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Abstract: Oil palm cultivation thrives as a prominent agricultural endeavor within the southern
region of Thailand, where the country ranks third globally in production, following Malaysia and
Indonesia. The assessment of oil palm bunch ripeness serves various purposes, notably in determining
purchasing prices, pre-harvest evaluations, and evaluating the impacts of disasters or low market
prices. Presently, two predominant methods are employed for this assessment, namely human
evaluation, and machine learning for ripeness classification. Human assessment, while boasting high
accuracy, necessitates the involvement of farmers or experts, resulting in prolonged processing times,
especially when dealing with extensive datasets or dispersed fields. Conversely, machine learning,
although capable of accurately classifying harvested oil palm bunches, faces limitations concerning
its inability to process images of oil palm bunches on trees and the absence of a platform for on-tree
ripeness classification. Considering these challenges, this study introduces the development of a
classification platform leveraging machine learning (deep learning) in conjunction with geospatial
analysis and visualization to ascertain the ripeness of oil palm bunches while they are still on the tree.
The research outcomes demonstrate that oil palm bunch ripeness can be accurately and efficiently
classified using a mobile device, achieving an impressive accuracy rate of 99.89% with a training
dataset comprising 8779 images and a validation accuracy of 96.12% with 1160 images. Furthermore,
the proposed platform facilitates the management and processing of spatial data by comparing
coordinates derived from images with oil palm plantation data obtained through crowdsourcing
and the analysis of cloud or satellite images of oil palm plantations. This comprehensive platform
not only provides a robust model for ripeness assessment but also offers potential applications in
government management contexts, particularly in scenarios necessitating real-time information on
harvesting status and oil palm plantation conditions.

Keywords: oil palm ripeness classification; deep learning; geospatial analysis; geospatial platform

1. Introduction

Oil palm stands as a pivotal economic crop within Southern Thailand [1-3], as well
as in neighboring countries such as Indonesia and Malaysia [4,5], where it serves as the
primary source of income for local farmers. Typically, oil palm follows a harvest cycle
occurring every 15-20 days, a timeline subject to variation based on the specific harvest
schedules of each oil palm plantation under usual circumstances. However, the global
landscape currently grapples with erratic climate patterns [6-8], leading to a range of
calamities such as flooding that impede the farmers’ harvesting capabilities. In instances of
severe flooding or extended periods of such conditions, production becomes unfeasible.
This challenge is further compounded by palm oil purchasing yards and factories halting
procurement due to transportation issues preventing the delivery of products to palm
oil refineries [9-11]. Consequently, oil palm production often endures declines in market
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prices, adversely impacting the livelihoods of farmers [12-14]. Presently, the government
has implemented a measure for farmer income insurance [2,15,16], reliant on available
farmer registration data that documents the size of each garden plot. However, this data
may not consistently align with the actual harvesting cycles of respective areas. The current
relief processes for farmers, both in cases of disasters and lowered prices, continue to
rely on manual inspection methods and non-real-time data checks. The absence of an
application or platform for recording and monitoring oil palm plantation data in real time
poses a challenge, particularly in scenarios where products have yet to be harvested.

A comprehensive review of the related literature and research reveals the utilization
of machine learning techniques for processing images to determine the ripeness levels of
harvested oil palm fruits, categorized into multiple levels to aid in sorting and assessing the
quality of factory purchases for setting purchase prices [17-30]. Notably, the evaluation of
classification accuracy demonstrates the high precision achieved through machine learning,
particularly with the application of deep learning algorithms [18-26]. However, despite
these advancements, the analysis underscores several limitations in existing research. No-
tably, the absence of an application or platform capable of real-time data processing [17-26],
reliance on a limited number of datasets for model creation leading to potential overfitting
issues in practical scenarios [17,21-23,28,29], and the lack of clarity regarding the num-
ber of datasets used for modeling and testing [24,25]. Furthermore, the digital images
employed for classification predominantly feature harvested oil palm fruit with intact
backgrounds, rendering them unsuitable for on-tree oil palm fruit classification [17-26].
While some research endeavors have proposed the development of real-time monitoring
applications for oil palm fruit ripeness [30], these initiatives are not without limitations, as
the proposed models remain static and unmodifiable, potentially impacting their accuracy
during real-world applications. Considering these identified limitations within existing
research paradigms and operational methods, this study introduces the development of
a platform designed for inspecting the ripeness of oil palm fruits while they are still on
trees. This platform integrates deep learning algorithms with geospatial analysis, enabling
real-time inspection and display of inspection results. Consequently, this platform holds
significant potential for applications in government management contexts, particularly
in facilitating relief efforts or budget allocations. Additionally, it provides farmers with
a direct channel for real-time information dissemination, enhancing their ability to make
informed decisions.

2. Review of Related Literature
2.1. Oil Palm Ripeness Classification Using Machine Learning

A comprehensive review of literature and research pertaining to the utilization of
machine learning and deep learning in the classification and assessment of oil palm fruit or
bunch ripeness revealed the adoption of both classical machine learning [26-30] and deep
learning [17] techniques. The findings from this investigation indicate that deep learning
methodologies generally outperform other machine learning algorithms in accurately clas-
sifying the ripeness of oil palm bunches. However, classical machine learning approaches
demonstrate comparable high accuracy, with the added advantage of shorter training times
and less stringent hardware requirements, as they do not necessitate Graphical Processing
Units (GPUs) or Tensor Processing Units (TPUs) for processing and can function effectively
on less efficient computational platforms. Previous research has proposed various classical
machine learning methods, such as Artificial Neural Networks (ANN), K-Nearest Neigh-
bors (KNN), Support Vector Machines (SVM), Naive Bayes, Regression, Decision Tree (DT),
and Fuzzy Logic, for assessing the ripeness of oil palm fruit bunches or fruits, in comparison
with Convolutional Neural Networks (CNN). Although studies have highlighted CNN'’s
superior classification accuracy [26], many prior investigations utilizing machine learning
algorithms like KNN, SVM, and ANN have achieved remarkably high accuracy rates
in classifying oil palm fruits or bunch ripeness, ranging between 97% and 100% [27-30].
Regarding the application of deep learning in classifying and detecting the ripeness of
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bunches or oil palm fruits, the analysis reveals a classification accuracy stratified into the
following three levels: very accurate (accuracy exceeding 95%) [24,25], highly accurate
(accuracy ranging between 80% and 94%), and moderately accurate (accuracy between
60% and 79%) [22,23], with the majority of outcomes falling within the highly accurate
range. Disparities observed among previous studies indicate that classification accuracy
is contingent upon several factors, including the size of training, testing, and validation
datasets. For instance, studies employing small training datasets (comprising fewer than
1000 images) yield moderate to high classification accuracy [17-20]. Additionally, the choice
of CNN algorithm significantly influences classification accuracy, with certain algorithms,
such as YoLo, exhibiting notably high accuracy rates [18-20], albeit primarily designed
for detection rather than classification tasks. Moreover, the number of classes classified
also impacts classification accuracy; for instance, studies encompassing seven classes but
utilizing small training datasets yield suboptimal accuracy [23].

Upon scrutinizing prior research, both classical machine learning and deep learning
exhibit notable strengths, particularly their capability to achieve very high classification
accuracy when applied in real-world scenarios. The utilization of extensive and inclusive
modeling datasets enables their deployment in practical contexts, with the assessment
of accuracy facilitated by k-fold cross-validation, thereby mitigating overfitting concerns.
However, limitations arise from the absence of support for classifying photographs of oil
palm bunches on trees or unharvested crops in most previous studies and presentations.
This deficiency stems from the exclusive utilization of datasets comprising videos or images
of harvested oil palm bunches [17-29]. Furthermore, certain studies do not facilitate real-
time image processing using smartphones or mobile devices [20,24], and the limited size
of datasets employed for model creation and testing adversely impacts the reliability and
accuracy of the model [20-23,27-29]. Moreover, research endeavors that focus on the
development of applications or platforms for classifying the ripeness of oil palm bunches
typically employ machine learning algorithms, notably ANN. For instance, one study
utilized a dataset comprising 8485 images, achieving a classification accuracy of 93.19%.
While such applications demonstrate robust classification accuracy, their drawbacks include
the variability introduced by using diverse smartphones or mobile devices, thereby affecting
classification accuracy. Additionally, these applications lack mechanisms to update the
model as additional data becomes available. Notably, the modeling and testing datasets
predominantly consist of images of harvested oil palm bunches exclusively. Furthermore,
the absence of Geographic Information Systems (GIS) and Global Positioning System (GPS)
usage for verifying the location coordinates of oil palm plantations renders it challenging to
ascertain the specific plantation area or plot to which the classification results pertain [30].

2.2. Oil Palm Plantation Management Using GIS and Remote Sensing

In a systematic literature review of oil palm plantation management, the prevailing
use of GIS, Remote Sensing (RS), and machine learning methodologies is evident for
classifying plantation areas [31-36]. Notably, one study achieved enhanced accuracy in
classifying palm oil plantation areas using satellite imagery, particularly Sentinel-1 and
Sentinel-2, coupled with the Random Forest (RF) algorithm, achieving a 90.3% classification
accuracy [36]. Additionally, the classification of o0il palm plantation areas using Unmanned
Aerial Vehicles (UAVs) with a 5 cm image resolution is discussed. This method employs
Rule-based Classification to distinguish between vegetation and non-vegetation based on
the Normalized Difference Vegetation Index (NDVI), followed by the KNN technique to
further classify vegetation types, achieving an 89% accuracy [37]. Furthermore, GIS and RS
technologies have been applied to disease detection in o0il palms, particularly in the Khlong
Thom District of Krabi Province. Utilizing World View-2 satellite images and the Maximum
Likelihood Classification algorithm, an 85.9% detection accuracy for monitoring disease
occurrences in oil palm plants was reported [38]. Regarding oil palm yield estimation,
various index values, including NDVI, Soil Adjusted Vegetation Index (SAVI), and Ratio
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Vegetation Index (RVI), have been employed, although specific accuracy evaluation results
were not provided [39].

The review underscores GIS’s capability to classify oil palm plantation areas and its
potential efficiently and accurately for integration with other datasets to facilitate com-
prehensive plantation management, such as planning transportation routes and creating
spatial databases [40]. Moreover, the integration of RS and GIS with machine learning and
deep learning techniques has been extensively explored in literature and research, with
diverse applications including classification of plantation areas, disease detection, age as-
sessment, biomass and carbon estimation, tree counting, suitability analysis for plantation
areas, and harvesting recommendations [41]. Additionally, RS and Artificial Intelligence
(AI) technologies have been utilized for various applications, including counting oil palm
trees, estimating tree health and height, forecasting yield, classifying ripeness levels of
oil palm bunches, and developing web applications for displaying oil palm plantation
areas [42]. These findings highlight the multifaceted role of technology in enhancing oil
palm plantation management practices.

3. Materials and Methods

This research introduces the development of a platform or application designed to
monitor the ripeness of oil palm bunches utilizing machine learning in conjunction with
real-time geospatial analysis and visualization. The conceptual framework of the research
is illustrated in Figure 1. The data utilized in this study are categorized into three parts,
namely spatial data, attribute data, and digital images. These data are sourced from
a variety of outlets including the Google Earth Engine Data Catalog, Google, and data
collection efforts from volunteers or crowd-sourced information, which are then stored in a
geospatial database format for utilization in platform or application development through
coding or Application Programming Interface (API). The querying of data from all three
sources enables the retrieval of spatial, attribute, and digital image data for subsequent
geospatial analysis and visualization processes. Various machine learning algorithms are
applied to process the data, with the aim of identifying the most accurate algorithm to
be incorporated into the development of an application designed to classify the ripeness
of oil palm bunches still on the tree or yet to be harvested. This information is intended
for government agencies, aiding in budget planning and the allocation of relief funds in
scenarios such as mitigating the effects of hindrances to harvesting, such as flooding, or
helping in the case of low-priced produce. The research outcomes are presented through
a geospatial application, displaying the coordinates of confirmed oil palm sections by
cross-referencing data extracted from GPS equipment with results from satellite image
processing of oil palm plantation areas. This is complemented by data on the classification
of ripeness levels of oil palm bunches on trees, captured by farmers using the application.

3.1. Study Area

The study area for this research is the Lamae district, located in Chumphon province,
Southern Thailand (9.7593° N, 99.0350° E), as illustrated in Figure 2. In this region, farmers
primarily engage in palm oil plantations, which cover an extensive area of over 48,000 rai.
This makes oil palm the predominant crop in the area, surpassing even rubber planta-
tions. This agricultural landscape is consistent with the broader agricultural profile of the
Chumphon Province, where oil palm accounts for 46.03% of the total agricultural land. The
Lamae district is particularly prone to annual flooding, which significantly impacts the local
oil palm farmers. Hence, the Lamae district was chosen as the study area for data collection
to develop the proposed platform or application. Nevertheless, the methodologies and
applications presented in this research are applicable to other regions, both within Thailand
and internationally.
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3.2. Data Collection and Preparation

The data collection and preparation process in this study involve several steps. Firstly,
data is retrieved from the open data cloud server of the spatial data service provider.
Additionally, field visits to the study area are conducted to collect data using crowdsourcing
or Volunteered Geographic Information (VGI) methods, involving local stakeholders. The
data were utilized for analysis and comprised spatial data, attribute data, and digital
images. The specific details and sources of these data are presented in Table 1. These
datasets are utilized to classify the ripeness of oil palm bunches on the tree and to analyze
spatial data for the development of platforms or applications.

Table 1. Data and data source.

Data Type Data Source Processing Method
Google Satellite Map Spatial data Google API
Google Map Spatial data Google API
Oil Palm Plantation Location Spatial and Attribute data Crowdsource Geospatial Analysis
Oil Palm Bunch Images Image Crowdsource Geotag, Deep Learning
Oil Palm Plantation Map Spatial Data GEE Data Catalog API

3.3. Oil Palm Ripeness Classification

In previous studies that have utilized classical machine learning algorithms to classify
or detect the ripeness of oil palm bunches, several algorithms have demonstrated high
accuracy. Therefore, this study incorporates four classical machine learning algorithms
to explore the effects of preprocessing the input data through image embedding using
InceptionV3 before conducting image classification with the four machine learning algo-
rithms. This comparison with deep learning/CNN aims to offer guidance and alternative
options for application development, recognizing that in practical scenarios, CNN may
not always be feasible due to limitations in server or computer efficiency and resources
for image processing. Currently, one alternative for image classification involves using
pretrained models accessible through cloud services or APIs, which can be loaded for
utilization. However, limitations persist, as existing models may not encompass specialized
tasks like classifying the ripeness level of oil palm bunches on trees, and they may lack the
flexibility for modification and improvement. For instance, a pretrained model designed for
detection may not yield sufficient results when repurposed for classification, highlighting
the need for tailored model development and refinement for specific applications. This
ensures alignment with the stated objectives or goals and enhances the model’s accuracy
and applicability across desired contexts.

In this research, the classification of the ripeness of oil palm bunches utilized photos of
bunches that were still on the tree or yet to be harvested. This approach addresses a limita-
tion observed in previous studies, where support for images of oil palm bunches on the tree
was lacking. Furthermore, the assessment of ripeness of oil palm bunches on the tree has
various practical applications, such as providing relief during flooding or when faced with
low-priced produce, as well as aiding in harvesting decisions. For the dataset used in this
study, a total of 8779 images of oil palm bunches on the tree were collected. These images
were categorized into 4004 images representing unripe oil palm bunches and 4775 images
representing ripe ones. The classification task involved two target classes, namely Ripe
and Unripe. This study employs the K-fold cross-validation method to evaluate the model
performance of each algorithm. Specifically, 10-fold cross-validation is selected due to
its optimal performance and mitigation of overfitting issues when validating the model.
K-fold cross-validation aids in reducing the variance in model performance estimates by
averaging results across multiple folds. This is particularly crucial in deep learning, such
as CNN, where models are complex and prone to overfitting during training. By averaging
performance across multiple folds, variability in performance estimates is minimized, pro-
viding a more reliable assessment of the model’s generalization ability. Therefore, 10-fold
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Input image

cross-validation serves as a robust and efficient method for training and evaluating CNN
models, ensuring their effectiveness on unseen data, and facilitating effective generalization
to new samples. This study employs the image embedding procedure utilizing the Incep-
tionV3 model to preprocess the original image prior to conducting image classification
with all four machine learning algorithms. Image embedding involves the conversion of
images into numerical value vectors, facilitating the utilization of image data in vector
form. The resultant vectors from embedding are of high dimensionality and can intricately
represent image features, thereby enabling their use in training and evaluating machine
learning models or other image-related data processing tasks with enhanced efficiency.
The rationale behind selecting image embedding in this research is to leverage the model
trained with embedding to address image-related issues more effectively compared to
direct utilization of the original image. Figure 3a illustrates the process of classifying the
ripeness of oil palm bunches using four machine learning algorithms, while Figure 3b
presents the architecture of MobileNetV1. The algorithms used for classification included
CNN, RF, DT, KNN, and SVM. Various parameters were set to create the classification
model. Details of the parameters used for classification are presented in Table 2. In this
research, the CNN chosen for implementation is MobileNetV1. This model was selected
due to its design for deployment on devices with constrained processing resources, such
as smartphones or mobile devices. MobileNetV1 is known for its high processing speed,
making it particularly suitable for the development of a platform or application to classify
the ripeness of oil palm bunches on the tree.
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Figure 3. Oil Palm Ripe image classification methods: (a) machine learning using four algorithms
(b) deep learning.

Table 2. Training parameter detail.

Algorithms Epoch/Iteration/Other Learning Rate Kernel/Activation/Other Image Embedding
CNN Epoch =100, Batch Size = 32 0.01 RELU -
RF Number of Tree = 10 0.01 - InceptionV3
DT Maximum Tree = 100 0.01 Induce binary tree InceptionV3
KNN Number of neighbors = 5 - Euclidean/Uniform Incept}onV3
InceptionV3
SVM Iteration = 100 0.01 RBF InceptionV3

3.4. Accuracy Assessment

The evaluation metrics used in this assessment include accuracy, F-measure, precision,
and recall, as defined by the equations presented in Table 3. These metrics provide a
comprehensive understanding of the model’s performance in classifying the ripeness of oil
palm bunches.

Table 3. Evaluation equations.

Evaluation Method Equation Remark
Accuracy (TP + TN)/(TP + TN + FP + FN) TP is True Positive
F-measure (2*Precision*Recall) / (Precision + Recall) TN is True Negative
Precision (TP/(TP + FP)) FP is False Positive
Recall (TP/(TP + FN)) FN is False Negative

3.5. System Analysis and Design

The system analysis and design in this research are presented through a use case
diagram, as depicted in Figure 4. The following two main user groups interact with the
platform or application: general users or farmers, and officers or administrators. General
users or farmers have the capability to utilize the application for managing their oil palm
plantation data (Oil-Palm Plantation Data Manipulation). Within the data management
functionality, Geolocation is invoked to retrieve latitude and longitude coordinates of
the oil palm plantation from the GPS device in the user’s mobile device. Additionally,
they can capture images of oil palm bunches on trees to classify the ripeness of the oil
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General User/Farmer

Officer/Administrator

palm (Oil-Palm Ripe Classification). Geotag images are employed to extract latitude and
longitude information from the photos for this purpose. Authentication is required for
general users or farmers to verify their identity. Similarly, officers or administrators have
access to the application with the same functionalities as general users or farmers. The
model implemented in the system is designed to be updatable for classifying the ripeness
of oil palm bunches. This allows for the improvement of the model’s accuracy as the
dataset size increases. Furthermore, it enables the application to incorporate geospatial
data visualization. Geofencing is employed to process and display the distance to the
surrounding area based on the current radius of the plantation location provided by the
user. This information is compared with the Oil-Palm Plantation Classification data to
validate that the reported area is indeed an oil palm plantation. The system also utilizes
Heatmap to visually represent the density of oil palm plantation locations reported by
farmers. Overlay Layers are used to display relevant spatial data to guide users through the
application. Additionally, satellite image data is processed to classify oil palm plantation
plots for display and comparison, ensuring the accuracy of oil palm plantation locations.
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Figure 4. Use case diagram.

Stakeholders utilizing this system encompass farmers and oil palm plantation pro-
prietors, categorized as users, while government agency officials or personnel fall under
the classification of officers and administrators. Regarding data incorporation into the
system, farmers and orchard proprietors can access the system via an application provided
in the form of a web application platform, utilizing either their existing user accounts or
registering as members if they do not possess one. Through the application form, farmers
can input various pieces of information, including attribute data, spatial data, and images.
The data provided by farmers will be stored in the database and processed using a model,
with the outcomes recorded in the same database. Government officials can utilize the
application to retrieve data and generate reports based on specific criteria, including the
option to export files for further utilization. Administrators among government officials
have the capacity to add or update model data when a new version becomes available.
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Image of Oil-Palm
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Qil-Palm Ripeness
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Oil-Palm Ripeness
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The analysis and design of the application workflow are depicted in Figure 5. The
workflow commences with the input stage, where oil palm bunches are either imported
into the application or photographed while still on the tree. Subsequently, a classification
model is employed to determine the ripeness level of the oil palm bunches. The output of
this process is the classification result, which is then utilized in conjunction with Geotag
image mapping to extract coordinate data from the photographs. This extracted location
data is used to generate the Oil-Palm Ripe Map. Furthermore, the process of importing oil
palm plantation data involves crowdsourcing, where Geolocation is utilized to retrieve the
current location coordinates from the farmer’s GPS. Once the Oil-Palm Location Map is
obtained, the system calculates the radius from the current location to create the Oil-Palm
Location Map and Buffer Layer. These layers are crucial for comparison with the Oil-Palm
Plantation Classification data, enabling the system to display the results and present the
Oil-Palm Ripe Mapping data. This Oil-Palm Ripe Mapping data plays a significant role
in supporting decision-making in various scenarios, such as during periods of low-priced
produce or instances where oil palm plantations are affected by floods, rendering harvest
impossible. Additionally, this information is valuable in cases where purchasing by the oil
palm product factory is halted, providing insights for informed decision-making.

‘ Oil-Palm Plantation Oil-Palm Plantation
(Crowdsourcing) Classification
Latitude,
Longitude, —
Image
Oil-Palm Oil-Palm Ripe
Location Map Mapping
Qil-Palm Ripe
Map

Oil-Palm Ripe
Location Map and
Buffer Layer
|

Figure 5. Workflow of proposed platform.

The development of a platform or application for classifying the ripeness of oil palm
bunches on trees, or those not yet harvested, involved the utilization of various hardware
and software components. Programming languages such as PHP, Python, and Leaflet
JavaScript were employed for writing programs to process and display both attribute
data and spatial data. These languages were also utilized for running models to classify
the ripeness of oil palm bunches using machine learning or deep learning techniques,
specifically with the TensorFlow library. The database management system utilized in this
research was MySQL. In terms of hardware, a personal computer was employed as both the
Web Server and Database Server. Mobile devices, including smartphones and tablets, were
utilized for application use and testing purposes. The developed application is designed to
support operation on all operating systems.
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4. Results and Discussion

The research results presented in this study consist of two main parts, namely the
outcomes of classifying the ripeness of o0il palm bunches on trees using machine learning
algorithms, and the findings from developing a platform or application for the ripeness
classification of oil palm bunches. This platform or application integrates machine learning
with geospatial analysis and visualization techniques. The detailed research results for
both aspects are as follows.

4.1. Oil Palm Ripe Classification Result

The classification of the ripeness of oil palm bunches on trees using digital photographs
employed machine learning algorithms, including CNN, RF, DT, KNN, and SVM. The
evaluation of the model’s accuracy, including the calculations for accuracy, F-measure,
precision, and recall, is detailed in Table 4 and Figure 6. The results indicate that CNN
provides the most accurate classification, achieving an accuracy of 99.89%, with F-measure,
precision, and recall values of 99.88%, 99.90%, and 99.85%, respectively. Following CNN,
RF, DT, KNN, and SVM achieved accuracy values of 99.24%, 96.84%, 92.44%, and 72.07%, re-
spectively. To assess the model’s accuracy, the 10-fold cross-validation method was utilized,
with a total of 8779 images used to create the model. Table 5 presents the results of assessing
the accuracy in classifying the ripeness of oil palm bunches using four machine learning
algorithms, RF, DT, KNN, and SVM, after applying the image embedding technique with
the SqueezeNet model, replacing the previously used InceptionV3 model for comparison
and analysis of accuracy. The evaluation revealed that RF achieved the highest classification
accuracy, consistent with the results obtained using InceptionV3, followed by DT, KNN,
and SVM, respectively. However, transitioning to SqueezeNet resulted in some variations
in accuracy. Specifically, both the DT and SVM algorithms exhibited increased accuracy.
While the DT algorithm’s accuracy improved by approximately 1%, the SVM algorithm’s
accuracy notably increased by 8-9%. This suggests that the use of image embedding with
each model affects the accuracy of the algorithms differently. Nevertheless, the CNN
model’s accuracy remained the highest compared to the others. The study focused on the
CNN (MobileNetV1) algorithm for evaluating both training and validation data. Results,
displayed in the confusion matrix diagram in Figure 7, revealed accurate classification rates
as follows: 99.92% for the Ripe class (correctly classifying 4771 out of 4775 images) and
99.85% for the Unripe class (correctly classifying 3998 out of 4004 images). The evaluation
extended to the validation data, comprised of 1160 images (580 each for Ripe and Unripe
classes), not used in model creation. The assessment, considering accuracy, F-measure,
precision, and recall, yielded values of 96.12%, 96.11%, 95.86%, and 96.35%, respectively.
Further examination in the confusion matrix diagram in Figure 8 showed correct classifica-
tion rates of 95.86% for Ripe class (556 out of 580 images) and 96.38% for Unripe class (559
out of 580 images).

Table 4. The evaluation of the model’s accuracy.

Algorithms Accuracy F-Measure Precision Recall
CNN 99.89 99.88 99.90 99.85
RF 99.24 99.16 99.40 98.93

DT 96.84 96.55 97.33 95.78
KNN 92.44 91.39 93.98 88.94
SVM 72.07 74.09 64.21 87.56

Table 5. The evaluation of the model’s accuracy (SqueezeNet Embedding).

Algorithms Accuracy F-Measure Precision Recall
RF 99.16 99.07 98.75 99.40

DT 97.80 97.60 97.83 97.37
KNN 91.14 89.99 87.36 92.28

SVM 81.00 78.02 73.93 82.59
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Figure 6. Model Evaluation Comparison: (a) Accuracy, (b) F-measure, (c) Precision, and (d) Recall.
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Figure 7. Confusion matrix diagram of training data.
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Figure 8. Confusion matrix diagram of validation data.

An illustration of oil palm bunch ripeness classification on a tree, with two classes
(Ripe and Unripe), is provided in Figure 9, demonstrating visually accurate classification
results. Moreover, this research addresses misclassification due to various factors such
as lighting conditions during photography, resulting in dark or bright images affecting
accuracy, and obscured oil palm fruits by weeds or other objects. Figure 10 displays an
example of these errors, highlighting limitations that should be included in the user manual
for the platform or application to minimize their impact on user benefits. In Figure 10a,
the depicted oil palm bunch appears ripe; however, the classification outcome indicates
the Unripe Class. Conversely, in Figure 10b, an unripe oil palm bunch is shown, yet the
classification result suggests the Ripe Class.

Ripe

Unripe Unripe Ripe

Figure 9. Results of Oil Palm Bunch Ripeness Classification.
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Figure 10. (a,b) Example of misclassified images.

In this research, we opted to utilize CNN for developing the application to classify the
ripeness of oil palm fruits on the tree due to its high accuracy and robust model capabilities.
Particularly, MobileNetV1, known for its rapid image processing capabilities, was selected
for application development. However, findings from a comparative study of various
machine learning algorithms indicate an alternative approach involving the utilization
of the RF algorithm alongside image preprocessing through InceptionV3-based image
embedding. This approach yields highly accurate classification results comparable to CNN.
Hence, the RF model emerges as another viable option for classifying the ripeness of oil
palm fruits.

4.2. Platform Implementation Result

This research unveils the outcomes of creating a platform or application to assess
the ripeness of o0il palm bunches on trees or those yet to be harvested. The approach
integrates geospatial analysis and visualization with deep learning algorithms, particularly
CNN (MobileNetV1). The application development outcomes encompass user or farmer
registration and identity verification, as depicted in Figure 11. The illustration provides
an example of user registration data, including Name, Last Name, Username, E-mail, and
Password. In the verification process, the Username and Password establish the connection
between the informant or data owner and the information processed and displayed through
the application.

The application development also includes features for data manipulation related
to data concerning farmers’ oil palm plantations, as shown in Figure 12. In this section,
the farmers’ current location coordinates are extracted from the GPS in the mobile device,
recording latitude and longitude when the user presses the Get Geolocation button. Ad-
ditional details, such as plantation specifics and area, can be filled in by farmers through
the provided form. Furthermore, farmers can review the location of oil palm planting
plots from the marker displayed on the map or satellite map before recording the data to
ensure the accuracy of the oil palm plantation location. When farmers input information
about the locations of oil palm plantations within the application, the provided details are
stored in a database and presented in the form of a satellite map, illustrated in Figure 13.
A red oil palm tree marker signifies the location of oil palm plantation plots reported by
farmers. This feature not only provides information on the location of oil palm plantations
for the farmers’ reference but also enables farmers to capture images of oil palm bunches on
trees for ripeness classification and record-keeping. In this segment, when a farmer takes a
photo using the application, the image undergoes processing by running a model to assess
the ripeness of the oil palm bunches in the image and display the classification results.
Figures 14 and 15 depict examples of the classification outcomes through the application,
showcasing the Ripe class and Unripe class. Figure 14 displays the results of classifying
images of ripe oil palm bunches, including cases with multiple oil palm bunches in the
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picture and only one bunch in the frame. The results demonstrate the application’s accurate
recognition of ripe oil palm bunches. On the other hand, Figure 15 portrays the outcomes
of classifying unripe oil palm bunches on the tree, highlighting the application’s correct
classification ability.

Oil Palm Ripeness
Classification

Register

Oil Palm Ripeness
Classification
Login

Supattra

Puttinaovarat

programmer9

programmer9

programmer9@gmail.com

Retype Password

Register

Having an account? Login
Return Home

Don't have an account? Register
Return Home

Figure 11. User registration and login interface.

=g
+ ]
L 4
il niva3
I, = Leaflet | © Google Satellite Map contributors, © Google Map == | eaflet | © Google Satellite Map contributors
Latitude: Latitude:
9.717834 9.717834
Longitude: Longitude:
99.118137 99.118137
Plantation Detail: Plantation Detail:
Qil-Palm Plantation Oil-Palm Plantation
Plantation Area: Plantation Area:
10 Rai 10 Rai

Get Geolocaiton Get Geolocaiton

Figure 12. Oil palm plantation data manipulation interface.
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Palm Ripeness Classification System +Palm Plantation Manipulation  Visualization ~ &User Profile  (#Logout

Map

Figure 13. Oil palm plantation locations mapping from crowdsourcing.

192.168.1.105 192.168.1.105 ¢

Oil-Palm Ripeness Classification Oil-Palm Ripeness Classification

Ripe Ripe
100.00% 100.00%
Unripe Unripe

Figure 14. Results of classifying images of ripe oil palm bunches.

192.168.1.105 192.168.1.105 ¢

Oil-Palm Ripeness Classification Oil-Palm Ripeness Classification
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@
Unripe Unripe
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Figure 15. Results of classifying images of unripe oil palm bunches.
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Oil-Palm Ripeness Classification

= Leaflet | © Google Hybrid Map contributors

Ripe

Unripe

100.00%

When capturing images and classifying the ripeness of oil palm bunches, the ap-
plication facilitates the extraction of latitude and longitude coordinates from the image
using Geotagging, as illustrated in Figures 16-18. Figure 16 demonstrates the process of
extracting latitude and longitude coordinates, which are then displayed via a marker on
the satellite map, accompanied by an image of oil palm bunches upon clicking the marker.
Figures 17 and 18 exhibit the results of ripeness classification of oil palm bunches along with
corresponding images from oil palm plantations. Figure 17 displays the classification out-
comes for ripe oil palm bunches, while Figure 18 showcases the results for unripe bunches.
These figures underscore the application’s capacity to accurately classify the ripeness of
oil palm bunches, along with providing information on the photo’s coordinates, enabling
verification of the association between the oil palm bunch photo and specific plantations.

"
Latitude: 9.717222

Longitude: 99.116961

= Leaflet | © Google Hybrid Map contributors

Figure 16. Geotagging image.

This functionality enables various applications, such as inspecting oil palm plots
affected by flooding to ascertain the presence of harvestable produce, thereby aiding in
decision-making and budget planning for financial support or compensation for affected
farmers. It also facilitates the validation of information provided by farmers through the
initial application. Additionally, concerning the validation of oil palm plantation location
coordinates within the application or platform proposed in this study, Geofencing and
Overlay Layers can be employed to visualize results as spatial data. This facilitates the
comparison between the coordinates reported by farmers and the Oil-Palm Plantation Clas-
sification data derived from processing satellite images using machine learning, or from oil
palm plantation data accessed through cloud services like the Google Earth Engine Data
Catalog. Examples of mapping results are depicted in Appendix A, Figures Al and A2.
Figure A1 illustrates the utilization of Geofencing in the analysis, displaying a radius from
the coordinates of the reported planting plot. The orange circle represents the displayed sur-
rounding area within a 50 m radius from the oil palm plantation location. This visualization
aims to address potential GPS inaccuracies in the user’s mobile device, enabling users to
verify whether the reported coordinates correspond to actual oil palm plantations. Beyond
solely considering the coordinate location marker, users can assess the area within the circle
to determine the presence of an oil palm plantation, thereby minimizing errors stemming
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from the diverse smartphone technologies utilized by farmers. Figure A2 (Appendix A)
portrays the coordinates of oil palm plantation plots overlaid with the Oil-Palm Plantation
Classification. Green pixels represent the Oil-Palm Plantation Classification, while red oil
palm tree markers indicate the oil palm plantation plot locations. The overlap of all the
markers confirms the accuracy of the received information regarding the actual oil palm
plantation plots. Moreover, the presented platform or application can generate reports sum-
marizing the number of oil palm plantation plots with ripe and unripe oil palm bunches,
as exemplified in Figure A3 (Appendix A). This information presentation can support
decision-making and planning for government agencies in various scenarios. Additionally,
the application supports displaying information on the density of oil palm plantation
plots in the form of a Heatmap, as illustrated in Figure A4 (Appendix A). Government
sectors can utilize this information for planning and managing oil palm plantation zoning
in respective areas.

The proposed application has the capability to enhance and update models for clas-
sifying the ripeness of oil palm bunches, as illustrated in Figure A5 (Appendix A). Thus,
with an increase in the number of datasets, new models can be constructed to enhance
accuracy and facilitate updates within the application. This aspect represents a significant
advancement for real-world applications, enabling accurate classification of images across
various contexts and scenarios. Furthermore, the development of the application presented
in this research extends its utility beyond the study area, as it supports the extraction of
location coordinates from the GPS of the user’s mobile device. This feature is instrumental
in processing and displaying data in the form of spatial visualization for every location via
the online map interface. Additionally, it can be adapted for image classification in diverse
scenarios, such as assessing the ripeness of fruits on trees through photographic analysis
where ripeness can be discerned from the images.

Latitude: 9.718919

Longitude: 99.118617

Classification Result: Ripe

Figure 17. Ripe oil palm bunches with Geotagging image.
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Latitude: 9.719860

Longitude: 99.122428

Classification Result: Unripe

Figure 18. Unripe oil palm bunches with Geotagging image.

4.3. Discussion

This research introduces the development of a classification platform aimed at deter-
mining the ripeness of oil palm bunches on trees through the integration of deep learning
with geospatial analysis and visualization. This advancement enables real-time inspection
and display of inspection outcomes, while also facilitating the management of oil palm
plantation data through spatial visualization, which could be instrumental in governmental
data management. Additionally, this study addresses and provides solutions for limitations
identified in previous research. Prior studies predominantly focused on assessing the
ripeness of oil palm bunches that had been harvested but not yet processed, supporting
the analysis of images of such bunches [17-26]. In contrast, this research concentrates on
presenting a model designed specifically for classifying the ripeness of oil palm bunches
on trees or those yet to be harvested. Unlike previous efforts that primarily built and
tested models for ripeness classification [17-26], this research stands out by developing
a platform capable of real-time data processing. Additionally, previous studies lacked
extensive testing and often used limited datasets for model construction, potentially im-
pacting the accuracy of the model in practical applications [20-24,27-29]. In contrast, this
study employs a dataset comprising 8779 images and employs the 10-fold cross-validation
method to mitigate overfitting concerns for real-world applications. Moreover, the research
tests the accuracy with a validation dataset of 1160 images.

Comparing this research with a study that developed an application for assessing
oil palm bunch ripeness [30], several differences emerge. The previous work categorized
ripeness into four levels, while this study divides it into two levels. However, the clas-
sification of classes or levels is contingent upon the intended use. Previous research
predominantly utilized images of harvested oil palm bunches for classification. Comparing
the accuracy of the models, this research demonstrates higher accuracy in both training and
validation datasets, despite using a similar number of datasets. Furthermore, prior research
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did not support model updates within applications and lacked geospatial analysis and
visualization for managing and verifying the location coordinates of oil palm plantations.
This crucial functionality is integral for confirming the classification results’ association
with specific areas or oil palm plots. When comparing this research with previous studies
on the utilization of GIS and RS in oil palm plantation management, particularly concerning
the location and acquisition of information on oil palm plantations, distinct differences
and strengths emerge. This research offers the capability to manage and process data in
real-time, incorporating information from crowdsourcing and satellite image processing
through geospatial analysis and visualization. Consequently, this enables the verification
of the accuracy of oil palm plantation plot locations. In contrast, most prior studies have
focused solely on satellite image processing, including the use of UAVs [36-39]. Hence, the
development of a platform for classifying and assessing the ripeness of oil palm bunches on
trees in this research stands out. This study integrates Al, GIS, and RS disciplines, rendering
the proposed platform applicable in diverse scenarios. It could serve as a model or tool for
government agencies to engage with farmers, facilitating communication and information
storage for planning and decision-making support in various contexts.

When examining the methodologies for classifying the ripeness of oil palm bunches on
trees and considering the challenges and limitations inherent in this study, it was observed
that despite achieving a high level of accuracy in classification, several challenges and
uncertainties persist. These factors may impede the precision of the model. For instance,
environmental conditions during image capture using smartphone cameras and the appli-
cation’s usage may pose difficulties. For instance, excessive brightness during photography
may result in images that fail to discern the ripeness of palm oil bunches. Furthermore,
human error during image capture, such as hand tremors leading to blurry or unclear
images, can also affect classification accuracy. Moreover, the diverse characteristics of each
plantation or oil palm cultivation area, influenced by various factors like maintenance
practices and environmental conditions, contribute to variations in the captured images.
For instance, oil palm bunches may be obstructed by objects or weeds, or parasitic growth
may be present near the bunches. These issues underscore the need for model enhancement
through the inclusion of additional datasets to address such scenarios. In this study, the
model was refined to handle challenges arising from diverse environmental conditions,
including scenarios where photographs capture parasites or weeds near both ripe and
unripe oil palm bunches. Consequently, the model demonstrates proficiency in accurately
classifying the ripeness of oil palm bunches when objects or weeds partially obscure them.
However, limitations persist in cases where such obstructions obscure the oil palm fruits en-
tirely, resulting in inaccurate classification outcomes. Furthermore, user-related constraints,
such as backlit photography and controlling camera shake during image capture, necessi-
tate improvement. These aspects can be addressed by providing users with instructional
materials, such as infographics and instructional videos, illustrating proper application
usage, including examples of capturing images of oil palm bunches on trees.

In a comparative investigation concerning the assessment or classification of oil palm
bunch ripeness on trees utilizing the application devised in this study versus human or
personnel inspectors, it was discerned that the application possesses notable advantages
or merits. Specifically, the proposed application’s strengths lie in its evaluation process,
which entails the analysis of images captured in authentic settings employing a model
renowned for its precision (Reliability). Irrespective of the frequency of testing, consistent
outcomes are achieved. Furthermore, the process is devoid of emotions, prejudices, or bi-
ases. Conversely, when employing human assessors, expertise in discerning the coloration
of oil palm bunches is imperative. Moreover, assessment outcomes may be susceptible
to subjective considerations and biases, potentially resulting in unjust or inaccurate de-
terminations. Consequently, the casual integration of applications employing machine
learning as a component of artificial intelligence (Al) for image processing confers the
advantage of mitigating human biases and subjective assessments. Such applications pos-
sess the capability to perpetually process data without being influenced by emotions or



ISPRS Int. ]. Geo-Inf. 2024, 13, 158

21 of 25

subjective interpretations typical of human judgment. This impartiality facilitates precision
and fairness in outcomes, rendering them conducive for efficient utilization in planning,
decision-making, and management across diverse domains.

5. Conclusions

This research introduces the development of a classification platform aimed at deter-
mining the ripeness of oil palm bunches on trees by integrating Al, GIS, and RS technologies.
The model was created and developed using deep learning with the MobileNetV1 algo-
rithm. Upon evaluating the model’s accuracy and efficiency, it was discovered to be highly
accurate, allowing for quick verification without demanding excessive resources or mem-
ory on the user or farmer’s mobile device. Key strengths or contributions of this research
include the ability to process and display data in real-time through spatial visualization. It
effectively classifies the ripeness of oil palm bunches on trees into both Ripe and Unripe
classes. Furthermore, the platform enables users to cross-reference image coordinates to
determine their respective plantation origins. It also facilitates comparison between image-
derived location coordinates and Oil-Palm Plantation classifications obtained from cloud
services or satellite image processing. Moreover, the presented platform can be updated or
enhanced when dealing with increased datasets or when used in diverse scenarios, thereby
improving the model’s efficiency and accuracy in practical applications. In addition, this
platform is designed for deployment in various regions.

For future research directions, the platform should be extended to include disaster
detection capabilities using satellite and digital images, such as identifying areas of oil palm
plantations affected by floods, rendering them unharvestable. Additionally, concerning the
assessment of oil palm tree health, a model that can recognize multiple levels of ripeness
should be developed. This would be beneficial for quality inspections when purchasing
products or when predicting the oil percentage of the production desired by factories.
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Appendix A

| Oil-Palm Plantation Oil-Palm Plantation
Location Classification

Figure A2. Oil palm location overlaid with oil palm plantation classification.
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Figure A5. Oil palm ripe classification model update interface.
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