding method. The sequence of binary vectors of a dataset name is input to train the
HTM model and make it understand the naming rule. We then use the trained HTM model
to recognize the names of geoscientific datasets from text in the literature. Compared with
existing methods such as GPT-4 and Claude-3, the results show that our method has a
higher F1-score.

The main contributions of the paper are as follows:

(1) An artificial neural network method developed specifically for extracting the names of
geoscientific datasets is proposed. Compared with the GPT-4-based few-shot learning
(FSL) method, this method has a higher F1-score.

(2) A new word-encoding method for the HTM model is proposed. This method uses
the Unicode values of characters to determine their relative positions in the semantic
vector and employs a numerical mapping approach to reduce the encoding length.
Compared to the semantic folding method, this approach demonstrates higher accu-
racy in encoding Chinese characters.

(3) A new decoding structure for the HTM model is proposed. This decoding structure
uses a BP neural network to decode the prediction vector for the encoding of the next
word. By calculating the similarity of the encoding of the predicted word and the
actual next word, the name of the geoscientific dataset is extracted word by word.

The remainder of the paper is organized as follows. Section 2 describes the state of the
art. Section 3 presents the general idea and methodology. Section 4 mainly describes the
experimental design for extracting geoscientific dataset names using the proposed method
and two large language models—GPT-4 and Claude-3. Section 5 evaluates and compares
our method with existing methods. The last section concludes the research and discusses
the future research direction.
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2. Related Work

We propose a geoscientific dataset name-extraction method based on the HTM model.
Therefore, the reviewed literature includes geoscientific dataset name-extraction methods
and HTM-based algorithms.

2.1. Progress in Geoscientific Dataset Name Extraction

Different from traditional personal or place-name extraction, most existing named-
entity recognition (NER) methods are not suitable for geoscientific datasets because these
datasets have complex and compound elements. Even so, some researchers have proposed
a few geoscientific dataset name or related name-entity extraction methods. These methods
can be classified into three categories.

The first category is rule-based methods. A rule-based method requires the construc-
tion of a rule database. For example, Cao et al. [19] used regular expressions to create
dataset name-extraction rules and successfully extracted dataset names from the geoscience
literature with 62% accuracy. Afzal et al. [20] proposed a rule-based citation mining tech-
nique. This technique detected data such as author, title, and conference location from
documents and extracted the relevant titles from the computer science literature database
of the Digital Bibliography Library Project (DBLP). Rule-based methods require the manual
creation of explicit rules and are time-consuming [21,22]. Moreover, for complex named
entities, it is difficult to establish a complete rule database, so the accuracy is not high.

The second category is traditional machine learning methods. Machine learning
methods generally use the inside, outside, beginning (IOB) annotation system to manually
annotate the corpus and then use machine learning models for training and prediction [23].
Commonly used machine learning methods for named-entity recognition include the
hidden Markov model (HMM) [24], support vector machine (SVM) [25], and conditional
random fields (CRF) [26]. Han et al. [27] proposed an SVM-based method for extracting
metadata from a structured corpus that outperformed other machine learning methods.
Although HMM, SVM, and CRF can theoretically be used for geoscientific data name
extraction, in reality, to the best of our knowledge, no studies have used these methods to
directly extract geoscientific data names.

The third category is deep learning-based methods. In recent years, deep learning
methods [28] such as the large language model (LLM) have achieved remarkable results in
the field of natural language processing. Deep learning-based methods can automatically
learn features from data and effectively process large text data. Commonly used deep learning
methods for named-entity recognition include convolutional neural network (CNN) [29],
bidirectional long short-term memory (Bi-LSTM) [30], transformer models [31], and GPT-
4 [32]. Yao et al. [33] extracted dataset names and methods based on the Bi-LSTM model
from the papers of PAKDD conferences (2009–2019). Kumar et al. [34] tested dataset name
extraction based on the bidirectional encoder representations from transformers (BERT)
model on research papers in a popular social science corpus and achieved an F1-score of 56.2%.
Younes and Scherp [35] proposed one-step and two-step methods to extract unknown dataset
names from scientific papers. The one-step method had higher accuracy, while the two-step
method could extract more potential datasets. Heddes et al. [15] annotated 6000 sentences
from AI conferences and used the SciBERT method, a pretrained LLM for scientific text [36],
to automatically detect dataset names from scientific articles. Geogalactica [37], which was
trained on a geoscience-related text corpus, also demonstrated advanced performance in
various NLP tasks, including the extraction of key information in geoscience.

From the research above, it can be found that little research has been conducted on
directly extracting geoscientific dataset names from unstructured text, such as the geoscientific
literature. The existing methods either have low accuracy or are not specifically designed for
geoscientific datasets. LLMs [37,38], which are reported to have impressive performance in
NLP tasks including NER, may not perform as well in the extraction of geoscientific datasets,
as geoscientific datasets involve a lot of specialized knowledge and have complex combination
patterns. Thus, high-precision methods for extracting geoscientific data names are urgently
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needed to associate the data with scientific studies, to measure the usage of scientific data in
the scientific literature, and to reproduce and reuse the research results of the studies.

2.2. Progress in HTM Application

Time is an important aspect of vocabulary embedding and neural network training.
Time not only influences the semantics of text but also reveals the dynamic changes in text.
Therefore, many time-aware text embedding methods have been proposed, such as time-
aware text embedding approach to generate subgraphs (TEAGS) [39], short-text author linking
through multi-aspect temporal-textual embedding (SoulMate) [40], the multi-aspect time-
related influence (MATI) model [41], which integrates multiple time features and combines the
temporal subset property (TSP) [42], and the value-wise ConvNet for transformer models [43].
These methods highlight the importance of the temporal dimension in text embedding and
demonstrate significant advantages in time-sensitive recommendation tasks.

Realizing the importance of the temporal dimension in data processing, George and
Hawkins [16,17] proposed the hierarchical temporal memory (HTM) model, which was
designed to simulate the structure and function of the human brain and had excellent
performance in time series data processing. Compared to the traditional neurons of an
artificial neural network, HTM has a great number of dendritic connections, and the output
of HTM neurons depends not only on feedforward inputs (proximal connections to the
soma) but also on lateral connections between the neurons. Thus, it can perform high-level
cognitive activities, such as language analysis, spatial cognition, etc. It is widely applied in
anomaly detection [44,45], image processing [46], natural language processing [47], and
other areas. For instance, Afaf et al. [48] applied the HTM algorithm to traffic congestion
detection, demonstrating a 7.4% improvement in detection accuracy compared to state-of-
the-art techniques, with an average F-score of 98.83%. Szoplák et al. [49] tested the HTM
algorithm on the PAN plagiarism corpus, achieving 70.15% accuracy in detecting anoma-
lous texts. Hamid et al. [50] proposed a text anomaly detection framework based on the
improved semantic folding theory (SFT), achieving 96% accuracy on the Yelp dataset. HTM
has unique advantages in handling continuous streaming data and capturing temporal
patterns, although it may require more training when adapting to new data [51,52]. The
initial version of HTM has now been upgraded to the third generation [53,54].

In our research, we relied on the excellent ability of HTM to process time-series data
to realize the extraction of geoscientific dataset names from text. This is a newly proposed
method that encodes words to binary vectors and uses a large amount of geoscientific
dataset names for training the HTM model, which allows the model to master the naming
rules of geoscientific datasets and the combination rules of different name elements. Then,
we used the trained HTM model to extract geoscientific dataset names from the literature.
Finally, we compared our method with existing methods in relation to extraction accuracy.

3. Methodology
3.1. General Idea

The input of the HTM model is binary vectors. In order to deal with the name text of
geoscientific datasets, we propose a new word-encoding method to convert words to binary
vectors. Then, using the HTM model, we can extract geoscientific dataset names based on
the word-encoding method. We collected geoscientific dataset names from geoscientific
data-sharing websites as a corpus or sample to train the created HTM model. We segmented
the geoscientific dataset names into a sequence of words by using the NLPIR tool [55]. Each
word represented a feature of the geoscientific dataset and was encoded and input into the
HTM model, enabling it to learn the naming rules and combination patterns of various
features. A trained HTM neural network was obtained by the offline section. Then, we
used the trained HTM model to extract geoscientific names by the online section as follows:
For arbitrary unstructured text from geoscientific papers, we segmented a sentence from
the text into word sequences using the NLPIR tool [55]. The word was encoded and input
to the trained HTM model, and the HTM model generated a predictive vector. In this
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research, we decoded the predictive vector for the next word’s encoding vector by using a
BP neural network as the classifier for the HTM model so that we could use the similarity
of encoding of the predictive next word and real next word to determine whether the real
word was part of a geoscientific dataset name. Finally, the combination of consecutive
multiple words was regarded as a geoscientific dataset name, thereby achieving the goal of
automatically extracting a geoscientific dataset name from unstructured text.

Finally, we evaluated our method by comparing it with zero-shot learning (ZSL)
and few-shot learning (FSL) methods, which were based on GPT-4 and Claude-3, and
we evaluated the precision and recall of the proposed method in the task of extracting
geoscientific dataset names. The general idea is shown in Figure 1.
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3.2. HTM Model

Hierarchical temporal memory (HTM) is a biomimetic machine intelligence algo-
rithm [52] that was first proposed by George and Hawkins [16,17]. HTM is inspired by the
structure of the cerebral cortex of the human brain and has more fidelity than traditional
artificial neural networks [56].

A primary feature of HTM is its hierarchical structure; it is composed of several layers
with distinct regions (Figure 2A). The spatial pooler (SP) and the temporal memory (TM)
are core components of HTM (Figure 2B). The SP converts all input patterns into sparse
distributed representations (SDRs), which are used as the input of the TM. The TM learns
the temporal sequences of the SDRs and can predict the next input of the HTM. HTM
neurons (Figure 2C) are similar to biological neurons, with thousands of synapses on
activated dendrites, and the model learns by simulating the growth of new synapses and
the decay of inactive synapses. The proximal and distal dendritic segments of the HTM
neurons have different functions [57]. Patterns detected on the proximal dendrites lead
to action potentials (i.e., they are activated) (Figure 2D) and define the classic receptive
field of neurons. Patterns recognized by the distal synapses of neurons act as predictors by
depolarizing the cell without directly causing an action potential [58]. The output of HTM
neurons depends not only on feedforward inputs (Figure 2E) but also on lateral connections
between neurons. The structure of HTM is shown in Figure 2.
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Figure 2. HTM structure [57,58]. (A) HTM has a three-level hierarchy. The smallest unit is an HTM
cell. In each layer, there are a large number of cells, multiple cells form mini-columns, and multiple
mini-columns form regions. (B) The end-to-end HTM system includes an encoder, HTM SP, HTM
TM, and a classifier. (C) An HTM neuron has one proximal dendrite and several distal dendrites,
and dendrites have different functions. Proximal dendrites receive feedforward inputs, while distal
dendrites receive contextual information from nearby cells in the layer. (D) All cells in the same
mini-column share the same synapses that receive feedforward inputs, which means they receive the
same information. (E) Each layer of the HTM model consists of several mini-columns of cells that can
read and form synaptic connections with input data.

3.2.1. Sparse Distributed Representations

A sparse distributed representation (SDR) is a sparse, high-dimensional binary vector
consisting of a large number of zeros and ones [59]. At every point in time, only a few
encoding sites are activated and have a value of 1, which corresponds to active neurons in
the mammalian brain, while the rest of the coding sites have a value of 0. Although a single
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encoding site does not represent valid information, the overall combination of encoding
sites has a certain semantic meaning.

3.2.2. A New Word-Encoding Method for the HTM Model

The HTM encoder encodes the input data into a binary vector that can be processed
by the SP layer. The purpose of the encoding process is to determine which output bits are
zeros and which are ones, to capture the semantic features of the data. The encoder should
conform to four principles: the encoder of input data has the same dimension, the same
data are encoded identically, similar data are encoded similarly, and the output sparsity of
different data remains essentially the same [60].

A statistical analysis of the Unicode distribution of Chinese characters shows that the
Unicode values of semantically similar characters are arranged in nearby locations [61,62].
This study proposes a new word-encoding method for HTM based on the Unicode and
arranging law of characters. First, the Unicode values of the 3596 commonly used Chinese
characters are obtained; the minimum Unicode value is 40, and the maximum is 65,311.
To decrease the dimension of the encoder, the Unicode values of the 3596 characters are
mapped to new values with a more compact distribution. The following method is used:

U∗
i =


1, U1

U∗
i−1 + t, |Ui − Ui−1| > t, i is a positive integer.

U∗
i−1 + (Ui − Ui−1), 0 < |Ui − Ui−1| ≤ t

(1)

where U1, U2, . . . , Ui−1, Ui, . . . , Un represents the Unicode values for the 3596 commonly
used Chinese characters, letters, symbols, and numerals, sorted in ascending order. U∗

i is
the conversion value, and t is a threshold that controls the total number of encoding bits
and the degree of semantic generalization.

Secondly, we use the NLPIR tool to segment the names of geoscientific datasets into
word sets (the maximum number of characters in the word is set) [55]. For every word,
the Unicode value of each character contained in it is obtained and converted by using
Formula (1). The following steps are used to encode words: (1) For all U∗

i , the minimum
U∗

i is U∗
1 , the maximum is denoted as U∗

max, and the range is [U∗
1 , U∗

max]. (2) We create
U∗

max − U∗
1 buckets to split the character encoder values. (3) We choose the number of

consecutive active bits w in each representation and compute the total number of bits n
of the encoded character: n = U∗

max + w − 1. For each character and its U∗
i , the encoded

representation is created by setting n unset bits with w consecutive active bits starting at
index U∗

i . (4) All encodings of characters in the word are combined in order. Words that do
not reach the maximum length are encoded as empty with zeros to ensure that all words
have the same number of bits in their encoding. An example of encoding the names of
geoscientific datasets is shown in Figure 3.
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3.2.3. HTM Spatial Pooler

The main purposes of the spatial pooler are, first, to transform input vectors into
sparse distributed representations, and second, to learn to better detect repeated input
patterns. The spatial pooler algorithm is shown in Figure 4.
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The spatial pooler (SP) algorithm consists of three steps: the formation of classic
receptive field (for example, the dashed green rectangle in Figure 4), the activation of
mini-columns, and the learning of proximal synapse permanence. The classic receptive
field formation stage determines the key parameters of the HTM model and establishes
potential connections between the input data and the synapses of the proximal dendrites of
mini-column k. The potential connection between mini-column k and the input data can be
denoted as

Pk = {i|I(xi; xc
k, λ) and (αki ∼ U(0, 1))}, (2)

where xi denotes the i-th input neuron (data), xc
k is the central neuron of the classic receptive

field of mini-column k, and λ is the length of the classic receptive field. αki is a random
number chosen from a uniform distribution U(0, 1) and denotes the synaptic permanence
between the k-th mini-column and input neuron xi. For potential connections to become
synaptic connections, the permanence of the potential synapses must exceed a given
threshold ηc. I(xi; xc

k, λ) is an indicator function: if and only if xi is located in the classic
receptive field of mini-column k, then the input neuron xi is selected as the potential input
of the mini-column.

Given an input pattern x, the activation of the SP mini-columns is determined based
on the computation of the feedforward input, which is called overlap value Ok:

Ok = βk∑
i

Bkixi, (3)

Bki =

{
1, αki > ηc
0, otherwise

, (4)

where βk is a positive boost factor, which controls the excitability of the SP mini-columns
and is adjusted for learning during the SP training process, and Bki is a binary indicator
matrix that represents connected synapses, with Bki = 1 when αki is greater than ηc;
otherwise, Bki = 0. Suppose the connection threshold for synaptic permanence ηc (values
in [0, 1]) is set to be 0.7, such that initially 70% of the potential synapses are connected. The
value of ηc determines the threshold for whether a synapse is considered to be connected
to a neuron. If the permanence value for a synapse is greater than ηc, it is considered to be
connected. According to the local inhibition mechanism, the k-th SP mini-column needs to
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satisfy two conditions to be activated: first, the overlap value Ok of the k-th mini-column
must be at the top n (n < m) of its m neighboring mini-columns, and second, its input
overlap needs to be greater than the given activation threshold θ. To ensure that a certain
number of mini-columns are activated, activation threshold θ is usually set to a small
positive number. Let Ck denote the activation state of the k-th SP mini-column; that is:

ONk = {Ok|k ∈ Nk}, (5)

Ck =

{
1, Ok ≥ prctile(ONk, 1 − d) and Ok ≥ θ
0, otherwise

. (6)

where Nk denotes the set of neighboring mini-columns and ONk denotes the overlap
value of all neighboring mini-columns of the k-th SP mini-column; prctile(·) denotes the
percentile function; and d denotes the activation density of the target mini-column.

In the proximal synaptic permanence learning stage, the synaptic permanence values
of the activation mini-columns are updated based on Hebb’s learning rule. This rule means
that synapse permanence is strengthened for active input connectivity bits and weakened
for inactive input connectivity bits, and the synapse permanence value is limited to between
zero and one.

3.2.4. HTM Temporal Memory

Temporal memory [63,64] is a predictive mechanism based on time sequence data
that uses synaptic connections between cells to construct temporal associations of things
with different features. Temporal memory has two main purposes: the first is to transform
the SDRs of the output of the SP process into a representation that captures the temporal
background of the current input, and the second is to predict future inputs based on
previous sequences.

The temporal memory (TM) algorithm consists of three parts (Figure 5): determining
the activated cells in the mini-column, learning the permanence of distal synapses, and
obtaining the predicted cells. First, after the SP process, partially activated mini-columns
are generated, and the TM process will activate a few cells in the active mini-columns based
on historical information. The status of activated cells is calculated as follows:

βt
kl =


1, i f k ∈ c_colst and Ct−1

kl = 1
1, i f k ∈ c_colst and ∑

l
Ct−1

kl = 0

0, otherwise

, (7)

where c_colst denotes the mini-column activated at moment t, Ct−1
kl denotes the predicted

state of the l-th cell of the k-th mini-column at moment t − 1, and βt
kl denotes the activation

state of the l-th cell of the k-th mini-column at moment t. If a cell in the activation column
at a previous moment is in a predicted state, then that cell will be activated. If no cell in the
activation column is in a predicted state, then all cells in the mini-column will be activated.
The TM algorithm differs from the SP algorithm in that it learns sequence correlations by
activating cells in the active mini-column and represents different contexts.

Like the SP process, the TM process adjusts the permanence of distal synapses using
Hebb’s learning rule. Dendritic segments on learning cells connected to active cells from
the previous period are reinforced, while dendritic segments on learning cells connected
to inactive cells are punished. The reinforcement of dendritic segments increases the
permanence value of active synapses by a larger-value τ+ while decreasing the permanence
value of inactive synapses by a smaller-value τ−.

∆Sd
kl = τ+Ŝd

kl ◦ At−1 − τ−Ŝd
kl ◦ (1 − At−1), (8)

Ŝd
kl =

{
1, i f Sd

kl > 0
0, otherwise

, (9)
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Suppose that the number of mini-columns in an HTM neural network is N and each
column has M cells. Sd

kl is an M × N matrix denoting the persistence of the dendritic
segment of the l-th cell of the k-th mini-column, At is an activated status matrix of M × N
at moment t, and βt

kl denotes the activation state of the l-th cell of the k-th mini-column. ◦
denotes the multiplication of matrix elements at corresponding positions, and Ŝd

kl denotes
the matrix containing the positive terms in Sd

kl .
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Figure 5. Structure of HTM temporal memory [63,64]. Cells in the TM process can exist in three states:
inactive, active, or predictive. When a cell does not receive any feedforward input, it is in an inactive
state (purple triangle), and when it receives feedforward input, it is in an active state (green triangle).
Sufficient lateral activity in a contextual dendrite leads to a predictive state (red triangle).

Finally, the TM process will make predictions for the next time of input based on the
number of activated cells. Whether a distal dendritic segment is active or not depends
on the number of active synapses connected to active cells, and if this number exceeds a
threshold ζ, the dendritic segment is activated. The dendritic segment activation threshold
ζ indicates how many cells need to be activated within a time step to activate the entire
mini-column, and its value is correlated with the number of cells contained in the mini-
column. The value of ζ cannot exceed the number of cells contained in the mini-column.
Therefore, the predicted state of the cell at moment t is:

Ct
kl =

{
1, i f ∃d∥ DSd

kl ◦ At ∥1 > ζ

0, otherwise
. (10)

where DSd
kl is the d-th distal dendritic segment of the l-th cell of the k-th cell column, and

At is a 0–1 matrix with size M × N.

3.2.5. Classifier

We can use common classifier algorithms such as support vector machine and naive
Bayes for HTM models [65]. In this paper, text data are encoded and input into the HTM
model. For the SDRs generated by the SP or TM process, the classifier can transform them
into human-readable data, which is similar to the decoding process. In this paper, the BP
algorithm [66,67] is used as a classifier, i.e., a decoder.

In contrast to the traditional HTM classifier, which directly transfers the prediction
encoder of TM to data humans can understand, in this research, we use BP to transfer the
prediction encoder of TM to the next word’s encoder in the training stage. In the application
stage of the trained HTM, when we encode the former word and input the encoder to
the HTM, the next word’s encoder is predicted. The word vector similarity between the
encoders of the predictive word and real next word is computed. If the similarity is greater
than a set threshold, the concatenation of the two words is deemed to conform to the
naming pattern of a geoscientific dataset.
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4. Experimental Section

In this section, we create a corpus (sample) and use the word-encoding method to
train the created HTM model, enabling the HTM model to learn the naming rules and
understand the combination patterns of different elements of the geoscientific dataset.

4.1. Training Corpus

To make the HTM model learn the naming rules and understand the combina-
tion patterns of different elements of the geoscientific dataset, we collected various geo-
scientific dataset names as a corpus or sample for training. The National Earth Ob-
servation Data Center (NODA) is the biggest Earth observation data center in China.
About 8000 Earth observation datasets are shared in its data platform, ChinaGEOSS
(https://www.chinageoss.cn/datasharing (accessed on 12 January 2024)). The National
Earth System Science Data Center (NESSDC) is a key repository for Earth science data, cov-
ering a variety of data including atmospheric, oceanic, terrestrial, and ecological sciences.
It aims to support Earth system research by providing a centralized platform for collecting,
archiving, and disseminating data. NESSDC has shared more than 30,000 geoscientific
datasets (https://www.geodata.cn/ (accessed on 12 January 2024)). We randomly selected
about one-third (12,642) of the dataset names from the two national platforms to make sure
that the sample has wide coverage. The NLPIR [55] was used to segment the 12,642 dataset
names into words. The number of characters in a word was limited to 6. Starting and
ending labels were added to all segmented names.

4.2. Creating and Training the HTM Model

We conducted experiments using the open-source HTM framework on the Numenta
Platform for Intelligent Computing (NuPIC) (https://github.com/numenta/htm.java (ac-
cessed on 15 January 2024)). First, we created an HTM model. Then, we encoded all
12,642 geoscientific dataset names using the method described in Section 3.2.2, and the
encodings of every word in every dataset name were input to the HTM in sequence. We
trained the model on a computer with two 2.1 GHz Intel processors, 512 GB memory,
8 NVIDIA GeForce RTX 3080, and Windows 10 Professional. To obtain an HTM model with
optimal performance, we tested the relationship between model size, training iteration
times, and prediction accuracy. We set the number of columns of the HTM to 1000, 2000,
3000, 4000, 5000, and 6000, and set the cycles of the HTM to 50, 100, 150, 200, 250, and
300 times the number of geoscientific dataset names in the sample. We used the following
formula to indicate the accuracy of training [64]:

accuracy = avg(
|SP_words|
|All_words| ) (11)

where |SP_words| is the number of successfully predicted words for a geoscientific dataset
name, |All_words| is the number of total words in the geoscientific dataset name, and avg()
is the average accuracy for 12,642 sample names. The prediction accuracy under different
iterations and model sizes is shown in Figure 6.

As shown in Figure 6, as the model size increases, the training performance of the
HTM model generally improves. When the number of columns of the HTM model is
5000, we can obtain the performance for different training iteration times. With increased
training iteration times, the performance of the HTM model also generally improves; the
optimal number of training iteration times is 250, and more training times will result in
overfitting. The parameters of the HTM model are shown in Table 1 (the meanings of the
parameters are given in detail in Appendix A). After the training, we obtained an HTM
model that had learned the naming rule and combination patterns of different elements of
the geoscientific dataset.

https://www.chinageoss.cn/datasharing
https://www.geodata.cn/
https://github.com/numenta/htm.java


ISPRS Int. J. Geo-Inf. 2024, 13, 260 12 of 23

ISPRS Int. J. Geo-Inf. 2024, 13, 260 13 of 26 
 

 

where | _ |SP words  is the number of successfully predicted words for a geoscientific da-
taset name, | _ |All words  is the number of total words in the geoscientific dataset name, 
and ()avg  is the average accuracy for 12,642 sample names. The prediction accuracy 
under different iterations and model sizes is shown in Figure 6.  

 
Figure 6. Prediction accuracy with different model sizes and training iteration times. 

As shown in Figure 6, as the model size increases, the training performance of the 
HTM model generally improves. When the number of columns of the HTM model is 5000, 
we can obtain the performance for different training iteration times. With increased train-
ing iteration times, the performance of the HTM model also generally improves; the opti-
mal number of training iteration times is 250, and more training times will result in over-
fitting. The parameters of the HTM model are shown in Table 1 (the meanings of the pa-
rameters are given in detail in Appendix A). After the training, we obtained an HTM 
model that had learned the naming rule and combination patterns of different elements 
of the geoscientific dataset. 

Table 1. Parameters of trained HTM model. 

Parameter Name Value Parameter Name Value 
Number of columns 5000 Number of cells per column 6 

Input dimensions 22,476 Potential radius 6 
Number of active columns 48 Connected threshold for synaptic permanence 0.7 

Initial synaptic permanence 0.1 Dendritic segment activation threshold 4 
Synaptic permanence increment 0.1 Synaptic permanence decrement  0.1 

5. Evaluation 
In this research, the word-encoding method is the basis of the experiment. Whether 

or not the binary vector can represent the semantic features of the word has an important 
influence on the accuracy of extracting geoscientific dataset names. Therefore, we firstly 
evaluated the precision of the word-encoding method. Then we used the trained HTM 
model to extract geoscientific dataset names and evaluated its accuracy by comparing it 
with existing methods. 

5.1. Evaluation of Word-Encoding Method Precision 
To evaluate the precision of the proposed word-encoding method, we compared it 

with the semantic folding method [68], which is the main text encoding method used for 
the HTM model. The key to the quality of encoding methods is in their ability to convey 

Figure 6. Prediction accuracy with different model sizes and training iteration times.

Table 1. Parameters of trained HTM model.

Parameter Name Value Parameter Name Value

Number of columns 5000 Number of cells per column 6
Input dimensions 22,476 Potential radius 6

Number of active columns 48 Connected threshold for synaptic permanence 0.7
Initial synaptic permanence 0.1 Dendritic segment activation threshold 4

Synaptic permanence increment 0.1 Synaptic permanence decrement 0.1

5. Evaluation

In this research, the word-encoding method is the basis of the experiment. Whether
or not the binary vector can represent the semantic features of the word has an important
influence on the accuracy of extracting geoscientific dataset names. Therefore, we firstly
evaluated the precision of the word-encoding method. Then we used the trained HTM
model to extract geoscientific dataset names and evaluated its accuracy by comparing it
with existing methods.

5.1. Evaluation of Word-Encoding Method Precision

To evaluate the precision of the proposed word-encoding method, we compared it
with the semantic folding method [68], which is the main text encoding method used for
the HTM model. The key to the quality of encoding methods is in their ability to convey
the semantics of words, so we can use the encoding binary vectors’ cosine similarity
to indicate the semantic similarity of word pairs. Because we extracted names in the
geoscientific domain, we select the Geo-Terminology Relatedness Dataset (GTRD) [69]
which contains 66 pairs of geographic terms and corresponding semantic similarities, as
the benchmark.

First, we encoded the words in the GTRD using our method and the semantic folding
method. Then, we calculated the cosine similarity of the encoders for the word pairs
in GTRD separately. The result is shown in Table 2. Subsequently, we calculated the
Pearson correlation coefficient between the cosine similarity and the standard similarity of
word pairs in the benchmark dataset. Finally, to determine whether the correlation was
statistically significant, we applied the p-value test [70] to the Pearson correlation coefficient.
The result is shown in Table 3.
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Table 2. Cosine similarity of two encoding methods for word pairs in GTRD.

ID Word One Word Two Standard
Similarity

Semantic
Folding

Similarity

Our Encoding
Method

Similarity

1 waterway transportation waterway transportation 1 1 1
2 oasis city oasis city 1 1 1
3 port city estuary city 0.91 0.62 0.67
4 tropical rainforest climate equatorial rain climate 0.87 0.53 0.33
5 city cities and towns 0.86 0.58 0.50
6 transportation communication and transportation 0.83 1 0.71
7 nearshore environment coastal environment 0.78 0.88 0.75
8 nearshore environment sublittoral environment 0.78 0.96 0.50
9 plateau permafrost frozen ground 0.78 0.22 0.58

10 cold wave cold air mass 0.77 0.64 0
11 iron and steel industry metallurgical industry 0.73 0.56 0.72
12 geographical environment environment 0.71 1 0.71
13 highway transport transport 0.71 1 0.71
14 semi-arid climate steppe climate 0.71 0.67 0.45
15 climate weather 0.69 0.23 0
16 milk industry food industry 0.68 0.7 0.75
17 cultural landscape landscape 0.67 1 0.71
18 processing industry light industry 0.66 0.66 0.58
19 cold wave disastrous weather 0.65 0.28 0.03
20 coal industry heavy industry 0.63 0.61 0.58
21 farming industry industry 0.61 1 0.53
22 gray desert soil brown desert soil 0.60 0.82 0.67
23 marine environment geographical environment 0.60 0.61 0.50
24 eco-environment water environment 0.59 0.61 0.58
25 tropical soil subtropical soil 0.57 0.84 0.89

. . . . . . . . . . . . . . .
64 desert climate internal water transport 0.03 0.26 0.01
65 polar climate mining industry 0.02 0.25 0
66 desert climate labor-intensive industry 0 0.2 0

Table 3. Pearson correlation coefficient and p-value test between proposed encoding method and
semantic folding method on GTRD.

Statistical Indicator Proposed Encoding Method Semantic Folding Method

Pearson correlation coefficient 0.69 0.62
p-value 2.15 × 10−10 3.61 × 10−8

From Table 3, it is evident that on the benchmark GTRD dataset, our proposed encod-
ing method outperforms the semantic folding approach in terms of accuracy.

5.2. Evaluation of Geoscientific Dataset Name-Extraction Accuracy

To comprehensively evaluate the ability of HTM model to extract geoscientific dataset
names, we compared it with two large language models, GPT-4 and Claude-3, which have
excellent performance in named-entity recognition [71,72]. First, we created a baseline
based on the geoscientific literature. The Journal of Geographical Sciences is a high-level
academic journal in China (https://www.geog.com.cn/EN/home (accessed on 13 January
2024)) that publishes about 200 papers every year. We randomly selected 100 papers
published in this journal from 2021 to 2023. From these articles, we extracted the paragraphs
introducing the research data. Then, for each of the 100 pieces of text, we invited three
experts to find and write down all of the geoscientific dataset names contained within it. A
comparison showed that the three experts’ results were almost identical. This result is used
as the baseline to evaluate the ability of AI models to extract geoscientific dataset names.

https://www.geog.com.cn/EN/home
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The detailed process of extracting geoscientific dataset names is as follows: (1) For
each of the 100 pieces of text, the NLPIR segmentation tool is used to split them into word
sequences. The starting word of a piece of text is encoded by the method in Section 3.2.2
and the encoder is input to the trained HTM model. After processing by the classifier in
the HTM model, the predicted encoder for the next word is output. Subsequently, the
encoder for the actual next word is generated using the method described in Section 3.2.2.
The similarity between the two encoders is calculated using the cosine similarity formula.
If the similarity is greater than 0.4, the combination of the two adjacent words is deemed to
conform to the naming pattern of geoscientific datasets, and they are part of a geoscientific
dataset name. All words in the piece of text are dealt in the same way. If more than
three consecutive words conformed to the pattern of scientific data naming, then the
combination of these words is regarded as the name of a geoscientific dataset. (2) For GPT-
4, we firstly use it directly to extract the geoscientific dataset names for every 100 pieces
of text. The prompt for the zero-shot learning (ZSL) task is as follows: Please extract the
names of the geoscientific datasets contained in the following paragraphs: {paragraphs
containing geoscientific dataset names}. We then teach GPT-4 all 12,642 dataset names
and use it again to extract the names of geoscientific datasets for every 100 pieces of
text. In this context, for GPT-4, the prompt for the few-shot learning (FSL) task is as
follows: The train-GeoscientificDatasetNames.txt file includes 12,642 geoscientific dataset
names. Please learn the characteristics of these geoscientific dataset names. Now, based
on the characteristics of the geoscientific dataset names mentioned and your knowledge,
please extract the names of the geoscientific datasets contained in the following paragraphs:
{paragraphs containing geoscientific dataset names}. The process of extracting geoscientific
dataset names using GPT-4 is achieved by using the GPT-4 dialog window on the official
website of OpenAI (https://openai.com/ (accessed on 25 March 2024)). (3) For Claude-3
(https://claude.ai (accessed on 5 June 2024)), we conduct similar experiments, which are
tested on GPT-4.

To display our extraction results in an intuitive and representative way, we show the
extraction results of two random pieces of text in Tables A2 and A3 in Appendix A. By
comparing with the benchmark dataset names, it can be observed that our method can
relatively accurately locate the positions of geoscientific dataset names and has relatively
little redundancy when extracting specific geoscientific dataset names. However, when
utilizing GPT-4 and Claude-3 for extracting geoscientific dataset names, issues such as
redundancy or the omission of parts of words can occur. For instance, there are five
correct geoscientific dataset names in Table A2, and our method can basically extract
these names accurately. In contrast, the zero-shot learning (ZSL) method based on GPT-4
and Claude-3 can lose parts of the correct words of geoscientific dataset names. Both
ZSL methods cannot correctly recognize “The spatial distribution data of the Qinghai-
Tibet Plateau ecosystems for the years 2000, 2010, and 2020 with a spatial resolution of
30 m”, and the GPT-4-based ZSL method cannot correctly recognize “1:1,000,000 soil
type map”. Additionally, the GPT-4-based ZSL and FSL methods can produce redun-
dancy in recognizing geoscientific dataset names. For example, the correct geoscientific
dataset name in Table A2 is “The Land Use and Cover Change (LUCC) dataset”, but the
recognized result is “The Land Use and Cover Change (LUCC) dataset from the Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences”. The
correct geoscientific dataset name in Table A3 is “The Fourth Forest Resources Inventory
of Guangdong Province”, but the recognized result is “The Fourth Forest Resources
Inventory of Guangdong Province (partial pilot cities from 2013 to 2016, province-wide
from 2017 to 2018)”. Moreover, as shown in Tables A2 and A3, the ZSL method based
on Claude-3 can extract more geoscientific datasets compared to the method based on
GPT-4. However, it also demonstrates problems with redundancy and omission. GPT-4-
and Claude-3-based methods extract more redundant or omissive results because the
two methods may not understand the naming rules and combination patterns of various
elements of geoscientific data. For example, the two methods will extract geoscientific

https://openai.com/
https://claude.ai
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names containing the word “data” or “dataset,” such as “NDVI data” and “precipitation
dataset”, which are not regarded as geoscientific dataset names because they do not
include temporal or spatial coverage elements.

With all three methods, the extraction result contains three kinds of items: exact
geoscientific dataset names, partially correct items (i.e., geoscientific dataset names with
redundancy), and completely incorrect items. To quantitatively describe the extraction
accuracy, we computed the precision, recall, and F1-score of the three methods.

Precision (P) represents the rate of correct results for all extracted dataset names, where
T is the number of correctly extracted names and N is the number of all extracted names.
The formula is as follows:

P =
T
N

(12)

Recall (R) represents the ratio of correctly extracted geoscientific dataset names to the
number of names in the benchmark, where T is the number of correctly extracted names
and S is the number of names in the benchmark. The formula is as follows:

R =
T
S

(13)

The F1-score is a composite indicator determined by a weighted average of pre-
cision and recall, which responds to the performance of the model. The formula is as
follows:

F1-score =
2PR

(P + R)
. (14)

The precision, recall, and F1-score of the three methods are shown in Table 4 and
Figure 7. Comparison of the five methods on precision, recall, and F1-score.

Table 4. Statistics for the extraction results of the three methods for 100 randomly selected pieces
of text.

Statistical
Indicator

Proposed
Method

GPT-4
Based Zero-Shot
Learning (ZSL)

Method

GPT-4
Based Few-Shot
Learning (FSL)

Method

Claude-3
Based Zero-Shot
Learning (ZSL)

Method

Claude-3
Based Few-Shot
Learning (FSL)

Method

Number of benchmark
geoscientific dataset

names
530 530 530 530 530

Number of extracted
geoscientific dataset

names
600 478 459 534 520

Number of
correctly extracted

geoscientific dataset
names

411 340 345 368 378

Precision (%) 68.5 71.1 75.2 69.4 71.3
Recall (%) 77.5 64.2 65.1 68.9 72.7
F1-score 0.727 0.675 0.698 0.691 0.720

From Table 4 and Figure 7, it can be seen that GPT-4 and Claude-3 have better precision
than our method because they extract fewer results. However, our method extracts the most
correct geoscientific dataset names and performs better in terms of recall and F1-score. The
precision of GPT-4 and Claude-3 is improved after few-shot learning (FSL). Our method
can find more geoscientific dataset names, although some of them are not always exact,
such as “data of precipitation, temperature and other daily observation data from national
meteorological stations on the Qinghai Tibet Plateau”, which is a partially correct name (the
right name is “data of precipitation, temperature and other daily observation data from
national meteorological stations on the Qinghai Tibet Plateau from 2020 to 2020”) with a
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rare combination of elements of geoscientific data. Overall, if the intention is to extract
more correct datasets, researchers can consider using our method.
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6. Conclusions and Discussion

In this study, we propose an artificial neural network method for extracting geosci-
entific dataset names. Specifically, a new word-encoding method for the HTM model is
proposed. The new word-encoding method uses Unicode to generate a binary vector for
characters. The encoder is input into a human brain-inspired neural network (the HTM
model) to generate a predictive vector. In our research, we ingeniously transform the
predictive vector into the encoder of the next word by using the classifier of backprop-
agation (BP). By computing the similarity between the encoders of the next predictive
word and the next real word, we can determine whether the combination of two adjacent
words is part of a geoscientific dataset name and thus extract geoscientific dataset names
from unstructured text. Through training with more than 12,000 dataset names, the
HTM model learns various naming patterns and can be used to extract geoscientific
dataset names from the literature. Finally, we compare our method with two existing
methods—GPT-4 and Claude-3. The result shows that our method outperforms the
existing methods in recall and F1-score.

Our new artificial neural network method for extracting geoscientific dataset names
achieves a higher F1-score on the task of extracting the names of geoscientific datasets,
while the large language model methods achieve higher accuracy because they extract
fewer results. Our model requires a smaller training corpus and computing power than
the large language models. Our method can be utilized not only for extracting knowledge
from the literature and reproducing geoscientific studies but also for carrying out scientific
data bibliometrics and other tasks related to geospatial information.

However, the method has the following limitations: First, while our encoding
method demonstrates higher accuracy in encoding Chinese characters compared to the
semantic folding method, the accuracy in encoding English characters needs improve-
ment. Additionally, although the numerical mapping method reduces the encoding
length, the length of encoded words remains relatively large, resulting in a longer train-
ing time for the HTM model. Second, while our method achieves a higher F1-score
in extracting geoscientific dataset names compared to larger language models such as
GPT-4, it has lower extraction accuracy. Moreover, as large language models learn more
knowledge, their extraction accuracy continues to improve. Therefore, it is necessary
to improve our method. In the future, we plan to modify existing word-embedding
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techniques such as Word2vec to create a new word-encoding method for the HTM model.
This method will be able to not only encode multiple languages but also reduce the
encoding length and improve accuracy, thereby further improving the precision of the
HTM model in extracting dataset names.
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Appendix A

Table A1 lists the main parameter settings for the hierarchical temporal memory
(HTM) model utilized in this study. The parameters are input dimensions, number
of columns, number of cells per column, potential radius, number of active columns,
connected threshold for synaptic permanence, initial synaptic permanence, dendritic
segment activation threshold, and synaptic permanence increment and decrement. In the
experiment of extracting geoscientific dataset names, these parameters were employed
to configure the HTM model. The specific explanation and setting of each parameter are
as follows:

Table A1. Parameters of created HTM model.

Parameter Name Value Parameter Name Value

Number of columns 5000 Number of cells per column 6
Input dimensions 22,476 Potential radius 6

Number of active columns 48 Connected threshold for synaptic permanence 0.7
Initial synaptic permanence 0.1 Dendritic segment activation threshold 4

Synaptic permanence increment 0.1 Synaptic permanence decrement 0.1

Input dimensions: This parameter represents the dimensionality of the input data,
i.e., the number of input bits processed by the HTM model. We encoded 3596 commonly
used Chinese characters and set the number of continuously active bits to 151, resulting in
a character encoding length of 3746. In this experiment, the maximum character length of a
word was set to six, resulting in a word-encoding length of 22,476, which was the input
dimension for the HTM model.

Number of columns: This parameter determines the number of columns in the spatial
pooler of the HTM model. Having more columns allows the HTM model to handle more
features or patterns simultaneously, but also increases computational complexity. In this
experiment, after tuning the parameters, the number of columns was set to 5000.

https://github.com/WkStatisticsRoad/HTMTextExtract
https://github.com/WkStatisticsRoad/HTMTextExtract
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Number of cells per column: Each column in the spatial pooler contains a set of cells.
This parameter specifies how many cells are contained in each column. Typically, the
number of cells per column is not very large, usually ranging from a few to several dozen,
as more cells will increase computational cost. In this experiment, based on experience and
parameter optimization, the number of cells per column was set to six.

Potential radius: The potential radius defines the neighborhood size within which a
cell in the spatial pooler can form connections. A larger potential radius allows cells to
form connections with a broader area, but an excessively large potential radius can lead
to overfitting. In this experiment, based on experience and parameter optimization, the
potential radius was set to six.

Number of active columns: The number of active columns refers to the maximum
number of columns that can remain active within a local inhibition area. By controlling
the number of active columns, the sparsity and representation capacity of the HTM model
can be adjusted. In this experiment, based on experience and parameter optimization, the
number of active columns was set to 48.

Connected threshold for synaptic permanence: If the connected threshold for synaptic
permanence (values in [0, 1]) is set to 0.7, initially 70% of the potential synapses are
connected. If the permanence value for a synapse is greater than this threshold, it is
considered connected. In this experiment, based on experience and parameter optimization,
the connected threshold was set to 0.7.

Initial synaptic permanence: This parameter indicates the initial permanence value for
a newly formed synapse. It is usually set to a low value to ensure that the initial connections
are neither too strong nor too weak. In this experiment, the initial synaptic permanence
was set to 0.1.

Dendritic segment activation threshold: This parameter indicates how many cells need
to be active within a time step in order to activate the entire column. Its value is related
to the number of cells in the column, and the threshold cannot exceed this number. In
this experiment, based on experience and parameter optimization, the dendritic segment
activation threshold was set to four.

Synaptic permanence increment: This parameter indicates how much a synapse is
strengthened when the cell is activated. It is typically set to a positive value of less than 1 to
ensure that synaptic connections gradually strengthen during learning. In this experiment,
the synaptic permanence increment was set to 0.1.

Synaptic permanence decrement: This parameter indicates how much a synapse is
weakened when the cell is inactivated. It is typically set to a positive value of less than
one to ensure that inactive synaptic connections gradually weaken during learning. In this
experiment, the synaptic permanence decrement was set to 0.1.

In summary, Table A1 describes the key parameters of the HTM model, including
input dimensions, number of cells per column, and synaptic connectivity thresholds.
These parameters are crucial in controlling the model’s ability to encode input patterns,
perform pattern recognition, and adapt to changes in the input data. Understanding and
appropriately setting these parameters are essential for the effective application of the
HTM model.
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Table A2. Results of five methods for extracting geoscientific dataset names.

Extraction
Method

Names of Benchmark
Geoscientific Datasets Results of Five Recognition Methods

Proposed
method

The Land Use and Cover Change
(LUCC) dataset, The China Annual

Land Cover Dataset (CLCD),
The regional data of China from

GlobeLand30, The spatial
distribution data of the

Qinghai-Tibet Plateau ecosystems
for the years 2000, 2010, and 2020
with a spatial resolution of 30 m,

1:1,000,000 soil type map

The data sources for this article are as follows: (1) Ecosystem-type data. The Land Use
and Cover Change (LUCC) dataset from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences; the China Annual Land Cover
Dataset (CLCD) based on satellite data from Google Earth Engine (GEE); and the
regional data of China from GlobeLand30. Based on the aforementioned land use and
cover types, they were transformed into ecosystem types such as cropland, forest,
grassland, wetland, and settlement, obtaining the spatial distribution data of the
Qinghai-Tibet Plateau ecosystems for the years 2000, 2010, and 2020 with a spatial
resolution of 30 m. (2) Soil data. The soil property tables and spatial distribution data
attached to the 1:1,000,000 soil type map come from the Western Environmental and
Ecological Science Data Center, and the soil erodibility factor was estimated using the
Nomograph method.

GPT-4-based
zero-shot

learning (ZSL)
method

The data sources for this article are as follows: (1) Ecosystem-type data. The Land Use
and Cover Change (LUCC) dataset from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences; the China Annual Land Cover
Dataset (CLCD) based on satellite data from Google Earth Engine (GEE); and the
regional data of China from GlobeLand30. Based on the aforementioned land use
and cover types, they were transformed into ecosystem types such as cropland, forest,
grassland, wetland, and settlement, obtaining the spatial distribution data of the
Qinghai-Tibet Plateau ecosystems for the years 2000, 2010, and 2020 with a spatial
resolution of 30 m. (2) Soil data. The soil property tables and spatial distribution data
attached to the 1:1,000,000 soil type map come from the Western Environmental and
Ecological Science Data Center, and the soil erodibility factor was estimated using the
Nomograph method.

GPT-4-based
few-shot

learning (FSL)
method

The data sources for this article are as follows: (1) Ecosystem-type data. The Land Use
and Cover Change (LUCC) dataset from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences; the China Annual Land
Cover Dataset (CLCD) based on satellite data from Google Earth Engine (GEE); and
the regional data of China from GlobeLand30. Based on the aforementioned land use
and cover types, they were transformed into ecosystem types such as cropland, forest,
grassland, wetland, and settlement, obtaining the spatial distribution data of the
Qinghai-Tibet Plateau ecosystems for the years 2000, 2010, and 2020 with a spatial
resolution of 30 m. (2) Soil data. The soil property tables and spatial distribution data
attached to the 1:1,000,000 soil type map come from the Western Environmental and
Ecological Science Data Center, and the soil erodibility factor was estimated using the
Nomograph method.

Proposed
method

The Land Use and Cover Change
(LUCC) dataset, The China Annual

Land Cover Dataset (CLCD),
The regional data of China from

GlobeLand30, The spatial
distribution data of the

Qinghai-Tibet Plateau ecosystems
for the years 2000, 2010, and 2020
with a spatial resolution of 30 m,

1:1,000,000 soil type map

Data sources for this article: (1) Ecosystem-type data: The Land Use and Cover
Change (LUCC) dataset from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences; the China Annual Land Cover Dataset
(CLCD) based on satellite data from Google Earth Engine (GEE); and the regional data
of China from GlobeLand30. Based on land use and cover types, they were
transformed into ecosystem types including cropland, forest, grassland, wetland, and
settlement, to obtain spatial distribution data of the Qinghai-Tibet Plateau
ecosystems for the years 2000, 2010, and 2020 with a spatial resolution of 30 m. (2) Soil
data: Soil property tables and spatial distribution data attached to 1:1,000,000 soil type
map come from Western Environmental and Ecological Science Data Center, and soil
erodibility factor was estimated using the nomograph method.

Claude-3-based
zero-shot

learning (ZSL)
method

Data sources for this article: (1) Ecosystem-type data: The Land Use and Cover
Change (LUCC) dataset from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences; the China Annual Land Cover Dataset
(CLCD) based on satellite data from Google Earth Engine (GEE); and the regional
data of China from GlobeLand30. Based on land use and cover types, they were
transformed into ecosystem types including cropland, forest, grassland, wetland, and
settlement to obtain spatial distribution data of the Qinghai-Tibet Plateau ecosystems
for the years 2000, 2010, and 2020 with a spatial resolution of 30 m. (2) Soil data: The
soil property tables and spatial distribution data attached to 1:1,000,000 soil type map
come from the Western Environmental and Ecological Science Data Center, and the
soil erodibility factor was estimated using the nomograph method.

Claude-3-based
few-shot

learning (FSL)
method

Data sources for this article: (1) Ecosystem-type data: The Land Use and Cover
Change (LUCC) dataset from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences; the China Annual Land Cover Dataset
(CLCD) based on satellite data from Google Earth Engine (GEE); and the regional
data of China from GlobeLand30. Based on land use and cover types, they were
transformed into ecosystem types including cropland, forest, grassland, wetland, and
settlement, to obtain spatial distribution data of the Qinghai-Tibet Plateau ecosystems
for the years 2000, 2010, and 2020 with a spatial resolution of 30 m. (2) Soil data: The
soil property tables and spatial distribution data attached to the 1:1,000,000 soil type
map come from the Western Environmental and Ecological Science Data Center, and
soil erodibility factor was estimated using the nomograph method.
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Table A3. Results of five methods for extracting geoscientific dataset names.

Extraction
Method

Names of Benchmark
Geoscientific Datasets Results of Five Recognition Methods

Proposed
method

The Fourth Forest
Resources Inventory of
Guangdong Province,

The second National Soil
Survey Data for

Guangdong (1979–1985),
Harmonized World Soil

Database, The basic
attribute dataset of

China’s high-resolution
national soil information

grid for Guangdong
(2010–2018)

The Fourth Forest Resources Inventory of Guangdong Province (partial pilot cities 2013–2016,
province-wide 2017–2018) is sourced from Guangdong Provincial Department of Natural
Resources in the form of vector layers, with precision to the forestry sub compartment scale.
Guangdong Province has 2,403,557 forestry sub compartments, with an average area of about
0.07 km2 each. The second National Soil Survey data for Guangdong (1979–1985), with
information such as soil organic carbon content and soil bulk density, is sourced from the
Harmonized World Soil Database by the UN Food and Agriculture Organization, with a spatial
resolution of 0.25 km × 0.25 km. The basic attribute dataset of China’s high-resolution national
soil information grid for Guangdong (2010–2018) also provides information on soil organic
carbon content and bulk density, sourced from the Soil Data Center of the National Earth System
Science Data Center (http://soil.geodata.cn/ (accessed on 12 April 2022)), with a spatial resolution
of 1 km × 1 km.

GPT-4-based
zero-shot

learning (ZSL)
method

The Fourth Forest Resources Inventory of Guangdong Province (partial pilot cities 2013–2016,
province-wide 2017–2018) was sourced from the Guangdong Provincial Department of Natural
Resources in the form of vector layers, with precision to the forestry sub compartment scale.
Guangdong Province has 2,403,557 forestry sub compartments, with an average area of about
0.07 km2 each. The second National Soil Survey data for Guangdong (1979–1985), with
information including soil organic carbon content and soil bulk density, sourced from the
Harmonized World Soil Database by the UN Food and Agriculture Organization, with spatial
resolution of 0.25 km × 0.25 km. The basic attribute dataset of China’s high-resolution national
soil information grid for Guangdong (2010–2018) also provides information on soil organic carbon
content and bulk density, sourced from the Soil Data Center of the National Earth System Science Data
Center (http://soil.geodata.cn/ (accessed on 12 April 2022)), with a spatial resolution of 1 km × 1 km.

GPT-4-based
few-shot

learning (FSL)
method

The Fourth Forest Resources Inventory of Guangdong Province (partial pilot cities 2013–2016,
province-wide 2017–2018) sourced from the Guangdong Provincial Department of Natural Resources
in the form of vector layers, with precision to the forestry sub compartment scale. Guangdong
Province has 2,403,557 forestry sub compartments, with an average area of about 0.07 km2 each. The
second National Soil Survey data for Guangdong (1979–1985), with information including soil
organic carbon content and bulk density, sourced from the Harmonized World Soil Database by the
UN Food and Agriculture Organization, with spatial resolution of 0.25 km × 0.25 km. The basic
attribute dataset of China’s high-resolution national soil information grid for Guangdong
(2010–2018) also provides information on soil organic carbon content and bulk density, sourced
from the Soil Data Center of the National Earth System Science Data Center
(http://soil.geodata.cn/ (accessed on 12 April 2022)), with spatial resolution of 1 km × 1 km.

Proposed
method

The Fourth Forest
Resources Inventory of
Guangdong Province,

The second National Soil
Survey Data for

Guangdong (1979–1985),
Harmonized World Soil

Database, The basic
attribute dataset of

China’s high-resolution
national soil information

grid for Guangdong
(2010–2018)

The Fourth Forest Resources Inventory of Guangdong Province (partial pilot cities 2013–2016,
province-wide 2017–2018) sourced from Guangdong Provincial Department of Natural Resources
in the form of vector layers, with precision to the forestry sub compartment scale. Guangdong
Province has 2,403,557 forestry sub compartments, with an average area of about 0.07 km2 each.
The second National Soil Survey data for Guangdong (1979–1985), with information including soil
organic carbon content and bulk density, sourced from the Harmonized World Soil Database by the
UN Food and Agriculture Organization, with spatial resolution of 0.25 km × 0.25 km. The basic
attribute dataset of China’s high-resolution national soil information grid for Guangdong
(2010–2018) also provides information on soil organic carbon content and bulk density, sourced
from the Soil Data Center of the National Earth System Science Data Center
(http://soil.geodata.cn/ (accessed on 12 April 2022)), with spatial resolution of 1 km × 1 km.

Claude-3-
based

zero-shot
learning (ZSL)

method

The Fourth Forest Resources Inventory of Guangdong Province (partial pilot cities 2013–2016,
province-wide 2017–2018) sourced from Guangdong Provincial Department of Natural
Resources in the form of vector layers, with precision to the forestry sub compartment scale.
Guangdong Province has 2,403,557 forestry sub compartments, with an average area of about
0.07 km2 each. The second National Soil Survey data for Guangdong (1979–1985), with information
including soil organic carbon content and bulk density, sourced from the Harmonized World Soil
Database by the UN Food and Agriculture Organization, with spatial resolution of 0.25 km × 0.25 km.
The basic attribute dataset of China’s high-resolution national soil information grid for
Guangdong (2010–2018) also provides information on soil organic carbon content and bulk density,
sourced from the Soil Data Center of the National Earth System Science Data Center
(http://soil.geodata.cn/ (accessed on 12 April 2022)), with spatial resolution of 1 km × 1 km.

Claude-3-
based

few-shot
learning (FSL)

method

The Fourth Forest Resources Inventory of Guangdong Province (partial pilot cities 2013–2016,
province-wide 2017–2018) sourced from Guangdong Provincial Department of Natural Resources
in the form of vector layers, with precision to the forestry sub compartment scale. Guangdong
Province has 2,403,557 forestry sub compartments, with an average area of about 0.07 km2 each.
The second National Soil Survey data for Guangdong (1979–1985), with information including
soil organic carbon content and bulk density, sourced from the Harmonized World Soil Database
by the UN Food and Agriculture Organization, with spatial resolution of 0.25 km × 0.25 km. The
basic attribute dataset of China’s high-resolution national soil information grid for Guangdong
(2010–2018) also provides information on soil organic carbon content and bulk density, sourced
from the Soil Data Center of the National Earth System Science Data Center
(http://soil.geodata.cn/ (accessed on 12 April 2022)), with spatial resolution of 1 km × 1 km.

http://soil.geodata.cn/
http://soil.geodata.cn/
http://soil.geodata.cn/
http://soil.geodata.cn/
http://soil.geodata.cn/
http://soil.geodata.cn/
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To display our extraction results in a more intuitive and representative way, we
randomly selected the extraction results from two paragraphs. Tables A2 and A3 in
Appendix A show part of the recognition results of the three methods (Represent the
recognized results in bold black text). From these tables, it can be observed that the
proposed method can relatively accurately locate the positions of geoscientific dataset
names and has relatively low redundancy when identifying specific geoscientific dataset
names. A detailed analysis can be found in Section 5.2.
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