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Abstract: Source–sink zones refer to aggregated adjacent origins/destinations with homogeneous
trip flow characteristics. Current relevant studies mostly detect source–sink zones based on out-
flow/inflow volumes without considering trip routes. Nevertheless, trip routes detail individuals’
journeys on road networks and give rise to relationships among human activities, road network struc-
tures, and land-use types. Therefore, this study developed a novel approach to delineate source–sink
zones based on trip route aggregation on road networks. We first represented original trajectories
using road segment sequences and applied the Latent Dirichlet Allocation (LDA) model to associate
trajectories with route semantics. We then ran a hierarchical clustering operation to aggregate trajec-
tories with similar route semantics. Finally, we adopted an adaptive multi-variable agglomeration
strategy to associate the trajectory clusters with each traffic analysis zone to delineating source and
sink zones, with a trajectory topic entropy defined as an indicator to analyze the dynamic impact
between the road network and source–sink zones. We used taxi trajectories in Xiamen, China, to
verify the effectiveness of the proposed method.

Keywords: origin–destination flow; source–sink zone; topic-level aggregation; spatial-constrained
SOM network

1. Introduction

With the accelerating urbanization of the modern world, the spatial discretization of
urban areas based on distinct and purposeful functions leads to frequencies and rhythms
of cross-regional human mobility, powered by diversified transportation means [1]. With
the associated social need to connect physically separated spaces with publicly accessible
road and transportation networks, the large-scale flows of humans along them have led
to multiple urban problems, including traffic congestion, environmental pollution, and
emergency situations [2,3]. Consequently, there is a compelling need to accurately predict
the spatiotemporal patterns and flows of traffic based on a solid understanding of the
supply and demand formation mechanisms between urban facilities and human residences.
Mastering this capability would enable urban planners to optimize the spatial structures of
cities [4]. Today, the wide use of vehicle-mounted Global Positioning System (GPS) and
other location-based services has led to the mass generation of geospatial trajectory data,
from which the accurate delineation of homogeneous source–sink (i.e., origin–destination
(OD)) zones is expected to provide new and powerful methods of characterizing and
predicting large-scale spatiotemporal human mobility trends.

Most extant OD zone identification studies study either homogeneous volumes of
inflows and outflows using spatial clustering operations [5] or the communities resident
in the flow space, which are depicted by directional OD pairs. However, apart from OD
densities and volumes, the specific trajectory information of individual trips provides
critical route-sequence knowledge that directly impacts the efficacy and utility of road
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networks [6]. Given their meaningful and influential results, these studies lack insight into
the key semantic features that reflect human intentions. We contend that this type of metric
is the most important of all measures when it comes to urban planning and prediction.

Nevertheless, eight case examples can be identified regarding the global similarities
between distinct OD trip trajectories and their multifactor discrepancies. Figure 1a,b
illustrate the first two cases, in which similar and discrepant route sequences are indicated
for spatially adjacent ODs. Figure 1c,d show two other cases for spatially distant ODs. The
other four are shown in Figure 1e–h, which differentiate the conditions of originating or
departing from spatially adjacent areas via the given trajectories. The heterogeneity of these
case examples clearly reflects the need to understand the purposes of the trips. Because
detailed feature modeling is needed in this respect, this study provides a novel urban OD
zone delineation approach based on topic modeling and the aggregation of trip routes in
the road network space.

Figure 1. Eight typical cases regarding the global similarities of two distinct trip trajectories. (a,b) de-
note similar/discrepant route sequences with spatially adjacent origins and destinations; (c,d) denote
similar/discrepant route sequences with spatially separated origins and destinations; (e–h) denote
similar/discrepant route sequences under the condition of originating from or leaving for spatially
adjacent areas by the two trip trajectories.

The remainder of this article is organized as follows: Section 2 reviews existing related
studies to illustrate the research gap. Section 3 elaborates on the proposed approach to
semantic OD zone delineation. In Section 4, experimental analyses using real-world taxi
trajectory data are conducted to verify the performance of the proposed method. Section 5
summarizes the conclusions and points out future study directions.

2. Related Works

There are two types of studies on the delineation of OD zones based on individual
trip trajectories in urban road network spaces. The first uses spatial clustering analysis to
identify homogeneous areas separately from starting and stopping locations, and a few
of these further consider the directionality of trip flows. The second uses binary variables
determined by spatial OD pairs and recognizes spatial interaction types using either flow
clustering or community detection operations.

2.1. Detecting Spatially Homogeneous Areas Based on OD Points

An urban OD zone comprises spatially continuous subareas of significant homogeneity
based on aggregated points of origin and destination. Most studies construct spatially
random temporal variables based on inflow/outflow volumes. Thus, spatial clusters and
hot spots can be detected.



ISPRS Int. J. Geo-Inf. 2024, 13, 150 3 of 28

For example, Lee [7] adopted the classical k-means algorithm to cluster the boarding
points of passengers extracted from taxi trajectories in order to find trip source zones
of diverse popularity. Yue et al. [8] utilized the single-linkage-based hierarchical clus-
tering method to mine time-dependent attractive regions and cross-regional movement
patterns from taxi trajectory data. Liu et al. [9] partitioned an entire region into OD areas
by modeling the temporal frequency discrepancies between pick-ups and drop-offs. Yang
et al. [10] combined kernel density estimation with natural breaks to extract OD zones
with crowd convergence–divergence features, whereas Fang et al. [11] conducted a spa-
tiotemporal analysis of convergence and divergence patterns to study human mobility
behaviors. Liu et al. [12] explored the relationship between functional urban polycentric-
ity and human mobility through a multi-view analysis in the Tokyo Metropolitan Area.
Huang et al. [13] proposed an approach for estimating urban functional distributions using
semantics-preserved Point of Interest (POI) embedding to understand urban functionalities
and their spatial distribution.

Other studies aggregate spatially adjacent areas of significant departure and arrival
frequencies. For instance, Scholz et al. [4] employed a novel spatial local autocorrelation
model to detect human activity hotspots and revealed dynamic patterns based on San
Francisco taxi trajectories. Zhao et al. [14] developed a density-based trajectory clustering
method using individual positions recorded by mobile phone base stations over time and
used data field theory to extract urban traffic hotspot areas in terms of pick-up and drop-off
behaviors. Deng et al. [15] examined the constraints of urban road networks on human
mobility and combined spatial core point statistical identification with cluster expansion to
discover OD hotspots adaptively in road network spaces. Several studies have developed
grid-based spatial expansion or network-constrained bivariate spatial scanning statistics
to detect urban black holes and volcanoes formed by significant aggregations of inflows
and outflows. Yang et al. [16] used a constraint-based approach for identifying the urban–
rural fringe of polycentric cities, delineating transitional areas between urban and rural
environments. Shi et al. [17] developed a new framework for capturing urban recreational
hotspots from GPS data, showcasing the use of spatial heterogeneity to identify areas of
leisure and recreation in urban environments.

2.2. Detecting Spatial Interaction Areas Based on OD Pairs

Regional interactions depicted by large-scale trip flows can be used to characterize
spatiotemporal cross-regional travel patterns in terms of classifying ‘purpose’ based on the
functions of the visited facilities [18]. Considering the directional interaction features of
OD pairs, many studies have performed semantic clustering and community characteristic
analysis and detection.

Spatial point clustering has been applied to individual flows to aggregate OD zones [19].
For example, Zhu et al. [20] proposed a hierarchical flow clustering method to visualize
large-scale inflow and outflow patterns by measuring OD flow similarities. Liu et al. [21]
constructed a spatial autocorrelation index for vectors formed by directional OD taxi trips
and identified hot-zone pairs using kernel density estimation. Tao et al. [22] improved
the local K function to quantify spatial proximity relationships between distinct OD pairs
and proposed the flowAMOEBA multidirectional optimum ecotope-based algorithm to
identify hot flow clusters. Yao et al. [23] considered the similarities of OD flows in terms of
overlapping geometric and temporal features and employed a k-nearest-neighbor strategy
to extract spatiotemporal flow clusters. Gao et al. [24] connected origins with destinations
to form binary variables and proposed a statistical spatial scanning approach to recognize
significant aggregated OD flows. Song et al. [25] designed an OD flow cluster detection
method that combines spatial scan statistics with ant colony optimization. Xing et al. [26]
introduced “Flow Trace” as a novel representation of intra-urban movement dynamics.
Wang et al. [27] proposed a classification-based multifractal analysis method for identifying
urban multifractal structures, taking geographic mapping into consideration.
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Several community detection studies have constructed spatial interaction graphs to
analyze OD flows for zone partitioning via sub-graphs of strong internal connectivity.
For example, Zhang et al. [28] designed a modular community detection algorithm that
combines regional function similarities using point-of-interest (POI) spatial distributions
and OD interaction intensities using bus travel smart-card data. Jia et al. [29] grouped
influential nodes determined by betweenness centrality to construct an interaction network
whose spatial kernel density was leveraged to recognize OD hotspots in distinct time slices.
Kang et al. [30] measured hub locations in time-evolving spatial interaction networks,
highlighting the role of spatiotemporal coupling and group centrality in identifying key
nodes within urban networks. Sobolevsky et al. [31] constructed a spatial interaction
network according to the individual trip information gleaned from mobile phone records
to create a series of optimized modular sub-communities. Zhong et al. [32] extracted
graph-related features and used the Infomap community detection algorithm to identify
the spatial layouts of urban hubs, spokes, and rims based on boarding–alighting locations.
Cao et al. [33] introduced a method for constructing multi-level urban clusters, focusing on
population distributions and interactions and offering insights into how communities form
and interact within cities.

2.3. Critical Analysis of Existing Studies

From the extant studies reviewed in this article, we can divide source–sink zone de-
lineation methods into OD point- and flow-based types. Point-based methods generally
make independent assumptions on pick-up and drop-off behaviors while separately identi-
fying source and sink zones based on spatial clustering in homogeneous partitions. These
methods are advantageous for the discovery of significant gathering and dispersal pat-
terns. However, the independence assumption ignores important sequential relationships
between the origins and destinations of individual trips. Hence, they are greatly limited in
correlating sources and sinks with origins and destinations.

Flow-based methods further impose pairwise connection constraints on OD neigh-
borhoods using spatial interaction graphs. Hence, OD pairs are treated as dependent
binary systems that use links to aggregate binary trip rules by extending unitary points [33].
However, the necessary rigid constraints typically break the homogeneity into disconnected
fragments, making it difficult to investigate large-scale human mobility patterns.

As mentioned in Section 1, for any urban trip, the origin and destination must be
spatially associated through a route sequence on a road network instead of being directly
connected in a Euclidean space. With this in mind, relevant studies depend on route
sequences to characterize individual trip flows [34]. However, there is still a need to learn
the latent semantic features of the route sequences and OD points to build a cross-regional
model that reflects the purpose. Therefore, this study provides a semantic aggregation
approach for delineating cross-regional urban source–sink zones considering ODs and trip
routes in the road network space.

3. Methodology

In this paper, we propose a novel method for delineating urban OD zones based on
road network structure. The method includes several key steps as shown in Figure 2:
high-dimensional modeling of trajectories with road segments, aggregation of travel routes,
region clustering, and analysis of trajectory topic entropy. First, original high-frequency
trajectory points are subjected to map matching to associate them with the most suitable
road segments. Subsequently, the LDA model is employed to model the relationship
between road segments and travel trajectories. Second, the Wasserstein distance calculation
is incorporated into clustering analysis to achieve a topic-level aggregation of trip routes,
with a focus on those expressed by the modeled probability vectors of segments. In the
third step, traffic analysis zones (TAZs) related to OD points are considered, and a set of
multi-dimensional vectors is constructed by concatenating travel route accounts, which
are subsequently classified into different clusters. In this way, a spatially constrained
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self-organizing network is utilized to detect source–sink areas through multi-dimensional
clustering. In the last step, trajectory topic entropy is defined as an indicator to analyze
the dynamic impact between the road segments and source–sink zones. This process is
described in detail in the following subsections.

Figure 2. Framework for delineating the source and sink zones of trip journeys in road network space.

In line with the research strategy outlined in this paper, the algorithm pseudocode is
provided in Appendix A. This inclusion serves to facilitate a thorough understanding and
replication of the methods employed.

3.1. Topic Modeling of Segment-Based Trajectories

The complete trajectory of any trip consists of three elements: the origin area, the
moving route, and the destination area. Generally, original trip trajectories are recorded in
the form of sequential, discrete points with specific time intervals. The first and last points
indicate geographical origin and destination areas, and the remaining points are treated
as collected samples of moving routes in the road network space. In this case, we project
the origin and destination points into their nearest basic geographical areas (i.e., traffic
analysis zones (TAZs)). For the other trajectory points, map-matching operations in the
road network are conducted to represent the moving routes by road-segment sequences.
Thus, any individual trip trajectory can be denoted as follows:

Tri = (O_tazi, si1, si2, . . ., sin, D_tazi), (1)

where Tri represents the complete trip, i, including its origin point mapping in the TAZ,
O_tazi, and destination point mapping, D_tazi, along n sequential road segments (si1, si2, . . .,
sin). sin is the nth segment passed during trip i. This study further generalizes fragmented
road segments by considering their geometric and travel semantics to eliminate position
frequency uncertainties.

3.1.1. Segment-Based Representation of Trip Trajectories

Most urban trip trajectories use positioning devices that sample at low frequencies.
Furthermore, considering the high velocities of moving vehicles, the trajectory points of
individual trips have sparse distributions on the road network in most cases. This fact can
give rise to the differentiation of trip trajectories, even with consistently moving routes. To
address this problem, we first aggregate the road segments into a set of segments based
on the principle of geometric continuity. Given any two distinct road segments, si and sj,
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the requirement for geometric continuity is that nodes are shared on the road network.
Additionally, the two segments can be merged into a single segment if they meet one of the
following conditions:

The angle between si and sj is larger than a specific threshold. 120◦ and 180◦ are used
in this study [35].

Their intersection has no connected segments other than si and sj.
Based on the obtained road segments, any segment-based trip route with n segments

can be represented as tripi = (stk1, stk2, . . ., stkn).

3.1.2. Topic-Based Representation of Road Segments

In reality, individual trips with coincident travel process preferences usually do not
have consistent segment sequences based on the uncertainties of route selection at intersec-
tions. This study considers each trip trajectory to be a document that describes a potential
topic determined by the specific combination of segments. Thus, diverse travel preferences
can be uncovered using natural language processing. In this study, we adopt the latent
Dirichlet allocation (LDA) model to aggregate trip routes with similar underlying travel
semantics via conditional probability estimations [36]. We treat road segments as words
and trajectories as documents, incorporating them into the LDA model. Specifically, for
any route, rti, the joint probability of its included segment sequence can be estimated by
the LDA model as follows:

T[(stki1, stki2, . . . , stkin)|rti] = ∏n
j=1 ∑K

k=1 p(tp k | rt i) × p(stk ij | tp k), (2)

where p(tpk|rti) = p(θi|α) × p(tpk|θi), p(stkij|tpk) = p(Φk|β) × p(stkij|Φk). Here, K
denotes the number of topics, and tpk indicates the kth latent topic. Additionally, p(tpk|θi)
represents the probability that tripi generates tpk, where the probability distribution pa-
rameter, θi, can be determined by the Dirichlet distribution with hyperparameter α. The
probability of generating stkij by tpk (i.e., p(segij|Φk)) is estimated similarly by leveraging
parameter Φk and hyperparameter β. The LDA model can be trained through parameter
estimation with the help of Gibbs sampling by setting the number of topics with coherence.
Thus, any segment, segi, on the road network can be assigned a topic with a specific prob-
ability and expressed as a K-dimensional probabilistic vector, stki = [pi(tp1), pi(tp2), . . .,
pi(tpK)].

3.2. Topic-Level Aggregation of Trip Routes

Each road segment is decomposed into a K-dimensional vector based on the topic
modeling of trip trajectories by constructing membership relationships with travel-related
semantic topics. To further characterize the preferences of travel processes, a trip route is
depicted as a sequence of topic distributions using a two-dimensional (2D) tensor of size
n × K, as follows:

Tripi
n×K =


segi1
segi2

...
segin

=


pi1(tp 1) pi1(tp 2)
pi2(tp 1) pi2(tp 2)

· · · pi1(tp K)
· · · pi2(tp K)

...
...

pin(tp 1) pin(tp 2)

. . .
...

. . . pin(tp K)

 (3)

Based on this representation, this study performs topic-level trip route aggregation by
measuring the similarities between topic–vector sequence pairs. Among the various dis-
tance measurements, the Wasserstein distance can quantify the similarities in the probability
space by minimizing the transference costs between variable probability distributions [37].
The Wasserstein distance has advantages in analyzing discrete probability distributions
with an unequal number of observations compared with other probability distance metrics
(e.g., Kullback–Leibler and Jensen–Shanon). To adapt the observations to multidimensional
vectors, we employ a modified Wasserstein distance (i.e., word rotator distance (WRD))
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designed for word–vector sequences and measure the topical similarities between distinct
trip routes, which do not necessarily pass through the same number of segments.

Given the topic–vector sequences of any two trip routes, Rti and Rtj, where
Rti = [pi1(•), pi2(•),. . ., pim(•)] and Rtj = [pj1(•), pj2(•), . . ., pjn(•)], their WRD can be
expressed as follows:

WRD(Rti, Rtj) = min
γ(Tripix, Tripjy)≥0

∑m
x=1 ∑n

y=1 γ (Rt ix, Rtjy) × d(Rt ix, Rtjy),

s.t ∑n
y=1 γ(Rt ix, Rtjy) =

1
m , ∑m

x=1 γ(Rt ix, Rtjy) =
1
n ,

(4)

where d(Rtix, Rtjy) = 1− Rtix·Rtjy
||Rt|| × ||Rtjy ||

. Here, ||.|| denotes the modulus of vectors. We

employed a hierarchical clustering strategy to extract homogeneous route agglomerations
based on the distances obtained between trip route pairs. These include two phases of
clustering (i.e., aggregation and partition). The purpose of aggregation operations is to
generate a hierarchical tree by iteratively merging the two sub-clusters with the smallest
Ward’s distance, which is calculated as follows:

Ward_Dis(SCi, SCj) = SSD(SCij) − SSD(SCi) − SSD(SCj), (5)

where SSD(SC•) = ∑
|SC• |
m=1 ∑

|SC• |
n=1

[
WRD(Trip m, Tripn)

|SC • |

]2
. Inversely, the partition process aims

to divide the hierarchical tree layer-by-layer by cutting the edge that connects the two
sub-clusters with the largest Ward’s distance. The partition operations are terminated until
the largest Ward’s distance is smaller than a given threshold similarity distance, Sd. Finally,
route agglomerations are recognized by collecting trip routes within the same connected
sub-trees.

3.3. Spatially Constrained OD Clustering

We defined OD zones as collections of spatially adjacent OD areas associated with
trip route agglomerations. The key to OD zone delineation is to link the aggregated
topic-level trip routes to the corresponding OD areas. Accordingly, this study constructs
a multidimensional vector for each OD area to quantitatively represent travel process
preferences. We then designed a spatially constrained self-organizing map neural network
to determine the homogeneous source–sink zones using high-dimension clustering.

3.3.1. OD Zone Characterization by Embedding Route Agglomerations

Influenced by TAZ area imbalance, large discrepancies exist between spatially adjacent
zones in terms of the volumes of urban inter-regional trips caused by significant areal dif-
ferences. This areal heterogeneity problem leads to unreasonable outliers in the clustering
results and negatively affects the reliable delineation of OD zones linked to characteristic
travel processes [38]. Therefore, this study constructs area-weighted vectors by embedding
the clustered agglomerations of trip routes into the OD zones.

For each zone, the associated outward/inward trip routes are directly determined
based on their sequential relationships with boarding/alighting points located within the
zone. Linked to the obtained route agglomerations in Section 3.2, the class labels of the
outward/inward trip routes are used to construct a high-dimension vector, by which the
underlying preference information of travel processes can be attached to the OD zone.
Mathematically, given any traffic analysis zone, tazi, the OD characteristic vectors are,
respectively, represented as follows:

ozi = [Ni(op1), Ni(op2), . . ., Ni(opj), . . ., Ni(opk)]/Areai, (6)

dzi = [Ni(ip1), Ni(ip2), . . ., Ni(ipj), . . ., Ni(ipk)]/Areai, (7)

where Ni(opj) and Ni(ipj) represent the numbers of associated outward and inward trip
routes with tazi, respectively, belonging to the route agglomeration with class label j. Areai
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denotes the area of the tazi. Hence, we can characterize all OD zones in the study area with
n TAZs as follows:

OZ =


N1(op1) N2(op1)
N1(op2) N2(op2)

· · · Nn(op1)
· · · Nn(op2)

...
...

N1(opk) N2(opk)

. . .
...

. . . Nn(opk)




1/Area1
1/Area2

. . .
1/Arean

, (8)

DZ =


N1(ip1) N2(ip1)
N1(ip2) N2(ip2)

· · · Nn(ip1)
· · · Nn(ip2)

...
...

N1(ipk) N2(ipk)

. . .
...

. . . Nn(ipk)




1/Area1
1/Area2

. . .
1/Arean

, (9)

3.3.2. OD Zone Clustering Based on a Spatially Constrained Self-Organized Map
(SOM) Network

A SOM network is an unsupervised artificial neural network that uses a competitive
learning mechanism among neurons for network optimization [39]. Many studies have
confirmed that SOMs have unique advantages in extracting dominant low-dimensional
patterns implied in high-dimension sequence data by capturing complicated nonlinear
inter-object relationships. Moreover, it preserves the intrinsic topological structure for
modeling spatial dependencies in low-dimension spaces. By leveraging these specialties,
this study imposes spatial continuity constraints to detect OD zones from high-dimensional
vectors characterized by aggregated outward/inward trip routes.

The contemporary SOM network generates a specified number of rectangular or
hexagonal grids to organize the initialized neurons with random weight vectors in the
low-dimensional space. In this study, as shown in Figure 3, we utilize hexagonal grids in a
2D space to construct one-to-one mappings between TAZs and neurons while preserving
spatial continuity. For each neuron, the weight vector is initialized as the OD characteristic
vector of the corresponding TAZ. Given any tazi, we first determine the winner neuron as
the one with the smallest cosine distance with input vector xi and iteratively update the
winner neuron with weight vector wvj×, as follows:

Wvj × (t + 1) = wvj × (t) + α0 · [xi − wvj × (t)], (10)

where t denotes the number of iterations, and the learning rate, α0, is initialized at 0.5.
Furthermore, by considering the spatial dependencies of adjacent neurons, those that are
spatial neighbors of tazi are updated as follows:

wvk(t + 1) = wvk(t) + α(sdej×, k) · [xi − wvk(t)], if tazk ∈ SNi, (11)

where sdej×, k = exp[−
Dis2[wv j×(t), wvk(t)]

2σ2 ], α(t) = α0 · sdej×, k. Here, SNi collects the TAZ
within the first- and second-order spatial neighborhoods of tazi. Dis[wvj×(t), wvk(t)]
denotes the cosine distance between the weight vectors of the winner neuron, j, and the
kth neuron. Iterative updates are terminated when all neuron weight factors converge. We
then utilize the U matrix to visualize the high-dimensional mapping results of the spatially
constrained SOM network in the original high-dimensional spaces. These OD zones are
thus highlighted by an amalgamation of adjacent neurons with similar matrix values.
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Figure 3. Illustration of a spatially constrained SOM network.

3.3.3. Trajectory Topic Entropy in Traffic Zones

Track topic entropy is an index to measure the uncertainty or complexity of the topic
distribution in a traffic area. Within a traffic zone, there are N trajectories that encompass
M distinct topics. For the ith trajectory, its topic number is T_i. Define n_j as the number of
times topic j appears within the traffic zone:

n_j = ∑n
i=1 δ(T_i, j), (12)

Let δ(x, y) be the Kronecker Delta function, where δ(x, y) = 1 if x = y and if x ̸= y,
δ(x, y) = 0. Next, compute the frequency p_j of topic j within the traffic zone.

Using the Shannon entropy formula, calculate the trajectory topic entropy. Let H(T)
denote the trajectory topic entropy in the traffic zone, then:

H(T) = −∑M
j=1(p_j × log(p_j)), (13)

Here, the logarithm is the natural logarithm (base e), and H(T) represents the uncer-
tainty in the distribution of road segment topics within the traffic zone. A larger value
of H(T) indicates greater uncertainty in the topic distribution within the traffic zone. A
higher entropy means that the trajectory topic in the region is more complex or diverse,
while a lower entropy may indicate that the trajectory topic is more single or concentrated.
Therefore, this can be seen as an indicator of the complexity of travel behavior within a
traffic community. Reveal regional functional characteristics: Different types of regions
(such as business districts, residential districts, school districts, etc.) may have different
track topic distributions, resulting in different track topic entropy. For example, a com-
mercial area may have more track topics because people visit for various reasons, while
a residential area may have fewer topics because people’s travel may be primarily to get
home. Therefore, trajectory topic entropy can provide a new method for understanding
and identifying regional functions.

4. Experimental Results and Analyses

The superiority and practicality of the proposed method were verified by performing
comparative experiments on the collected taxi trajectory datasets. Section 4.1 elaborates
on the real-world data taken from the study area. Section 4.2 evaluates the proposed
method using quantitative comparisons with similar methods. Section 4.3 then provide the
spatiotemporal analyses and detected results, respectively.

4.1. Real-Life Dataset Description

This study takes the urban area of Xiamen City as the study area. Xiamen was
designated one of the first special economic zones by the China State Council. As such, its
economy has grown rapidly in recent years, and taxi vehicles have become a popular mode
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of public transportation. Currently, very many taxi trajectories have been recorded by GPS
receivers installed in vehicles. Hence, we used that data.

Figure 4a illustrates the spatial distribution of taxi trajectories on the Xiamen road net-
work, which has 7573 segments, including expressways, primary, secondary, urban arterial,
and secondary arterial roads. The trajectories were obtained from the digital China Innova-
tion Contest, DCIC2020 (https://data.xm.gov.cn/opendata-competition/#/contest_explain)
(accessed on 28 April 2024). Trajectory points were recorded approximately every 15 s from
31 May to 7 June 2019. Each trajectory point is mapped to the spatially adjacent road seg-
ment based on its (longitude, latitude, and direction) information. This process extracts the
sequence of road segments traversed by the travel trajectory. The LDA model is fed with the
processed trajectory data (now in the form of documents), identifying latent topics within
the dataset. Each topic is characterized by a distribution over the “words” (road segments),
indicating the likelihood of each segment being part of a particular topic. A dictionary is
constructed from our “documents,” mapping each unique segment to a unique integer
ID. This step is crucial for the LDA algorithm, which operates on numerical representa-
tions. Each trajectory document is then converted into a bag-of-words (BoW) format. In
BoW, a document is represented as a list of (wordID, frequency) tuples, where “wordID”
corresponds to a road segment and “frequency” to its occurrence within the document.
The LDA model is trained on this corpus, extracting topics that are essentially clusters of
frequently occurring segments.

After preprocessing, 1,982,977 trajectories were selected. Figure 4b,c spatially visualize
the POIs and areas of interest (AOIs) of Xiamen. The POI data contain 141,816 points
labeled by 15 classes, and the AOI data include 2851 multi-polygons labeled by 12 classes.
They are mostly concentrated in the Siming and Huli districts.

Figure 4. Cont.
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Figure 4. Study area and real-life datasets. (a) Collected trajectories and road map data in the study
area. (b) POIs in the study area. (c) AOIs in the study area.

4.2. Spatiotemporal Analysis of the Results of the Proposed Method
4.2.1. Parameter-Setting Analysis

The number of topics is a crucial LDA parameter used to aggregate trajectories with
similar route semantics; thus, topic coherence is an effective evaluation index for assessing
topic quality [40]. A higher coherence value indicates better topic classification. The
number of topics was initially set to five in this study, and we optimized it based on the
value of the coherence index at its peak. Figure 5 shows the coherence indices for different
numbers of topics in terms of evening peak trajectories. These optimized topics are listed
in Table 1. In an empirical analysis, it was discovered that the selection of Latent Dirichlet
Allocation (LDA) algorithm parameters for trajectories under varying time periods is
crucial to achieving significant spatial clustering in visualization. When the number of
topics corresponding to the maximum coherence value is not chosen, the visualization
of the most relevant topic space for road segments does not exhibit prominent spatial
aggregation. However, when the number of topics associated with the highest coherence
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value is selected, the visualization results display a markedly pronounced spatial clustering
effect. This highlights the importance of carefully selecting LDA algorithm parameters to
attain meaningful and effective spatial representations of data.

Figure 5. Coherence indexes under different numbers of topics regarding the trajectories in the
evening peaks.

Table 1. Optimal number of topics in different time periods.

Dates Time Period Number of Topics Date Time Period Number of Topics

31 May Morning peak 26
1 June

Morning peak 20
Evening peak 18 Evening peak 19

2 June
Morning peak 75

3 June
Morning peak 12

Evening peak 14 Evening peak 16

4 June
Morning peak 69

5 June
Morning peak 45

Evening peak 15 Evening peak 15

6 June
Morning peak 24

7 June
Morning peak 15

Evening peak 16 Evening peak 9

Sensitivity analysis is employed to evaluate the performance of a model under various
initial conditions. In the context of the GeoSOM clustering algorithm, sensitivity can be
assessed by running the model multiple times while altering the initialization weights.
The following presents a simplified Python implementation for analyzing the sensitivity
of GeoSOM clustering results. The MiniBatchKMeans algorithm is utilized as the funda-
mental clustering algorithm for GeoSOM; however, the GeoSOM class can be modified to
accommodate other clustering algorithms according to specific requirements.

Sensitivity analysis is conducted by executing GeoSOM multiple times with varying
random initialization weights and calculating the silhouette coefficients for all results. The
stability of the clustering outcomes can be gauged by computing the mean and standard
deviation of the silhouette coefficients. A smaller standard deviation suggests that the
clustering results are less influenced by the initial state and are more stable, whereas a
larger standard deviation indicates that the clustering results are more sensitive to the
initial state and are less stable.

Another crucial parameter is the hierarchical cluster number of trip routes. We divided
the hierarchical tree under the threshold, Sd, which was mentioned in Section 3.2. Figure 6
shows the relationship between Sd and the cluster numbers. The cluster number tends to
be stable when Sd is greater than the inflection point, based on which the cluster number
was set. Table 2 lists the optimized cluster numbers.
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Figure 6. Trip route cluster numbers under different Sd values.

Table 2. Optimal Sd values under hierarchical clustering.

Date Time Sd Date Time Sd Date Time Sd

31 May
8:00–9:00 2.60

1 June
8:00–9:00 2.70

2 June
8:00–9:00 2.70

13:00–14:00 2.80 13:00–14:00 2.50 13:00–14:00 2.55
18:00–19:00 2.40 18:00–19:00 2.55 18:00–19:00 2.45

3 June
8:00–9:00 2.60

4 June
8:00–9:00 2.40

5 June
8:00–9:00 2.75

13:00–14:00 2.65 13:00–14:00 2.60 13:00–14:00 2.70
18:00–19:00 2.50 18:00–19:00 2.35 18:00–19:00 2.55

6 June
8:00–9:00 2.75

7 June
8:00–9:00 2.25

8 June
8:00–9:00 2.70

13:00–14:00 2.90 13:00–14:00 2.55 13:00–14:00 2.50
18:00–19:00 2.60 18:00–19:00 2.90 18:00–19:00 2.55

4.2.2. Spatio-Temporal Variation Patterns of Road Segment Topic

Through the analysis of the interaction characteristics of the trajectories between ODs,
it is found that the spatial distribution of the same topic road segments presents interesting
change rules. As shown in the Figure 7 below, the spatial distribution of road sections in
three time periods of weekdays, ordinary weekends, and Dragon Boat Festival is shown,
and the pattern change index analysis and spatial distribution pattern analysis of the same
topic road section are shown as follows:

The R3 topic and the R2 topic are stable on weekdays and ordinary weekends, and the
spatial coverage of the topic is R2 covering Lujiang Street and R3 covering the street. The
coverage of R1 and R7 shows a dynamic trend and is highly correlated with the dynamic
mobility trend of the working population and the residential population. Spatial density
analysis based on line elements with similar topic labels reveals significant variations
in connectivity strength between major roads and surrounding areas. R1, representing
Chenggong Avenue, a major arterial in Xiamen, shows substantial connectivity differences
with adjacent streets across various times. R7, or Jiahe Road, closely connects with Jialian
Street during peak periods on weekends, weekdays, and holidays, but it associates strongly
with Jiaotong Street during weekend peaks and with Jialian Street and Yundang Subdis-
trict during holiday peaks, highlighting dynamic spatial relationships between main and
neighborhood roads.

Figure 7 shows the topic-embedded road segments. Several popular road segments
(e.g., Chenggong Avenue, Xiahe Road, and Yunding North Road) were identified by the trip
route topics. Weekdays and weekends shared approximately 43.6% of the topic-embedded
segments, which were well-connected topologically and reflected the most intra-urban
trips. Notably, the spatial distributions of the topics presented apparent time-varying
characteristics. Through the analysis of interactive features between origin–destination
(OD) trajectories, it was observed that the spatial distribution of road segments with
the same topic exhibits intriguing changing patterns. The figure below illustrates the



ISPRS Int. J. Geo-Inf. 2024, 13, 150 14 of 28

thematic spatial distribution of road segments during three time periods: weekdays, regular
weekends, and the Dragon Boat Festival. Morphological change index analysis and spatial
distribution pattern analysis were conducted on the road segments on the same topic.

Figure 7. Spatial distribution of road segment topics in different time periods.

In this context, the R3 and R2 topics demonstrated stable structures during weekdays
and regular weekends, with the spatial coverage of the R2 topic encompassing the Lujiang
Street area and the R3 topic covering the Yuandang Street area. The coverage areas of the
R1 and R7 topics exhibited dynamic changing trends, which were highly correlated with
the dynamic flow patterns of the working and residential populations. Furthermore, the
study considered the diffusion and contraction effects of different thematic road segment
collections occurring during various time periods. This comprehensive analysis provides
valuable insights into the underlying patterns and dynamics of spatial distributions in
relation to distinct topics and time frames.

Analysis of eight trajectory patterns associated with road section topics in Figure 8.
Most of the trajectories in mode a appear on short-distance trips connecting popular

areas, and the trajectories in mode a are aggregated into the same category. a There are
also trajectories in mode a that form most of the similarities and only a small part of the
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differences in the middle, which do not have an impact on the clustering results because
the difference sections driven in the middle belong to the same spatial topic.

In Figure 8, the judgment of whether the trajectories appearing in modes c and e
will be aggregated into the same category is based on the percentage of overlap and the
similarity of the topic of the road section in the non-overlap place. If both indicators have
high values, then the trajectories are aggregated into one category; otherwise, they are in
different categories. Mode c mainly depends on the size of the share of the same path, and
the large share is clustered, while the small share is influenced by the topic of the road
sections around the starting and ending points of different trajectories, and the similarity is
low. And the two modes f and h are mostly classified as different categories despite the
existence of the same starting point or end point, due to path differences, in the case that
the route section topics are not similar.

Different patterns of trajectories show special characteristics for regional clustering
results: the higher the proportion of trajectory type combinations of d, f, and h, the more
dispersed the regional clustering results, and the higher the proportion of trajectory types
of a, c, g, and e, the larger the range of regional aggregation.

The trajectories of different modes show special characteristics for the regional clus-
tering results: the higher the proportion of trajectory type combinations of d, f, and h, the
more dispersed the regional clustering results, the higher the proportion of a, c, g, and e
trajectory types, and the larger the range of regional aggregation.

Figure 8. Cont.
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Figure 8. (a–h) Typical cases with experimental results.

From the spatial clustering results obtained for different time periods, the spatial topic
entropy of trajectory data was calculated, and violin plots were generated as shown in
Figure 9. Trajectory entropy is an indicator used to describe the randomness of trajectory
distributions, typically employed for analyzing the complexity and uncertainty of trajectory
data. The calculation method involves converting the trajectory sequences into a probability
distribution and subsequently computing the information entropy of that distribution. The
value range for trajectory entropy generally lies between zero and one. Higher values
indicate greater unevenness, uncertainty, and complexity in the trajectory data distribution,
while lower values imply a more uniform, certain, and simplified distribution. In trajectory
analysis, trajectory entropy is commonly utilized to describe the diversity and changing
trends of trajectories. For instance, in taxi trajectory analysis, trajectory entropy can be
employed to compare the driving patterns and route selection diversity of taxis during
different time periods. It was observed from Figure 9 that the distribution patterns of the
global spatial topic entropy remained highly similar across different time periods. This
suggests that despite potential variations in traffic flow and activity patterns within regions
at different time periods, these changes did not significantly impact the overall spatial
topic entropy of trajectory data. The relative stability of the global spatial topic entropy
across different time periods indicates that the semantic complexity of trajectory data
remains consistent over time. On a case-by-case basis, in Section 4.2.4, we will illustrate
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how different types of trajectories are classified by combining topics and influencing the
final regional clustering results.

Figure 9. Spatial entropy distribution of global trajectories.

4.2.3. Analysis of the Dynamic Aggregation Situation of the Region and the Change in
Trajectory Dynamic Characteristics

The global spatial distributions are shown, and it is found that the global zonal
aggregation effect is not very significant. From the spatial global aggregation trend, it
is difficult to extract the area with strong aggregation based on the trajectory features
extracted in this paper to divide the similar area, and through the analysis, it is found that
the parcels with adjacent spatial location will lead to different trajectories of cab driving
because of the difference in the function of the parcels and the direction of the passenger
drop-off point, which can be mainly explained by the fact that passengers generally tend to
get off near the destination location and hope the driver can park on the right, which leads
to the form direction of the trajectory on the road section, and despite the high similarity
of the starting part of the trajectory, it will still be disturbed by the driving direction on
different road sections.

Figure 10 shows the OD zones detected by the proposed method of origin zones in
different time periods. At the morning peak, commuting individuals flowed mostly from
residential areas to workplaces, and the opposite trip flows occurred at the evening peak.
In summary, the proposed method accurately identified residential areas and workplaces
as source and sink zones, respectively, at the morning peak and residential areas and
workplaces as sink and source zones, respectively, at the evening peak on the weekday.
Combined with the detected sink zones, metro stations (e.g., Qianpu Junction) that are
strongly connected by tidal trip flows were detected as OD areas at the morning peaks
of weekdays.

Figure 11 shows the detected results of destination zones in different time periods.
Compared with the results of weekday peaks, intra-urban travel at the weekend peaks
was concentrated at cultural and recreational facilities. Moreover, short-distance travel
to cultural facilities and parks mostly originated from nearby residential areas, whereas
long-distance travel to these areas was by individuals from administrative areas, airports,
and railway stations. On weekdays, it was unsurprising that people usually travel to offices
and companies, whereas restaurants, entertainment facilities, and parks are more attractive
on weekends. Like the weekday results, residential areas were found to play a critical role
in originating and terminating trip flows at morning and evening peaks, respectively.
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4.2.4. Spatial–Temporal Distribution Pattern Analysis of Local Topic Entropy

Xiamen is a famous tourist city, and travel patterns were intuitively found to differ
from weekdays and weekends. The main distinguishing characteristic of a holiday is
that large amounts of long-distance travel appear on arterial roads. Large numbers of
individuals are attracted to popular scenic spots, such as Zeng Cuo An Village, especially
on holidays. Heping Pier is the main pier for travel to Gulangyu Island; therefore, on major
holidays, it becomes a significant sink zone at morning peaks and afternoon periods, and
it absorbs crowd flows mainly from hotels, residences, etc. By contrast, this pier is also a
prominent source zone that carries crowds dispersing into areas with hotels, restaurants,
and transportation facilities during evening peaks. Thus, three typical areas were selected
in Figure 12 for local display and trajectory distribution analysis.

Figure 10. Global spatial distribution of origin zones in different time periods.
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Figure 11. Global spatial distribution of destination zones in different time periods.

Using the metric of global spatial distribution, we found some interesting phenomena
in the results. Meanwhile, we named an indicator called the spatial POI complexity score
that measures the complexity of the types of POIs within a spatial area, which, based on
the quantity and variety of POIs within a region, can be calculated as follows:

spatial POI complexity score =
Number o f POI Categorie × Total Number o f POI

max(Number o f POI Categorie × Total Number o f POI)
(14)

As shown in Figure 13, the Xiamen Lujiang Hotel is the first four-star hotel in Fujian
Province, located at 54 Lujiang Road, on the bank of the Lujiang River, in the heart of
Xiamen’s bustling downtown area, adjacent to customs, foreign trade, commerce, and an
economic center. Vientiane City in Xiamen is located in a very advantageous location, in
the core of Xiamen Island. From the subway line 1, the “Lotus Intersection” station can
be found in this mall, and the traffic is very convenient. Compared with the results of
weekday peaks, intra-urban travel at the weekend peaks was concentrated at cultural and
recreational facilities. Moreover, short-distance travel to cultural facilities and parks mostly
originated from nearby residential areas, whereas long-distance travel to these areas was
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by individuals from administrative areas, airports, and railway stations. On weekdays, it
was unsurprising that people usually travel to offices and companies, whereas restaurants,
entertainment facilities, and parks are more attractive on weekends. The structure of
Lujiang Hotel changes during the evening peaks on weekdays, weekends, and holidays.
The complexity of the combined structure in the surrounding area is positively correlated
with the complexity of the trajectory type. Road section clusters gather together, expressing
various traffic patterns. Road section clusters represent travel in road network space and
are related to functional areas, or POIs, in geographic space.

Figure 12. Results of regional clustering of three typical regions. (a) Lujiang Hotel; (b) Pan Base
Center; (c) Zeng Cuo An.

The Panji Commereial Center in Xiamen as shown in Figure 14, located in the bustling
city center, is a large-scale integrated mall that encompasses shopping, dining, and en-
tertainment. Leveraging its unique geographical position and high-quality consumer
experience, Panji Commereial Center has emerged as the preferred shopping destination
for both local residents and tourists. Proximity to several major transportation routes
and adjacency to numerous commercial and cultural landmarks provide residents with
significant convenience and a wide array of shopping options. During weekdays, the flow
of people and the interaction routes within the Panji Commereial Center are stable, with
fewer visitors primarily consisting of individuals engaged in work or routine shopping.
On weekends, the similarity in the volume of people and associated roads indicates an
algorithmic result of area merging, reflecting the center’s profound attraction to tourists.
The diverse interaction routes of the Panji Commereial Center and its surrounding roads
on holidays, which significantly differ from the neighboring entertainment and cultural
areas, highlight the center’s strong appeal to visitors.

Focusing on Figure 15, the sink zones at the morning and evening peaks were mainly
detected at entertainment hubs (e.g., Zeng Cuo An Village). Like the weekday results,
residential areas were found to play a critical role in originating and terminating trip
flows at morning and evening peaks, respectively. Through the spatial distribution of the
aggregation pattern and the trajectory of reaching the region in these three typical regions
in different time periods, we find that human travel has a significant force on the dynamic
changes of regional functions, and the analysis using the trajectory entropy and the contour
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coefficient of the region shows that there is a certain correlation between the two. Xiamen
is a famous tourist city, and travel patterns were intuitively found to differ from weekdays
and weekends. The main distinguishing characteristic of a holiday is that large amounts of
long-distance travel appear on arterial roads. Large numbers of individuals are attracted to
popular scenic spots, such as Zeng Cuo An Village, especially on holidays. Heping Pier
is the main pier for travel to Gulangyu Island; therefore, on major holidays, it becomes
a significant sink zone at morning peaks and afternoon periods, and it absorbs crowd
flows mainly from hotels, residences, etc. By contrast, this pier is also a prominent source
zone that carries crowds dispersing into areas with hotels, restaurants, and transportation
facilities during evening peaks.

Figure 13. Results of regional clustering of Lujiang Hotel and visualization of the impact of different
types of trajectories on Lujiang Hotel.
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Figure 14. Results of regional clustering of the Panji Commereial Center and visualization of the
impact of different types of trajectories on the Panji Commereial Center.

4.2.5. Experimental Comparisons and Evaluations

Existing studies on OD zone extraction mostly focus on source and sink data. In
this study, we selected four typical methods for comparative experiments, including Liu’s
method [9], Zhu’s method [20], Fang’s method [11], and Jia’s method [28]. We found that
the proposed method can extract source and sink areas for critical functional public places.
Liu’s method, which focuses on the time series of inflow and outflow differences, obtained
several zones with significant aggregation and dissipation patterns in their central areas.
The OD zones were spatially discrete, and Zhu’s method uses hierarchical clustering to
aggregate OD flows. The extracted zones had large spatial sizes owing to the influence of
the OD pair with the largest number of flows. Fang’s method considers the stability of the
inflow and outflow time series for regionalization. However, we found that it could not
identify small areas with attractive functions in the suburbs (e.g., snack-gathering places).
Jia’s method uses a spatial interaction network for community detection, which leverages
multiple parameters and results in the generation of more isolated zones, especially in
the suburbs.
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Figure 15. Results of regional clustering of Zengcuoan and visualization of the impact of different
types of trajectories on Zengcuoan.

Five validation indices (i.e., the Duun index [41], Silhouette index [42], Davis–Bouldin
index [43], SD index [44], and S_Dbw index [45] were selected to quantitatively evaluate
the performance of the five methods. Per Section 3.1.2, we first vectorized the topic-
embedded trajectory clusters for each basic spatial unit and calculated index values based
on the distances between distinct units. For the Duun and Silhouette indices, larger values
indicate better clustering performance, and the other three indicate the opposite.

Table 3 lists the quantitative evaluation results of the five indexes. We obtained the
optimal results of the four baseline methods using parameter testing. The proposed method
outperformed the other four in all five evaluation indices for the six groups of data across
different time periods. This confirms that the proposed method is superior in depicting
homogeneous zones with high similarities in terms of trip flow volume and sequence.
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Table 3. Quantitative evaluations of different methods using clustering validation indexes.

Date Time Period Method
Quantitative Evaluation Indexes

Dunn Sil DB SD S_Dbw

Weekend
(1 June)

Morning

Liu’s 0.016 0.490 0.653 0.326 1.101
Zhu’s 0.734 0.743 0.687 0.196 0.456
Fang’s 0.580 0.825 0.340 0.075 0.159

Jia’s 0.741 0.803 0.622 0.145 1.389
Proposed 0.880 0.954 0.257 0.045 0.108

Evening

Liu’s 0.592 0.754 0.963 1.002 2.269
Zhu’s 0.847 0.636 0.829 0.628 0.662
Fang’s 0.438 0.817 0.446 0.251 0.195

Jia’s 0.122 0.596 0.759 0.432 8.207
Proposed 1.578 0.919 0.423 0.202 0.179

Workday
(4 June)

Morning

Liu’s 0.645 0.815 0.836 0.413 0.804
Zhu’s 0.537 0.734 0.764 0.723 2.478
Fang’s 0.802 0.657 0.805 0.564 6.574

Jia’s 0.315 0.810 0.973 0.654 1.978
Proposed 1.286 0.927 0.631 0.275 0.167

Evening

Liu’s 0.582 0.815 0.934 0.497 2.547
Zhu’s 0.704 0.938 0.749 0.305 0.957
Fang’s 0.679 0.804 0.631 0.482 1.367

Jia’s 0.457 0.733 0.834 0.592 4.578
Proposed 0.834 1.174 0.627 0.257 0.844

Holiday
(7 June)

Morning

Liu’s 0.572 0.658 0.869 0.361 0.705
Zhu’s 0.540 0.803 0.939 0.738 3.379
Fang’s 0.791 0.584 0.756 0.431 8.317

Jia’s 0.232 0.781 0.932 0.542 1.289
Proposed 1.688 1.029 0.533 0.312 0.059

Evening

Liu’s 0.527 0.933 0.899 0.341 0.369
Zhu’s 0.642 1.041 0.738 0.291 0.424
Fang’s 0.595 0.959 0.338 0.324 0.375

Jia’s 0.306 0.785 0.943 0.616 8.391
Proposed 0.924 1.246 0.547 0.273 0.214

4.3. Discussion

The main contribution of this paper is to map the dynamic topic information of the
road network under the constraint of trajectory interaction to the traffic zones, resulting in
the dynamic aggregation of traffic zones and thus assisting in the analysis of the dynamic
changes of semantic functions in the regions. Based on the spatiotemporal detection results
of Xiamen, we have obtained some interesting findings:

Firstly, based on the LDA model, the spatial distribution of road segment topics is
obtained, and it is found that the spatial distribution of road segment topics exhibits sig-
nificant aggregation in some areas. Road segments with the same topic and significant
aggregation are mostly distributed around the main roads of the city, reflecting the inter-
active radiation range of the main roads to the surrounding road segments. Although
the specific semantic information of the spatial distribution of these road segment topics
cannot be directly analyzed, it can be found that these aggregation results reflect the travel
preferences and travel intensity of the trajectories on the road segments.

Section 4.2.3 shows the mapping of trajectory clustering labels to the regions where the
starting points are located and analyzes the spatial distribution characteristics of the regions
based on the similarity of trajectory clustering results. Although the experimental results
show a low overall aggregation of regional divisions, the changes in regional aggregation
patterns over different time periods can assist in extracting interesting places. The more
complex and diverse the spatial combinations of trajectories within the arriving area, the
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greater the amplitude of aggregation pattern changes, the larger the semantic functional
differences, and the stronger the comprehensiveness. Conversely, the more stable the
spatial distribution of trajectories in the arriving area, the more stable the changes in the
spatial patterns of the regions, and the more stable the semantic functions.

Finally, the trajectory topic entropy in the traffic zones where the starting points of the
trajectories are located is analyzed. It is found that areas with higher trajectory topic entropy,
such as transportation hubs (airports and train stations), and areas with comprehensive
functions and diverse dynamic changes in semantic functions, form a distinct contrast with
areas with lower trajectory topic entropy and stable, single-function characteristics. When
the trajectory topic entropy of a region is significantly different from that of the surrounding
regions, it is easier to identify the prominent feature areas in Section 4.2.3 based on the
aggregation results of trajectory clustering labels. At the same time, the experimental
results also found that the frequency distribution of a certain topic in a region has a high
similarity with the spatial distribution of the corresponding road segment topic, but the
complex interaction of trajectories makes the combination of road segment topics in the
traffic zones more complicated.

5. Conclusions and Future Work

This study proposed a novel OD zone delineation approach based on trip route topic
modeling and trajectory aggregations in the road network space. Trip routes were first
reconstructed using road segment sequences covered by trajectories, and the LDA model
was employed to learn distinct topics hidden in a series of trip routes. A hierarchical
clustering operation was then carried out to aggregate the topic-embedded trip routes
by introducing the WRD. Finally, the trajectory clusters for each basic spatial unit were
vectorized, and a spatially constrained SOM network was adopted to detect the source
and sink zones. Comparative experiments on taxi trajectories in Xiamen demonstrated
the superior efficacy of the proposed method. Additionally, significant differences in
travel characteristics among weekdays, weekends, and holidays were uncovered using a
time-dependent analysis of the detected zones.

Future research should focus on three directions. The first is to deeply explore the
spatiotemporal characteristics of intra-urban travel behaviors by integrating trip purpose
information based on multiple transportation methods. The second is to investigate the
influence of various factors (e.g., land use, weather conditions, and infrastructure) on
the formation of OD zones. The third is to develop methods for dynamically predicting
destinations, purposes, and routes of intra-urban travel on the road network.
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Appendix A

In line with the research strategy outlined in this paper, we provide Algorithm A1
pseudocode to facilitate a thorough understanding and replication of the methods employed.

Algorithm A1: Discovering Source and Sink Zones in Trip Routes

Input: Set of trajectories, Road segment sequences
Output: Source and Sink Zones

1 Reconstruct trajectories using road segment sequences
2 FOR each trajectory in Set of Trajectories

3
Road Network Binding: Associating trajectory points with adjacent road segments

based on (lon, lat, direction)
4 Reconstruct trip route based on road segment sequence
5 Apply LDA model to learn distinct topics in trip routes
6 Initialize an empty list, Trajectory Documents
7 FOR each trajectory in Set of Trajectories
8 Create a document representation of the trajectory
9 Document = Convert trajectory into a sequence of road segment identifiers
10 Add Document to Trajectory Documents
11 Preprocess Trajectory Documents
12 Tokenize each Document in Trajectory Documents
13 Remove rare and common tokens, if necessary
14 Create a dictionary of all unique tokens across Trajectory Documents
15 Convert Trajectory Documents into a Bag-of-Words (BoW) format
16 FOR each Document in Trajectory Documents
17 Convert Document into BoW using the dictionary
18 Store the result in Corpus
19 Train LDA model
20 Specify the number of topics, N
21 LDA_Model = Train LDA using Corpus, Dictionary, and N
22 Analyze the result
23 RETURN LDA_Model
24 Apply hierarchical clustering on topic-embedded trip routes
25 FOR each topic in Topics
26 Calculate Word Mover’s Distance (WRD) between trip routes
27 Clusters = Hierarchical Clustering(Topic-embedded trip routes, WRD)
28 Vectorize trajectory clusters for each basic spatial unit
29 Vectorize cluster
30 Detect source and sink zones through a spatially constrained GeoSOM network
31 GeoSOM_Input = Vectorized trajectory clusters
32 GeoSOM_Network = Train GeoSOM(GeoSOM_Input)
33 Source_Sink_Zones = Identify zones(GeoSOM_Network)
34 RETURN Source_Sink_Zones
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