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Abstract: In real estate valuation using the Hedonic Price Model (HPM) estimated via Ordinary
Least Squares (OLS) regression, subjectivity and measurement errors in the independent variables
violate the Gauss–Markov theorem assumption of a non-random coefficient matrix, leading to biased
parameter estimates and incorrect precision assessments. In this contribution, the Errors-in-Variables
model equipped with Total Least Squares (TLS) estimation is proposed to address these issues. It
fully considers random errors in both dependent and independent variables. An iterative algorithm
is provided, and posterior accuracy estimates are provided to validate its effectiveness. Monte Carlo
simulations demonstrate that TLS provides more accurate solutions than OLS, significantly improving
the root mean square error by over 70%. Empirical experiments on datasets from Boston and Wuhan
further confirm the superior performance of TLS, which consistently yields a higher coefficient of
determination and a lower posterior variance factor, which shows its more substantial explanatory
power for the data. Moreover, TLS shows comparable or slightly superior performance in terms of
prediction accuracy. These results make it a compelling and practical method to enhance the HPM.

Keywords: hedonic price model; real estate; mass appraisal; total least squares; errors-in-variables

1. Introduction

Real estate holds a pivotal position in the national economy and household investment,
necessitating a thorough analysis of the influencing factors and an accurate assessment
of the value of real estate. It is widely recognized that the market approach is commonly
applied in real estate valuation. The Hedonic Price Model (HPM) extends from the market
approach [1,2], grounded in supply–demand theory, and uses regression analysis to relate
characteristics to transaction prices. Studying the HPM in depth for parameter estimation
and housing price prediction is crucial in facilitating well-informed decision-making,
ensuring the integrity of real estate transactions, and conducting precise tax assessments [3].

Machine learning (ML) algorithms are increasingly used to analyze the housing mar-
ket [4–6]. Much of the literature [7–9] recognizes the undeniable predictive power of ML
algorithms; however, they also present a critical limitation due to their ‘black box’ nature
(i.e., lack of model interpretability). It is difficult to discern the role that individual pa-
rameters play in value variation or to numerically define the causal relationships between
prices and the characteristics of assets [10]. However, this is not the case with the HPM,
which facilitates both parameter estimation and interpretation. Pérez-Rave et al. [11] point
out that understanding today’s complex housing market requires a thorough analysis of
the relevant variables and the estimation of their significant impacts. Therefore, our work
focuses on expanding the HPM to achieve a more comprehensive and thorough analysis of
housing prices.

1.1. Hedonic Price Method

Currently, the research on the HPM can be delineated into two levels: practical
studies and methodological exploration. For practical research, the HPM serves three main
purposes. (1) It is used to construct quality-adjusted house price indexes [12,13] to broadly
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track property price movements. Numerous countries and organizations have developed
their own hedonic indexes, such as the hedonic house price index in the US Census Bureau
and the Halifax and Nationwide indexes in the UK. (2) It is used to provide automated
valuations (or general appraisals) of properties [14], which is also a critical step in property
tax determination in some countries (e.g., the United States and Germany). (3) It is used
to explain house price variations or determine the impact of certain characteristics on
houses, revealing house price drivers and mirroring the real estate market development
stages [2]. Housing price drivers can be roughly divided into two categories. The first
category focuses on the physical characteristics, such as intrinsic characteristics [15,16]
and building properties [17]. The second category examines the impact of public goods
on housing prices, such as school quality [18,19], public transportation [20,21], and open
spaces [22–24].

For methodological research, the classic HPM is estimated by Least Squares (LS) re-
gression [25]. The observed dependent variable (transaction price) is expressed as the
linear combination of independent variables, i.e., the implicit prices associated with the
structural, neighborhood, and location characteristics of the real estate [26]. As the pa-
rameters of interest are estimated based on the formed mathematical model and a certain
optimization criterion, the original method has been intensively extended in two aspects.
(1) To enhance mathematical modeling, (i) the functional relation has been improved by
applying the semiparametric model [27], Box–Cox model [28], and log–log model [29],
which aim at improving both the goodness of fit and interpretability of the model; (ii) the
stochastic model has been refined by considering the spatial effects via the Spatial Autore-
gressive (SAR) model [30–32], the Spatial Error Model (SEM) [33], and the Geographically
Weighted Regression (GWR) [34–36]. (2) For the optimization criterion, (i) regularization
(or penalized) methods, such as ridge regression and the Least Absolute Shrinkage and
Selection Operator (LASSO), are utilized to overcome multicollinearity, which may be
caused by the dependency of the independent variables [37–39]; (ii) the prior information
can be incorporated to consider the advice of experts via Bayesian estimation [40,41] or
inequality-restricted least squares [39] by using an informative prior distribution, where the
hyperparameters are set according to expert knowledge of the characteristics of the model
parameter; (iii) robust methods, such as the least median of squared residuals [42] and
normalized interval regression [43], have been utilized to detect outliers and enhance the
reliability.

1.2. Total Least Squares Estimation

Though previous research has explored the HPM from various perspectives, an as-
pect remains to be discussed. Real estate transactions lack transparency due to limited
access to crucial details like actual transaction prices and real estate facilities on public
websites [44,45]. Additionally, many property characteristics are qualitative and subjec-
tive, such as views or architectural styles [46,47], and measurement errors in recording key
characteristics like the environmental quality of the house all contribute to potential “Errors-
in-Variables” (EIV). However, previous studies often ignore the errors in the coefficient
matrix, which can result in biased estimation and incorrect accuracy assessment. Anselin
and Lozano-Gracia [48] explore EIV using instrumental variables in a two-step regression
approach. Unlike this method, Total Least Squares (TLS) directly minimizes the sum of
squared orthogonal distances from the data points to the model, thereby simultaneously
addressing errors in both dependent and independent variables.

The terminology of TLS was first coined by Golub and van Loan [49], who also
proposed the widely used algorithm based on Singular Value Decomposition (SVD). Nowa-
days, it finds application in the fields of signal processing [50,51], image processing [52,53],
and applied geodesy [54–59], to name a few. Its aim is to minimize the sum of the squares
of all random errors in the model. Though statistically appealing, it is more complicated to
compute than LS due to the nonlinearity caused by the interaction of the random effects
with the fixed effects of unknowns. The methods to obtain a TLS solution can be mainly
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summarized into two categories: the SVD-based methods and the iterative methods. Inher-
ited from SVD, the former method is numerically effective; however, it only works with
some restricted structures of the stochastic model. For more details, one can refer to [50,60].
The latter regards it as a nonlinear constrained optimization problem and solves it via lin-
earization and iteration, e.g., the Gauss–Newton method and Newton method [55,57,61,62].
In contrast to the former method, it is more general in terms of the model setup.

To give the reader an impression of the basic idea of TLS, we here consider a simple
example published by Wooldridge [63] (p. 153). It tries to investigate the relationship
between the logarithm of the house price and the logarithm of the distance from the
house to an incinerator. Therefore, the model consists of two parameters, i.e., the intercept
parameter and the distance parameter. We select the first 100 sampled points and fit the
data with LS and TLS, respectively. The estimated results are shown in Figure 1, from which
we can see that LS only adjusts the data in the vertical direction. In contrast, the direction
of the residuals produced by TLS is orthogonal to the fitted line. The essential reason is
that TLS considers the random errors in the distance and adjusts such quantities in the
estimation. This is why TLS is called orthogonal regression in some studies.
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Figure 1. Fitting results for the house price data in [63]: (a) LS results; (b) TLS results.

The main objective of this contribution is first to apply TLS to hedonic price problems,
taking into account errors in the dependent and independent variables, thereby enhancing
the reasonable estimation of the hedonic parameters. Our approach leverages simulation
experiments and two empirical datasets to comprehensively demonstrate its superiority in
real estate evaluation.

1.3. Outline of the Paper

The rest of the paper is organized as follows. In Section 2, we first review LS estimation
and then present TLS estimation in the HPM. In Section 3, Monte Carlo simulations are
presented to show the advantages of our method. In Section 4, the Boston dataset is
analyzed. In Section 5, we analyze a dataset collected in Wuhan. In Section 6, we discuss
the three sets of experimental results. Finally, the conclusions are drawn in Section 7.

2. Method for the HPM

The HPM shows the relationship between a dependent variable (the house transaction
price of the i-th sample) and independent variables (the selected m house characteristics for
the i-th sample). The regression equation can be written as follows:

yi ≈ β0 + β1xi1 + · · ·+ βmxim i = 1, 2, · · · , n, (1)

where yi is the dependent variable (i.e., transaction price), xi,1, · · · , xim are independent
variables (i.e., house characteristics), β0 is the unknown intercept parameter, and β1, · · · , βm
are unknown hedonic parameters. The approximation symbol “≈” is used here since such
a relationship does not exactly hold for real collected data. The choice of estimation method
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depends on how we specify the stochastic information of this equation. If only the random
errors of the dependent variables (i.e., yi) are considered, it becomes a linear model and
LS is applied; if the random errors of the independent variables (i.e., xi,1, · · · , xim) are
additionally considered, it becomes an EIV model and TLS is applied. Next, these two
methods are introduced.

2.1. Least Squares Regression

In most cases, we only consider the errors in the dependent variables yi. Collecting
the equations of all n sampled points yields the well-known linear Gauss–Markov model

y = Aβ + ey ey ∼ (0, Σy = σ2Qy) (2)

with

y =


y1
y2
...

yn

 A =


1 x11 x12 · · · x1m
1 x21 x22 · · · x2m
...

...
...

. . .
...

1 xn1 xn2 · · · xnm

 β =


β0
β1
...

βm

 ey =


ey1
ey2
...

eyn

, (3)

where y is the n-vector of observations; A is the design matrix of order n× (m + 1) with
rank (m + 1); ey is the n-vector of random errors; β is the (m + 1)-vector of the unknown
parameters to be estimated; Σy is the symmetric positive definite covariance matrix of order
n× n; Qy is the cofactor matrix; and σ2 is the (unknown) variance factor (VF).

By minimizing eTy Q−1
y ey, the LS estimator reads

β̂
LS
= (ATQ−1

y A)−1ATQ−1
y y. (4)

The residual vector reads

êy,LS = y−Aβ̂ =
(
In − (ATQ−1

y A)−1ATQ−1
y

)
y. (5)

Utilizing the error propagation law yields the cofactor matrix of the LS estimator, i.e.,

QLS = (ATQ−1
y A)−1. (6)

The (weighted) Sum of Squared Errors (SSE) reads

SSELS = êTy,LSQ
−1
y êy,LS. (7)

Since the degree of freedom of the model is (n−m− 1), the a posteriori square root of VF
can be evaluated as

σ̂LS =
√

SSELS/(n−m− 1). (8)

Combining (6) and (8), the covariance matrix of β̂
LS

reads

Σ̂LS = σ̂2
LS ·QLS = σ̂2

LS(A
TQ−1

y A)−1. (9)

If the cofactor matrix is chosen as Qy = In, all formulations degrade into those for the
Ordinary Least Squares (OLS) regression. However, the general covariance matrix Σ

enables us to consider various model setups, such as the spatial correlations [64].

2.2. Total Least Squares Estimation

In LS estimation, the design matrix A is assumed to be non-stochastic (i.e., errorless).
However, due to subjectivity (e.g., the quality of decoration and architectural style) and
measurement uncertainty (e.g., the commercial service level of the house), some dependent
variables cannot be exactly evaluated. The ignorance of the stochasticity of the design
matrix can cause the LS regression results to be less accurate. Therefore, we address the
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issue of endogeneity from the specific perspective of EIV by introducing a random matrix
E of order n× (m + 1) to the linear model (2), i.e.,

y = (A− E)β + ey, (10)

with

e =

[
ey
eA

]
∼

(
0, Σ = σ2Q

)
Q =

[
Qy 0
0 κ2QA

]
, (11)

where eA = vec(E) is the (nm + n)-vector of random errors; vec(·) represents the vector-
ization operator that stacks the columns of the argument; QA is the symmetric positive
semi-definite matrix of order (nm + n)× (nm + n); κ2 = σ2

A/σ2 is the VF ratio; and σ2
A

represents the VF of the design matrix. In practice, the cofactor matrix QA is usually
determined by considering factors such as the reliability of the data sources, the collection
methods, and the nature of the variables themselves.

Since we have the relationship Eβ = (βT ⊗ In)eA [65], the model (10) can be reformu-
lated as

y = Aβ + Be e ∼ (0, Σ = σ2Q), (12)

where ⊗ represents the Kronecker operator and B = [In − (βT ⊗ In)]. Based on this,
the general TLS objective reads

min eTQ−1e s.t. y = Aβ + Be. (13)

Note that if the dependent parameters are fixed (or non-stochastic), the corresponding
blocks of Q are zero matrices, which leads to its singularity, i.e., rank(Q) < (n + 1)(m + 1).
Therefore, strictly speaking, the regular inverse Q−1 does not exist since we at least have
the intercept parameter β0. However, we still use Q−1 to establish the objective since the
singularity caused by such a structure does not affect the final estimate. A similar treatment
can be found in, e.g., [57]. Unlike the traditional TLS method based on SVD, we can see
that the structure of the model has been considered by forming the covariance matrix Σ,
which is automatically kept in the estimation.

With the Lagrangian method, we can obtain the iterative solution forms. For simplicity,
the derivations are placed in the Appendix A. The TLS estimator reads

β̂
TLS

= (ÂTQ̂−1
B Â)−1ÂTQ̂−1

B (y− Êβ̂), (14)

where Â = A− Ê and Q̂B = B̂QB̂T. The residual vector is

ê = QB̂TQ̂−1
B (y−Aβ̂). (15)

Reshaping the residual vector (15), we can obtain

[ Ê êy ] = vec−1
n,m+2ê

=
(
(vecIm+2)

T ⊗ In

)
(Im+2 ⊗ ê),

(16)

where vec−1
n,m+2(·) is the inverse operator of vec(·), i.e., restructuring an n× (m + 2) matrix

from an (nm + 2n)-vector.
Since the residuals are determined by the unknowns, the final estimate should be

obtained by iterating these expressions. The steps of the TLS estimation can be summarized
as Algorithm 1. Here, ∥ · ∥2

2 = (·)T(·) is the squared Euclidean norm and ε is a very small
positive constant and is chosen as 10−8 in this paper. In this paper, all computations are im-
plemented with MATLAB. For the computational aspects of TLS, one can refer to Fang [57,62]
for a Newton-type iteration.
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Algorithm 1 Total Least Squares Estimation

Require: y, A and Σ

1: Obtain the initial values β0 by the LS estimation and set i = 0
2: Set E0 ← 0
3: repeat
4: Construct B0 ← [In − (βT

0 ⊗ In)]

5: β̂← (AT
0 Q−1

B0 A0)
−1AT

0 Q−1
B0 (y− E0β0)

6: ê← QBT
0 Q−1

B0 (y−Aβ̂)

7: [ Ê êy ]← vec−1
n,m+2ê

8: Update the coefficient matrix A0 ← A− Ê
9: Update the residual matrix E0 ← Ê

10: Update the parameter vector β0 ← β̂
11: Update i = i + 1
12: until ∥δ∥ < ε (δ is the difference in parameter between two successive iterations)
13: Calculate σ̂TLS and Σ̂TLS

Next, we consider how to perform the precision assessment in the TLS estimation.
According to [66], the EIV model can be formed as

yc = Aβ + ec ec ∼ (0, ΣB = BΣBT), (17)

where yc = y− Eβ, A = A− E and ec = ey − Eβ. Therefore, we can have the element as

eci = eyi − eTa,iβ, (18)

where eci and eyi are the i-th elements of ec and ey, respectively; and eTai
is the i-th row

vector of E. From the definition, we cannot immediately judge which one of |eci| and
|eyi| is greater as the sign of the product eTa,iβ cannot be determined. This is why ec is
called the “total error” by [66] and has been employed for statistical inference, such as
hypothesis testing.

Taking it as the model with a fixed coefficient matrix, we can develop the LS ensemble
formulations for TLS, such as precision assessment and hypothesis testing. Therefore, we
can have the cofactor matrix as

QTLS = (ÂTQ̂−1
B Â)−1. (19)

Similarly, the SSE reads

SSETLS = êTc Q̂−1
B êc

= (y−Aβ̂
TLS
)TQ̂−1

B (y−Aβ̂
TLS
),

(20)

which leads to the posterior square root of the VF

σ̂TLS =
√

SSETLS/(n−m− 1) (21)

and the posterior covariance matrix of the parameters

Σ̂TLS = σ̂2
TLS ·QTLS = σ̂2

TLS(Â
TQ̂−1

B Â)−1. (22)
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2.3. Coefficient of Determination

The coefficient of determination (R2) is a popular measure of the goodness of fit for
linear models. To assess the explanatory power of the effects in β1, · · · , βm, the null model
can be formed as

y = 1nβ0 + ey ey ∼ (0, σ2Qy) (23)

by dropping all these effects in the relation (2) or (10). By performing LS estimation, we
have

SSE1n = (Cy)TQ−1
y (Cy) = yTQ−1

y Cy (24)

with the projector C = In − 1n(1Tn Q−1
y 1n)−11Tn Q−1

y , which is also called the (weighted)
total sum of squares.

Therefore, we can have the coefficient of determination as

R2
i = 1− SSEi/SSE1n i = LS, TLS. (25)

From the definition, R2 ranges from 0 to 1 and indicates how much the dependent variable’s
variability (quantified by statistical measures like variance or the standard deviation) can
be explained by the independent variables. For example, R2 = 0.66 suggests that 66% of
the variation in the dependent variable is captured or explained by the model, and the
remaining 34% of the variation is caused by factors not included or inherent randomness.

However, the coefficient (25) automatically increases if an extra independent variable
is added to the model. To address such a limitation, its adjusted version is formed as

R2
adj,i = 1− SSEi/(n−m− 1)

SSE1n /(n− 1)
= 1−

(1− R2
i )(n− 1)

(n−m− 1)
i = LS, TLS (26)

by considering the degree of freedom of the model, which ensures that the inclusion of
additional variables is justifiably reflected in the overall explanatory power of the model.
The adjusted one R2

adj is usually less than the original one R2.

Further, the F-test statistic can be expressed with R2 as

Fi =
R2

i /m
(1− R2

i )(n−m− 1)
i = LS, TLS, (27)

which evaluates the overall significance of the independent variables within the HPM
when estimating house prices. If the result is significant, it underscores the collective
impact of these variables on the housing values, affirming the statistical significance of
the HPM analysis; a non-significant outcome, however, suggests that the model lacks
statistical efficacy.

3. Monte Carlo Simulations

TLS is statistically superior to LS in estimating the EIV model. To show such an
improvement qualitatively in the hedonic analysis, Monte Carlo simulations are designed.
In Xu et al. [67], it is shown that the bias of using LS under the EIV model depends on the
parameter magnitudes and the covariance matrix of the random errors (or the noise level
in the homogenous cases). Therefore, in order to investigate the superiority of TLS over
LS in the hedonic analysis, we have to generate data from a real house pricing example.
Then, the magnitudes of the parameters and the structure of the coefficient matrix can be
close to practical situations. Based on this, we select a real example reported by Wooldridge
Wooldridge [63] (p. 211). To ensure the accuracy of the simulations, we employ the TLS
method to correct the noisy data and then take the corrected data as the ground truth in the
following experiments.

To show the superiority of TLS in hedonic house pricing analysis, we design two
experiments: the first is for parameter estimation and the second is for prediction. The
dataset consists of n = 88 observations and the regression equation reads
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log(price) = β0 + β1 log(lotsize) + β2 log(sqrfit) + β3 log(bdrms) + β4 log(colonial), (28)

where “price” is the house price in $1000; “lotsize” is the size of the lot in square feet; “sqrfit”
is the size of the house in square feet; “bdrms” is the number of bedrooms; and “colonial” is
an indicator variable that equals 1 if the house is of a colonial style and equals 0 otherwise.

As “bdrms” and “colonial” are fixed, we assume that the cofactor matrices take the
form Q = In and QA = v⊗ In with

v = diag{0, 1, 1, 0, 0}, (29)

where diag{·} represents the operator that constructs a diagonal matrix according to its
argument. Since the Monte Carlo simulations are conducted based on the ground truths,
we conduct the TLS estimation for the whole system by setting σ2 = σ2

A = 0.102, and we
regard the estimates as y and A.

3.1. Parameter Estimation

The purpose of this experiment is to verify that TLS can provide a more accurate
parameter estimator than OLS. We set σ = 0.10 and varied σA from 0.01 to 0.20 with
increments of 0.01, conducting a total of 20 experiments to show such an improvement at
different noise levels. In order to show the statistical performance, the experiment with a
specific noise level was replicated 500 times [68].

The steps of the simulation are listed below.

1. Set σA and form the covariance matrix Σ;
2. Conduct 500 replicated trials and, in each trial,

(a) Generate the noise e from the normal distribution N(0, Σ);
(b) Reconstruct ey and E from e, and then form y = y + ey and A = A + E;
(c) Perform the estimations to obtain β̂

OLS
and β̂

TLS
;

(d) Record the discrepancy vectors ϵOLS = β̂
OLS
− β and ϵTLS = β̂

TLS
− β.

3. Compute the root mean square error (RMSE) for each parameter for these two schemes.
Taking βi (i = 0, · · · , 4), for example, we have

RMSE{βi} =

√
∑500

j=1 ϵ2
i,j

500
i = 0, · · · , 4.

4. Compute the sum of the RMSEs of five parameters for OLS and TLS, respectively.

The computed RMSEs are demonstrated in Figure 2, from which we can see the following.

1. For β0, β2, and β3, the RMSEs of TLS are much smaller than those of OLS. In addition,
the improvement becomes more significant as σA increases. With σA = 0.20, the
improvement ratios (the percentage reduction in the RMSE of the TLS relative to the
OLS) for β0, β2, and β3 are 73.72%, 73.39%, and 55.31%, respectively.

2. For β1 and β4, the RMSEs of TLS are comparable to those of OLS. However, we can
see that the magnitudes of the RMSEs of these two parameters are much smaller than
those of the other three parameters (particularly β0, the intercept). In terms of the sum
of the RMSEs, TLS significantly outperforms OLS, achieving a 71.22% improvement
with σA = 0.20.

3. In the setting of the covariance matrix, we assume the coefficients corresponding to β0,
β3, and β4 to be errorless. However, we can see that the estimates of these parameters
are still significantly influenced. Therefore, although we have set some variables to be
non-stochastic, the corresponding parameters are also affected in the estimation. More
specifically, in the EIV model, all parameters can be biased if LS is applied. For the
analytical bias of LS (or approximately the difference between LS and TLS), one can
refer to [67].
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Figure 2. Results of RMSEs in the simulation of parameter estimation: (a–f) correspond to six
parameters.

3.2. Price Prediction

This part is designed to compare the performance of OLS and TLS in terms of predic-
tion. For such a purpose, we partition the observations (both y and A) into two parts, i.e.,

y =

[
y1
y2

]
A =

[
A1
A2

]
,

where y1 and y2 are 50- and 38-dimensional vectors; and A1 and A2 are of order 50× 5 and
38× 5, respectively. Specifically, the first 50 observations are the training set (y1 and A1),
and the remaining 38 observations are the validation set (y2 and A2). In the simulations,
the cofactor matrices for the training set (Σ1) and the validation set (Σ2) can be constructed
similarly to Σ: Σ1 is formed with Qy1 = I50 and QA1 = v⊗ I50; Σ2 is formed with Qy2 = I38
and QA2 = v⊗ I38.

With σ = 0.10, we consider two experiments by setting σA = 0.01 and σA = 0.05,
respectively. In each experiment, the following steps are conducted 1000 times.

1. Generate noise e1 from the normal distribution N(0, Σ1).
2. Reconstruct ey1 and E1 from e1, and then form y1 = y1 + ey1 , A1 = A1 + E1.
3. Perform the estimations to obtain β̂

OLS
and β̂

TLS
.

4. Repeat the predictions 500 times via the following:

(a) Generate noise e2 from the normal distribution N(0, Σ2);
(b) Reconstruct ey2 and E2 from e2, and then form y2 = y2 + ey2 , A2 = A2 + E2;
(c) Compute the prediction discrepancy norms τOLS = ∥y2 − A2β̂

OLS
∥ and

τTLS = ∥y2 −A2β̂
TLS
∥.

5. Record the ratio of the number of times that TLS has a smaller norm in these
500 predictions.

The results are shown in Figure 3, from which we can see the following. (1) The points
(ratios) are more densely distributed between 0.5 and 1.0 (i.e., TLS outperforms OLS). More
specifically, the ratios of τTLS < τOLS in these two cases are 75.50% and 61.90%, respectively.
(2) In the case of A2, with larger uncertainty (i.e., larger σA), the ratio is smaller. This
phenomenon will be analytically discussed in Section 5.
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Figure 3. Ratios by which TLS has a smaller prediction discrepancy norm than OLS in 1000 repeated trials.

4. Boston Dataset Analysis

In this section, the Boston house price dataset is analyzed, which was initially pre-
sented by [69] in their hedonic analysis of the demand for clean air. It is popular and has
been used in many studies, such as robust estimation [70,71], residual normality analy-
sis [72], and non-parametric estimation [73,74]. The original data of n = 506 census tracts
were published by [75] and found to contain several incorrectly coded observations. In our
experiment, the corrected dataset provided by [76] is utilized. The descriptions of the
dependent and m = 13 independent variables in the dataset are listed in Table 1.

Table 1. Definitions of dependent and independent variables.

Variable Definitions

Dependent variable
LMV logarithm of median price for owner-occupied houses in each census tract
Independent variable
CRIM per capita crime rate by town
ZN proportion of a town’s residential land zoned for lots over 25,000 square feet
INDUS proportion of nonretail business acres per town
CHAS Charles River dummy variable (=1 if tract bounds river; 0 otherwise)
NOXSQ nitrogen oxide concentration (parts per hundred million) squared
RMSQ average number of rooms per dwelling squared
AGE proportion of owner-occupied units built prior to 1940
DIS logarithm of weighted distances to five Boston employment centers
RAD logarithm of index of accessibility to radial highways
TAX full-value property tax rate per 10,000
PTRATIO pupil–teacher ratio by tract
B 1000(Bk− 0.63)2, where Bk is the proportion of black residents
LSTAT logarithm of the proportion of the population that is of lower status

To implement TLS, we have to first determine the cofactor matrix QA. The values of
LSTAT and CRIM are likely to have large uncertainty as the socioeconomic indicators are of-
ten determined based on sample surveys, which are susceptible to sampling and recording
biases. In contrast, the variable CHAS is deemed almost fixed, primarily because it is based
on clear geographical features with minimal variability and subjectivity. The uncertainty of
the remaining variables, which is caused by factors such as outdated data or limitations in
measurement methods, is assumed to be the same. Given the uncertainty in the variables,
we subjectively set Qy = In and QA = v⊗ In with
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v = diag{0, 1, 0.1, 0.1, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1}.

The OLS method and the TLS method are applied and compared in the following three
cases: (1) σ2 = 0.102, σ2

A = 0.022; (2) σ2 = 0.102, σ2
A = 0.062; (3) σ2 = 0.102, σ2

A = 0.102.
The parameter estimates, the corresponding t-statistic values (in parentheses), and

other performance indicators are reported in Table 2. For the overall fitting results, with
these two different model setup assumptions, the following can be observed.

1. The parameter estimates differ. The norms ∥β̂
OLS
− β̂

TLS
∥2 in the three cases are 0.0151,

0.1548, and 0.5659, which show that the difference between OLS and TLS becomes
significant as the noise level of the design matrix increases.

2. The significance analysis of the parameters differs. For the first two cases, OLS and
TLS identify the same significant parameters. However, for the third case, TLS regards
AGE while OLS does not.

3. TLS fits the data better than OLS. For R2 and R2
adj, TLS produces a higher value

than OLS, indicating stronger explanatory power for the observed data; for VF, TLS
produces a lower value than OLS, indicating a closer fit to the observed data; for the
F-test statistic, indicative of the overall significance of the regression, TLS produces
a higher value than OLS, reinforcing the evidence of a statistically sounder model.
It is worth mentioning that the effects of EIV on the VF have been systematically
investigated by [77]. He shows that OLS always overestimates the VF, which verifies
our conclusion.

Table 2. Estimation results produced by OLS and TLS in three cases (coefficients and test statistics
marked with *** and ** are significant at the 99% and 95% levels, respectively).

OLS
TLS

σA = 0.02 σA = 0.06 σA = 0.10

Parameter Estimates

CONSTANT 2.83601 *** 2.83801 *** 2.86409 *** 2.9968 ***
(19.22) (19.24) (19.33) (19.45)

CRIM −0.01177 *** −0.01177 *** −0.01176 *** −0.01187 ***
(−9.59) (−9.59) (−9.54) (−9.27)

ZN 0.00009 0.00009 0.0007 0.0003
(0.18) (0.11) (0.13) (0.05)

INDUS 0.00018 0.00026 0.00099 0.00293
(0.08) (0.11) (2.74) (1.20)

CHAS 0.09213 *** 0.09188 *** 0.09011 *** 0.08887 ***
(2.81) (2.81) (2.74) (2.60)

NOXSQ −0.63724 *** −0.65158 *** −0.78409 *** −1.16814 ***
(−5.71) (−5.84) (−6.98) (−9.81)

RMSQ 0.00626 *** 0.00610 *** 0.00480 *** 0.00219
(4.83) (4.71) (3.69) (1.61)

AGE 0.00007 0.00012 0.00049 0.00130 **
(0.14) (0.22) (0.94) (2.39)

DIS −0.19784 *** −0.19912 *** −0.21104 *** −0.24723 ***
(−6.01) (−6.05) (−6.38) (−7.18)

RAD 0.08957 *** 0.08999 *** 0.09372 *** 0.10329 ***
(4.75) (4.77) (4.94) (5.25)

TAX −0.00042 *** −0.00042 *** −0.00040 *** −0.0035 ***
(−3.46) (−3.45) (−3.28) (−2.76)

PTRATIO −0.02960 *** −0.02975 *** −0.03124 *** −0.03592 ***
(−5.99) (−6.02) (−6.29) (−6.95)

B 0.00036 *** 0.00036 *** 0.00032 *** 0.00024 ***
(3.55) (3.51) (3.15) (2.30)

LSTAT −0.37489 *** −0.37901 *** −0.41227 *** −0.47404 ***
(−15.20) (−15.37) (−16.60) (−18.13)



ISPRS Int. J. Geo-Inf. 2024, 13, 159 12 of 21

Table 2. Cont.

OLS
TLS

σA = 0.02 σA = 0.06 σA = 0.10

Performance Indicators
R2 0.8108 0.8122 0.8240 0.8496
R2

adj 0.8054 0.8072 0.8194 0.8456
σ̂ 1.7994 1.7926 1.7351 1.6041
F-test statistic 162.1439 163.6525 177.2467 213.7848

Next, we further analyze the results for different parameters. (i) In all three cases, CRIM,
DIS, RAD, TAX, and PTRATIO are regarded as significant. It shows a stable and robust
relationship between them and the other dependent variables. (ii) For NOXSQ, as we vary
σA, both the coefficient value and t-statistic dramatically change. This suggests that NOXSQ
is a relatively sensitive parameter. It coincides with the analysis in previous work [69] since
such a model is formed mainly to investigate the effects of the nitrogen oxide concentration.
(iii) For AGE, the significance analysis results are completely different from these model
assumptions. This result is consistent with the conclusion of [78], from which we can infer
the following reason: older houses are often located in areas closer to urban centers, which
may be associated with lower status. Therefore, AGE as a variable demonstrates complex
interaction effects, and its significance is subject to change as σA increases. TLS and LS yield
different significant analysis results because TLS accounts for errors in all variables, leading
to different parameter estimates and posterior variances compared to LS. This discrepancy
impacts the statistical testing results, as shown in our previous study [67].

The squared residuals are depicted in Figure 4, from which we can see that (1) compared
with OLS, TLS has a smaller mean value of squared residuals. Specifically, as increases,
the average squared residual of TLS decreases significantly. In the case of σA, the mean
squared residual of TLS is about 41.94% lower than that of OLS. (2) The squared residuals of
TLS are more concentrated. In the interval of residual squared values from 0 to 0.10, the OLS
and the TLS with different σA contain 470 (91.70%), 471 (93.08%), 475 (93.87%), and 491 (97.04%)
points, respectively. (3) OLS produces some extreme residuals; in contrast, TLS, particularly
with σA = 0.06 and σA = 0.10, appears to constrain these extreme residuals more effectively.
This indicates that TLS is more appropriate to handle these extreme observed values. (4)
It can be seen from the shape of the violin plot in the TLS model that as σA increases, the
kernel density estimate (KDE) shows that most of the squared residuals are more concentrated
around the median, indicating less variability and more stable model performance.

Figure 4. Distributions of squared residuals and the corresponding half violin plots for OLS and TLS in
three cases.
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5. Practical Tests and Analysis

In this section, “Guanshan Boulevard” of Wuhan is utilized as the study area. The data
were manually collected from unrestricted public domains. In addition to parameter
estimation, we also analyzed their performance in house price prediction.

5.1. Study Area and Data Source

The studied real estate market is on Guanshan Boulevard in Wuhan, China, whose
area is roughly 4.11 square kilometers; see Figure 5. As the employment population
grows, the real estate market experiences a boost, creating a mutually reinforcing cycle
of development.

  

 

 Residential community of observation points

 

Study area

Metro

Hospital

Legend

Figure 5. Study area in Guanshan Boulevard.

The listing price of the house and some of the house characteristics are obtained
from the Lianjia website (http://www.lianjia.com/, accessed on 23 November 2023) and
the AMAP website (http://www.amap.com/, accessed on 23 November 2023). To avoid
potential biases caused by real estate market segmentation, the selected residential samples
are all commercial projects. Low-rent housing provided by the government as social welfare
is not included in the study. In addition, our study only includes closed high-rise residential
buildings, excluding villas and bungalows located in the study area. Records with missing
data for any feature were removed from the dataset. All data points were recorded from
June 2022 to November 2023.

5.2. Data Preparation

For the independent variables, we initially collected a series of variables to capture the
residential characteristics, referencing mainstream variables [1,2,79,80] and adapting them
to the local real estate market.

• Structural attributes. We select management fees, the ratio of elevators to residents,
the ratio of parking spaces to residents, the total number of functional rooms, the
living room orientation, the building type, the housing year, the green space rate,
and the building’s floor area ratio.

http://www.lianjia.com/
http://www.amap.com/
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• Neighborhood attributes. To account for the educational level, we compile diverse
data points (number, distance, and quality) for kindergartens, primary schools, and
middle schools. For medical services, we assess the distance to the nearest tertiary
hospital. For commercial services, we evaluate the availability of nearby supermarkets,
malls, and other amenities. For the level of leisure, we count the parks and attractions
within a 3 kilometer radius of the residential community.

• Locational attributes. We only select the logarithm of the distance (m) to the nearest
metro station and bus station. This is because all house samples are within a small
area, and their external location factors, such as the distance to the Wuhan Central
Business District (CBD) or distance to large landscapes (East Lake, etc.), do not show
significant changes.

For the dependent variables (i.e., the house price), we have the following three preprocess-
ing steps. (1) Unit price calculation. House prices are preprocessed by calculating the unit
price in yuan per square meter from the total listing price and building area. (2) Floor-level
standardization. To mitigate the nonlinear effects of the floor levels, the prices are stan-
dardized across different floors using a correction coefficient, following the local guidelines
specific to floor-level adjustments. (3) Transaction date adjustment. The transaction dates
are adjusted using the average price change rate, converting each transaction’s unit price
into the valuation time point’s value.

During the exploratory data analysis, we evaluate the significance of each independent
variable using p-values and address potential collinearity by calculating variance inflation
factors. We meticulously screen the housing characteristic variables pertinent to our study
area. In the end, a refined set of m = 10 characteristic variables is selected to construct our
HPM; see Table 3.

Table 3. Definitions of variables in the example of the Wuhan dataset.

Variable Variable Definition and Measurement Method Mean Std. Sign

Dependent variable
PRICE Logarithm of preprocessed price (yuan) 10.0727 0.2319 \
Structural attributes
NROOMS Total number of functional rooms 6.9450 1.4220 +
BUILDINGTYPE Building types, including tower blocks (=1), slab blocks (=3), and a combina-

tion of the two (=2)
1.9450 0.6196 +

FEE Property management fees (yuan/Mon·m2 ) 2.5029 1.1969 +
RPARKING Ratio of the number of parking spaces to the number of residential units 0.9289 0.6180 +
RGREENING 100(G− 0.30)2, where G is the rate of green space in residential areas 0.4747 0.6229 +
PSCHOOL Score based on the number, quality, and distance of primary schools around

the house, from the Lianjia website
8.5980 0.2848 +

MSCHOOL Logarithm of distance (m) to the nearest middle school 7.1029 0.3433 −
DHOSPITAL Logarithm of distance (m) to the nearest hospital 7.1623 0.6802 Unknown
COMMERCIAL Score based on the quantity and quality of supermarkets, shopping malls,

and other facilities near residential areas, from the AMAP website
2.2235 0.4443 +

DISTANCE Logarithm of distance (m) to the nearest metro station 6.6057 0.6557 −

5.3. Parameter Estimation

In this part, we have a total of n = 200 house transaction sample points. We use
the actual values (i.e., numerical data) for some variables, rather than converting them
into categories or levels (i.e., categorical data), to avoid subjectivity when dividing levels.
Despite this, the characteristic variables still exhibit varying levels of noise, which is
attributed to the limitations and ambiguities in publicly available information. For instance,
the “distance to the nearest hospital” may not be individually measured for each property
but is instead represented by the average distance from the entire neighborhood, which
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fails to accurately reflect the attributes of individual properties. Based on a comprehensive
analysis of the accuracy of the obtained data, we set QA = v⊗ In with

v = diag{0, 0.1, 0.1, 0.2, 0.3, 0.2, 0.1, 0.4, 0.4, 0.1, 0.4}.

The results for parameter estimation are shown in Table 4. At the 99% confidence level,
the critical F-distribution value for the corresponding degrees of freedom is 2.41594. The
F-test statistic values for the OLS and TLS methods in this HPM are 82.0777 and 87.7251,
respectively, far exceeding this threshold and thereby demonstrating the effectiveness of the
HPM. From the results of the remaining performance indicators, the TLS method produces
a higher R2 and R2

adj and a lower VF than the OLS method. It indicates that TLS better fits
the model, which is consistent with the conclusion drawn for the Boston dataset.

Table 4. Estimation results produced by OLS and TLS in the real data (coefficients and test statistics
marked with ***, **, and * are statistically significant at the 99%, 95%, and 90% levels, respectively).

OLS TLS

Parameter Estimates
NROOMS 0.0223 *** 0.0223 ***
BUILDINGTYPE 0.0599 *** 0.0592 ***
FEE 0.1439 *** 0.1412 ***
RPARKING 0.0196 0.0226
RGREENING 0.0488 *** 0.0506 ***
PSCHOOL 0.3832 *** 0.4111 ***
MSCHOOL −0.0804 −0.1053**
DHOSPITAL 0.2486 *** 0.2894 ***
COMMERCIAL 0.0809 *** 0.0780 **
DISTANCE −0.0642 * −0.0892 ***
Constant 5.1399 *** 4.9615 ***

Performance Indicators
R2 0.8128 0.8227
R2

adj 0.8029 0.8134
σ̂ 1.0294 1.0017
F-test statistic 82.0777 87.7251

For the estimates of the parameters, in this study area, (1) these two methods regard
the following parameters as significant: PSCHOOL, DHOSPITAL, FEE, COMMERCIAL,
RPARKING, BUILDINGTYPE, RGREENING, and NROOMS. This suggests that the im-
portance of these factors in the real estate market is generally recognized. On the contrary,
the impact of RPARKING on housing prices, which is usually considered important, is
relatively small in this area. The reason may be that residents prefer to park their vehicles
in areas with no parking fees, such as on the streets outside the community. This preference
leads to a reduced demand for parking spaces within the community among residents,
thereby diminishing the influence of onsite parking facilities on property values in this
region. (2) However, MSCHOOL and DISTANCE show different results in the two models:
(i) MSCHOOL is significant in TLS (−0.1053 **) but not in OLS (−0.0804). The premium on
housing prices due to educational resources is primarily a result of the “Nearby Enrollment”
policy (i.e., students attend schools based on their residential location). Therefore, homes in
districts with high-quality education are particularly favored by parents. This is especially
true for primary schools, where enrollment strictly depends on the residential address.
For middle schools, while many well-known ones require entrance exams, reducing the
impact of the location, the need to shorten children’s commuting times and boost the
chances of entering a top-tier school at the next educational level still results in a premium
for housing near middle schools. Thus, both primary and middle schools (i.e., the com-
pulsory education stage) exhibit a significant school district effect, directly contributing to
the rise in housing prices. This aligns with the findings of some Chinese scholars [19,81].
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(ii) For DISTANCE, TLS indicates greater significance (−0.0892 ***) than OLS (−0.0642 *).
Despite our study area being relatively small and having generally good traffic, this does
not diminish the significant impact of accessibility on housing prices, even in areas with
well-developed transportation.

The different methods always yield a different understanding of the determinants of
real estate values. In this experiment, by considering the randomness of the dependent
variables, we can see that TLS gains more insights than OLS in factors like MSCHOOL
and DISTANCE.

5.4. Price Prediction

Besides analyzing the influence on property prices, we further collected 90 points
yp,i together with the dependent variables contained in ap,i (i = 1, · · · , 80) to test the
performance in prediction. Based on the previously estimated parameters (i.e., Table 4), the
predicted prices can be obtained as ỹp,i = aTp,i β̂. By comparing the predicted values with
the observed values yp,i, we can calculate the relative error

REi = (ỹp,i − yp,i)/yp,i i = 1, · · · , 80.

The summary statistics of the relative errors are presented in Table 5. In addition, the fre-
quency histograms (together with the KDE) and the boxplots of the relative errors are
shown in Figure 6.
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Figure 6. The relative errors: (a) the frequency histograms (together with the KDE); (b) the boxplots.

From these results, we can see that (1) in Table 5, most quantities corresponding to TLS
are slightly smaller than those of OLS. To be more specific, for 62.50% of the sampled points,
TLS provides a more accurate predicted value. (2) For OLS, the relative errors range from
0.07% to 1.94%, while those of TLS range from 0.02% to 1.83%, which shows a marginally
narrower range. (3) Both methods show similar patterns in the RE distribution, primarily
concentrated in the lower error ranges. However, we can also see that the frequency of TLS
is smaller than that of OLS with a higher relative error (i.e., the last hist in the histogram),
suggesting that TLS could offer greater robustness in certain scenarios.

Therefore, TLS slightly outperforms (or is at least comparable to) OLS in terms of
prediction accuracy. Let us then attempt to analyze such a phenomenon from a theoretical
perspective. We denote the estimation discrepancy as ϵ = β̂ − β; then, we have the
prediction discrepancy

ϵp,i = ỹp,i − yp,i

= aTp,i β̂− (ap,i − ep,ai)
T(β̂− ϵ)− ep,i

= aTp,iϵ + eTp,aiβ− ep,i,

(30)
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where ep,ai and ep,i are random errors corresponding to ap,i and yp,i, respectively, i.e., yp −
ep,i = (ap,i − ep,ai)

Tβ. Provided that the training observations are statistically independent
of the validation observations, taking the expectation of ϵp,i yields the prediction bias

E{ϵp,i} = āTp,iE{ϵ} (31)

From such an expression, we can see that although TLS has a smaller estimation bias norm
(i.e., ∥E{ϵ}∥2), it may not be guaranteed to produce a smaller prediction bias because of
the combination āTp,i. In addition, in one single experiment, the prediction discrepancy
additionally relies on the uncertainty of the dependent variable ap,i and the uncertainty
of yp,i. Therefore, although TLS greatly outperforms OLS in parameter estimation, its
advantage in prediction is marginal, even in simulations.

Table 5. The summary statistics of the relative errors.

Statistic RE (OLS) RE (TLS)

Mean 0.74% 0.72%
STD 0.46% 0.44%
Min 0.07% 0.02%
25% quantile 0.36% 0.37%
50% quantile 0.71% 0.70%
75% quantile 0.97% 0.96%
Max 1.94% 1.83%

6. Discussion

In the simulations, the noise levels were systematically explored by designing ex-
periments with a fixed σ and incrementally increasing σA. TLS demonstrates stronger
explanatory power and a closer fit to the observed data. The RMSE is significantly reduced,
with improvements exceeding 70% for the sum of the RMSEs at σA = 0.20. Notably, even
the estimates of non-stochastic parameters are influenced by the randomness of other
variables. A comparison of the TLS and LS results confirms the following.

• For parameter estimation, TLS consistently achieves a higher R2 and R2
adj, a lower VF,

and a higher F-test statistic in the analysis of both the Boston and Wuhan datasets.
This performance demonstrates that TLS has stronger explanatory power and a closer
fit to the observed data. Furthermore, TLS also aligns more closely with the findings
from previous studies [19,69,78,81]. Importantly, TLS effectively bounds extreme
data points, enhancing the reliability of the estimates. Moreover, TLS highlights
the importance of factors such as educational resources for middle schools and the
proximity to metro stations, which OLS tends to underestimate in the Wuhan dataset.

• For price prediction, the performance advantage of TLS over OLS diminishes with
increasing uncertainty (i.e., larger σA) in the simulations. This performance is also
evident in the Wuhan dataset, in which TLS outperforms OLS in 62.50% of the obser-
vations, and most statistics of the relative errors are slightly better. We consider that
the limited advantage is believed to stem from the additional prediction discrepancies
that depend on the uncertainties of the dependent and independent variables.

In the real examples, similar conclusions can be drawn. One may note the minor
increase in R2 observed when applying TLS compared to OLS, which can be attributed to
three main factors. (1) The similarity of the magnitude of R2 does not imply the similarity
of the estimation results. From the definition of R2, we can see that it only considers the
estimated parameters, while the uncertainty of the data (or the difference in the posterior
precision) is completely ignored. In [67], it is shown that LS tends to be optimistic about the
precision assessment. Thus, in the real example, we can see that although the improvement
in R2 seems to be marginal, the significance analysis results are very different. (2) A higher
R2 does not always indicate better performance. By assuming a higher noise level in the
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coefficient matrix, the improvement ratio is expected to increase. However, this might not
yield meaningful results and could potentially result in overfitting. (3) The enhancements
in TLS over LS are significantly influenced by the noise levels in the coefficient matrix.
Despite the minimal changes in R2, substantial gains in other metrics, such as the RMSE and
variance factor, are evident. Collectively, these points demonstrate that the advancements
provided by TLS are both substantive and beneficial.

7. Conclusions and Outlook

This article introduces an advanced approach to analyzing housing prices using TLS
estimation within the HPM. It comprehensively addresses errors in the dependent and
independent variables, making it suitable for real estate data characterized by measurement
inaccuracies and subjectivity. In addition, the Gauss–Newton-type iterative algorithm is
derived, and the posterior precision assessment is given.

In both the simulated and real examples, the application of TLS in the HPM is shown
to enhance the explanatory power and accuracy of the model. Our work enriches the HPM
framework; it not only facilitates a thorough analysis of the relevant variables but more
accurately assesses their significant impacts. This helps us to navigate the complexities of
the real estate market and make more informed decisions.

The formulation presented in this paper has the potential to consider correlations.
The consideration of spatial effects (such as spatial autocorrelation and heterogeneity)
is necessary for spatial data analysis [82–84]. In our formulation, we will next take into
account some assumptions about the covariance matrix Σ to consider the spatial correlations
among the sampled points and even the cross-correlations between the dependent and
independent variables. This will be part of our future research, aimed to refine our method.
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Appendix A

The Lagrangian of TLS reads

Φ(η, β, λ) = eTQ−1e + λT(y−Aβ− Be), (A1)

where λ is an n-vector of Lagrange multipliers.
The Euler–Lagrange conditions read

1
2

∂Φ
∂β

∣∣∣∣
β̂,ê,λ̂

= −ATλ̂ + ÊTλ̂ = 0 (A2)

1
2

∂Φ
∂e

∣∣∣∣
β̂,ê,λ̂

= Q−1ê− B̂Tλ̂ = 0 (A3)

1
2

∂Φ
∂λ

∣∣∣∣
β̂,ê

= y−Aβ̂− B̂ê = 0. (A4)
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From (A3), we can obtain the residual vector

ê = QB̂Tλ̂. (A5)

Reshaping the residual vector (A5), we can obtain

[ Ê êy ] = vec−1
n,m+2ê

=
(
(vecIm+2)

T ⊗ In

)
(Im+2 ⊗ ê),

(A6)

where vec−1
n,m+2(·) is the inverse operator of vec(·), i.e., restructuring an n× (m + 2) matrix

from an (nm + 2n)-vector.
Inserting (A5) into (A4) yields

λ̂ = Q̂−1
B (y−Aβ̂), (A7)

where Q̂B = B̂QB̂T. Backsubstituting it into (A2) yields

β̂
TLS

= (ÂTQ̂−1
B Â)−1ÂTQ̂−1

B (y− Êβ̂), (A8)

where Â = A− Ê.
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