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Abstract: Geocoding converts unstructured geographic text into structured spatial data, which is 
crucial in fields such as urban planning, social media spatial analysis, and emergency response sys-
tems. Existing approaches predominantly model geocoding as a geographic grid classification task 
but struggle with the output space dimensionality explosion as the grid granularity increases. Fur-
thermore, these methods generally overlook the inherent hierarchical structure of geographical texts 
and grids. In this paper, we propose a hierarchy-aware geocoding model based on cross-attention 
within the Seq2Seq framework, incorporating S2 geometry to model geocoding as a task for gener-
ating grid labels and predicting S2 tokens (labels of S2 grids) character-by-character. By incorporat-
ing a cross-attention mechanism into the decoder, the model dynamically perceives the address con-
texts at the hierarchical level that are most relevant to the current character prediction based on the 
input address text. Results show that the proposed model significantly outperforms previous ap-
proaches across multiple metrics, with a median and mean distance error of 41.46 m and 93.98 m, 
respectively. Furthermore, our method achieves superior results compared to others in regions with 
sparse data distribution, reducing the median and mean distance error by 16.27 m and 7.52 m, re-
spectively, suggesting that our model has effectively mitigated the issue of insufficient learning in 
such regions. 
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1. Introduction 
Geocoding involves resolving the location information described in natural language 

text to the corresponding points or regions on Earth [1,2]. With the popularization of the 
Internet and social media, there has been a dramatic surge in textual data associated with 
geographic information [3]. However, owing to privacy concerns, the availability of ex-
plicit geographic information, such as coordinates, on social media has gradually de-
creased. For example, Twitter discontinued explicit geographic information in 2019 and 
shifted to supporting implicit geographic information, such as POIs [4]. Therefore, ge-
ocoding has become an indispensable tool for mining big data on location-related social 
media and effectively extracting geographic information. It plays an important role in ur-
ban planning, disaster emergency response, the geospatial analysis of social media, and 
disease risk mapping [2,5,6]. 

Geocoding aims to parse unstructured text into structured spatial data, and its main 
output forms include geospatial coordinates, polygons, and entries into a geospatial da-
tabase [1,2]. Previous geocoding systems relied mainly on external geospatial databases 
to match and sort text to be parsed with specific entries into the database [7–11]. However, 
owing to its high reliance on external knowledge bases, this form of geocoding faces 
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numerous obstacles in regions that lack standard geographic datasets or a GIS data infra-
structure. In recent years, the application of end-to-end deep-learning models in ge-
ocoding tasks has gradually increased. This approach deepens the semantic understand-
ing of address text and can directly predict geographical spatial labels from text with a 
straightforward workflow and low dependency on external databases such as gazetteers. 
It typically includes two primary methods: modeling as a regression task based on coor-
dinate points or as a classification task based on regions such as grids or polygons [1–3,12–
15]. Due to the challenges involved in directly learning the mapping between text and 
precise coordinates in coordinate-point-based tasks [15], some researchers prefer to model 
geocoding as a classification problem for predicting regions based on grids or polygons. 
Compared with approaches that use complex polygon structures for cities, states, and 
countries, geographic grids offer multi-level spatial representations without the need for 
external metadata, making them straightforward to understand and use. Therefore, this 
study focuses on grid-based classification methods for geocoding. This approach usually 
discretizes Earth’s surface into a series of grids and predicts the grid category correspond-
ing to the input text based on a classification model to indirectly obtain geographical co-
ordinates [1,2,6,13–18]. Additionally, discrete global grid systems such as Geohash, H3, 
and S2 geometry play a crucial role in the spatial indexing, association, and geolocation 
of satellite and street-view imagery data [16,19–24]. Recently, research on the spatial align-
ment of multimodal data, such as text and images, has increased [25–27]. Parsing text into 
the corresponding geographic grids can provide a unified spatial foundation for these 
studies, offering extensive application prospects. 

However, in fine-grained geocoding tasks with more detailed grid partitioning, the 
number of grid categories increases sharply. Taking the S2 grid as an example, when the 
average unit grid area is approximately 300 m², the global number of grids can reach 1649 
billion. This leads to a serious dimensionality explosion in the output space, making it 
difficult for classification models to train and thus leading to a decrease in geocoding ac-
curacy [15,28]. Moreover, most approaches generally overlook the inherent hierarchical 
structure characteristics of geographical grids and address text as well as the potential 
associations between them [29,30]. Unlike general texts, address texts often start with 
large-scale elements (e.g., countries and provinces) and are gradually refined into small-
scale elements (e.g., specific buildings). Similarly, discrete global grid systems often recur-
sively subdivide Earth from larger-scale grids into finer-scale grids. This structure implies 
that each sub-element (subgrid) represents varying hierarchies of geospatial information 
within a certain region and that text elements at different hierarchical levels often corre-
spond to geographic grids of varying scales. Ignoring this feature may lead to the confu-
sion of semantically similar but geographically different information [30]. 

To address these challenges, we propose a novel hierarchy-aware geocoding model 
based on cross attention (HAGM), which is a grid-based geocoding method within a se-
quence-to-sequence (Seq2Seq) framework. This study utilized S2 geometry (https://s2ge-
ometry.io/, accessed on 29 January 2024.) (a method for the hierarchical discretization of 
Earth’s surface) to map continuous latitude and longitude coordinates onto discrete geo-
graphic grids (S2 cells) to represent geographic locations. Compared with traditional clas-
sification models, HAGM within the Seq2Seq framework treats each character of the grid 
labels as an independent unit to be predicted and sequentially outputs them character by 
character; thus, it effectively avoids the issue of dimensionality explosion in the output 
space. Moreover, the HAGM employs a cross-attention module and a residual connection 
module to effectively and comprehensively perceive the hierarchical structure of address 
texts and geographic grids, and establish a correspondence between input address text 
elements at different hierarchical levels and geographic grids of varying scales. 

Our main contributions are the following: 
(1) Our proposed method effectively avoids the influence of output space dimension-

ality explosion and performs well in fine-grained geocoding tasks. 
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(2) The HAGM dynamically focuses on the contextual information of varying geo-
graphic scales, thereby enhancing its perception of the hierarchical characteristics and po-
tential semantic associations of address text and S2 tokens. 

(3) We evaluate the impact of different grid division scales on the performance of the 
geocoding model and compare it with previous methods in terms of multiple evaluation 
metrics in order to provide a thorough analysis. 

(4) The performance of HAGM in the sparse data distribution region is significantly 
improved compared with the traditional classification model; this indicates that HAGM 
can mitigate the effects of imbalanced data distribution and overcome the problem of in-
sufficient model learning in areas of sparse data distribution to some extent. 

2. Related Work 
Early geocoding research primarily employed rule-based and traditional machine 

learning methods combined with heuristic strategies to establish direct mapping relation-
ships between text and locations, obtaining candidate entries from address databases and 
then ranking and selecting them [7,9,31–33]. Although these methods have achieved sat-
isfactory results, their frameworks are essentially based on indirectly predicting the cor-
responding geographic coordinates by ranking the similarities between the locations men-
tioned in the text and entries in a database, such as gazetteers. Owing to its high depend-
ency on external databases, geocoding faces numerous obstacles in regions lacking stand-
ard geographic datasets or GIS infrastructure, leading to insufficient generalization capa-
bilities [5,18,29]. Therefore, researchers have begun to apply end-to-end deep learning 
models to geocoding in order to directly predict associated geographic spatial labels based 
on input query texts. This is often modeled as a coordinate point-based regression task 
and a grid-based or region-based multi-classification task [12,13,15], with low dependence 
on external databases, such as gazetteers, and stronger generalization ability. Therefore, 
it is widely used in tasks such as event geocoding and Internet text geocoding [34,35]. 

In cases modeled as a coordinate-point-based regression task, researchers typically 
predict associated geographical coordinates directly from the input address text [34–38]. 
For example, Liu et al. [35] explored a method to estimate Twitter user locations using the 
textual data they generate on social media by utilizing a deep learning architecture con-
structed from stacked denoising autoencoders to directly predict the locations of users in 
terms of longitude and latitude. The results were comparable to those of the most ad-
vanced models at the time, demonstrating that this architecture is well-suited for ge-
ocoding tasks. Radford et al. [34] proposed an end-to-end probabilistic model for ge-
ocoding the text of event data, directly predicting the latitude and longitude of the loca-
tions mentioned or described in a natural language. They also compared their model-
based solution with previous state-of-the-art open-source geocoding systems and exten-
sively discussed the benefits of end-to-end geocoding based on their models. However, 
these methods are insufficient for extracting the semantic features of a text. Hence, Xu et 
al. [37] proposed a geo-semantic address model (GSAM) that supports various down-
stream tasks to deepen text features. Building on this, they incorporated three fully con-
nected layers as hidden layers for the address location prediction task and added a final 
linear layer with two neurons to directly predict the coordinates (latitude and longitude). 
However, this regression-based approach to directly predicting geographic coordinates 
can cause issues with the continuity and infinity of the output space, resulting in learning 
difficulties for the model and often leading to serious degradation of the model perfor-
mance owing to data quality issues. 

Consequently, researchers tend to model the geocoding problem as a classification 
task [1,2,6,13,14,16–18] in which Earth’s surface is discretized into a series of grids, and 
the model directly predicts the specific grid category corresponding to a geospatial label 
based on the input address description. For example, DeLozier et al. [18] computed the 
geographic profile of each word using local spatial statistics on a set of geo-referenced 
language models with a machine learning-based classification model for toponym 
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resolution, significantly outperforming other advanced toponym resolvers of the time; 
however, previous methods have mostly focused solely on lexical features, excluding 
other feature spaces. To address this issue, Gritta et al. [6] introduced the Map Vector 
(MapVec), a sparse representation that simulates the geographic distribution of location 
mentions. They proposed the CamCoder model, which integrates three lexical feature vec-
tors and one sparse geographic vector, feeding them into a dense layer for final region 
classification, and achieved state-of-the-art results on three different datasets. Cardoso et 
al. [14] further attempted to optimize geocoding by combining two outputs of classifica-
tion and regression. They adopted the grid partitioning method based on hierarchical 
equal area isolatitude pixelization (HEALPix) and utilized context-aware word embed-
dings such as ELMo and BERT to transform the input text. The transformed text was then 
fed into a bidirectional LSTM unit-based neural architecture to derive the grid classifica-
tion results. Additionally, they obtained coordinate outputs using class probability vec-
tors alongside centroid coordinate matrices, and the model was trained by a comprehen-
sive classification and regression loss function, surpassing prior studies. To achieve a bal-
ance between generalization and accuracy, Kulkarni et al. [1] introduced a CNN-based 
multi-level geocoder MLG. It employs multi-level S2 cells as outputs for the multi-head 
feature encoding model, integrates losses at multiple levels, and predicts cells at each level 
simultaneously, achieving better performance than CamCoder. However, classification 
models commonly encounter the issue of output space dimensionality explosions in ge-
ocoding tasks. Although researchers have attempted optimization using strategies such as 
hierarchical nested grids [29] and multitask joint prediction [28], these have shown only 
slight improvements compared with previous studies and have not fundamentally re-
solved the high complexity of the output space. In particular, high-precision, fine-grained 
geocoding tasks with more detailed grid partitioning suffer from severe dimensionality 
explosions and underperform. 

The Seq2Seq framework offers a novel perspective for geocoding tasks. The Seq2Seq 
framework is a deep learning model architecture used for handling sequence data and has 
demonstrated good performance in various natural language processing tasks such as ma-
chine translation and text summarization [39–47]. It typically comprises two components: 
an encoder and a decoder. The encoder is generally responsible for converting an input 
sequence (such as a text sequence or time series) into a fixed-length vector. The decoder 
receives the vector representation output from the encoder and gradually generates the 
target sequence. Given the limited character categories used in the grid label sequence, we 
posit that the character-by-character prediction of the Seq2Seq model effectively avoids 
the problem of dimensionality explosion, thereby enhancing geocoding performance. 
Qian et al. [48] combined a GeoSOT grid-division system with a sequence-to-sequence 
framework to design a coarse-to-fine model to solve text geolocation problems. However, 
the Z-order curve used by GeoSOT [49] suffers from a local order mutation at its zigzag 
corners. Huang et al. [15] used S2 geometry, indexed by the Hilbert curve with stronger 
local order preservation, to represent geographic locations. They attempted to treat multi-
level grid label encoding sequences as collections of individual characters for independent 
classification, which enhanced computational efficiency through parallel processing, but 
overlooked the potential correlations between characters. Moreover, these methods are 
associated with limitations in capturing the correspondence between address elements at 
different hierarchical levels and grids of varying scales, leading to a decrease in localiza-
tion accuracy and precision. Specifically, both the input address text and output grid la-
bels have a natural hierarchical structure. Geocoding models should fully utilize mul-
tiscale information by focusing on the address elements of the corresponding hierarchical 
level when predicting characters for grids of different scales. Failure to capture this hier-
archical relationship can result in the confusion of semantically similar but geographically 
different information, severely affecting geocoding accuracy [17,30]. Therefore, overcom-
ing this limitation is crucial for enhancing model performance. 
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In this study, we used the S2 geometry to discretize Earth’s surface into grids and 
proposed a hierarchy-aware geocoding model based on cross-attention within a sequence-
to-sequence framework. This model effectively and comprehensively perceived the hier-
archical structure of the address text and geographic grid through a cross-attention mech-
anism and a residual connection module. In each prediction step, the model dynamically 
perceives and focuses on different hierarchical levels of address context information, 
thereby establishing a correspondence between the address text elements and geographic 
grids. Additionally, we conducted comprehensive evaluations of the model at various 
grid division scales in order to provide a deeper understanding and analysis of grid-based 
geocoding methods. 

3. Methodology and Model 
We propose a grid-based hierarchy-aware geocoding model (HAGM) that incorpo-

rates a cross-attention mechanism within the Seq2Seq framework, aimed at implementing 
geocoding by learning the mapping relationship between the address text and the corre-
sponding geographic grid labels. Using S2 geometry, we first mapped the latitude and 
longitude coordinates onto discrete geographical grids (S2 cells), with S2 tokens (label se-
quences of S2 cells) serving as labels for the geographical location to be predicted. Subse-
quently, we treated each character in S2 tokens as an independent unit within the Seq2Seq 
framework and predicted the target S2 tokens character-by-character based on the input 
address text. As shown in Figure 1b, this character-by-character output approach confines 
the prediction space of each step to a 16-character category (10 Arabic numerals 0–9 and 
six English letters a–f), effectively avoiding the computational challenges caused by di-
mension explosion. Additionally, the HAGM utilizes a cross-attention module to dynam-
ically focus on the input address elements of the most relevant hierarchical level during 
each step of the decoder, accurately capturing contextual information closely related to 
the corresponding level of geographic grids. Furthermore, it retains the original global 
address context through the residual connection, thereby effectively and comprehensively 
perceiving the hierarchical structure of the address text and the geographic grid and es-
tablishing the correspondence between address elements at different hierarchical levels 
and grids of varying scales. This approach ensures that the prediction of each character 
relies on the previous characters and the context information of the relevant address text 
elements. Finally, the HAGM makes an overall prediction by optimizing the total loss of 
all character calculations. Furthermore, following prior research [29], we use the center 
point coordinates of the S2 cell corresponding to the predicted S2 tokens as the final pre-
dicted geographic location. The overall methodology is illustrated in Figure 1, with a more 
detailed description of the S2 geometry and specific model structure in Sections 3.1 and 
3.2 of this chapter. 

 
Figure 1. Overall method framework. 

Finally, this study comprehensively evaluated the model using a range of assessment 
metrics and compared it with previous mainstream models. These aspects are discussed 
in Section 4. 
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3.1. S2 Geometry and Grid Division 
In this study, we used S2 geometry to represent geographic locations. It is a hierar-

chical discretization method for Earth’s surface that recursively divides Earth’s surface 
into four quadrants using the Hilbert curve, enabling a natural multi-level spatial repre-
sentation [29,50,51]. The series of geographic grids obtained by partitioning Earth’s sur-
face using the S2 geometry are called S2 cells [50]. Table 1 shows information on the vari-
ous levels of S2 cells. Each S2 cell is uniquely identified using a 64-bit S2 cell ID. The longer 
the effective bits of the cell ID, the higher the corresponding level, and the finer the grid 
resolution, the smaller the geographic areas. The S2 cells were sequentially numbered 
along a specific space-filling curve, ensuring that cells with adjacent S2 cell IDs were also 
spatially adjacent (http://s2geometry.io/devguide/s2cell_hierarchy.html/, accessed on 29 
January 2024.). S2 tokens are hexadecimal string representations of the S2 cell IDs. The 
front characters of the S2 token sequence represent broader geographical scales, whereas 
the back characters often indicate finer scales, thus achieving a multi-level description of 
the geographic space. 

Table 1. Granularity of S2 cells at different levels. 

S2 Level Number of Cells Avg Area 
15 6B 79,172.67 m2 
16 25B 19,793.17 m2 
17 103B 4948.29 m2 
18 412B 1237.07 m2 
19 1649B 309.27 m2 
20 7T 77.32 m2 

We conducted experiments across various S2 levels ranging from 15 to 20, evaluated 
the model using comprehensive metrics, and compared it with prior mainstream models. 

3.2. The Proposed Model Architecture 
The HAGM consists of an encoder based on a pretrained language model and a de-

coder enhanced by a cross-attention mechanism. The encoder captures deep semantic fea-
tures in the input text based on the pretrained RoBERTa language model, producing high-
quality semantic representations. The decoder combines a recurrent neural network 
model with a cross-attention mechanism to perceive the hierarchical structure within the 
address text dynamically and accurately capture contextual information closely associ-
ated with the corresponding scale of the geographic grid. Additionally, the model adopts 
residual connections to preserve the original global context information and applies layer 
normalization to optimize performance. Finally, the processed combined information is 
transformed into a probability distribution matching the size of the target vocabulary 
through a linear classification layer, enabling character-by-character prediction of the S2 
tokens. The model architecture is shown in Figure 2, with detailed structures of the en-
coder and decoder described in Sections 3.2.1 and 3.2.2, respectively. 
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Figure 2. HAGM architecture. 

3.2.1. Encoder 
For the input address text, we designed a transformer-based encoder to capture rich 

semantic information within the input text and extract high-quality semantic representa-
tions. It was stacked with 12 transformer modules, each with hidden layer dimensions of 
768. Every module integrates a multiheaded self-attention mechanism and a feed-forward 
neural network and applies layer normalization techniques. Using this structure, the 
model can perform deep feature extraction and semantic information capture from the 
input text, thereby providing a powerful feature extractor for downstream tasks. To better 
adapt to the characteristics of Chinese address text, we initialized the transformer-based 
encoder using the pretrained RoBERTa-chinese-wwm-ext model parameters [52,53], 
which utilizes the whole-word masking (wwm) strategy and is optimized on Chinese 
data. Furthermore, a fully connected layer was added after the output of the transformer-
based encoder, projecting the feature vector dimensions from 768 to 512, which served as 
the input for the decoder. 

Specifically, for an input query text, we first tokenized the text 𝑇𝑇𝑖𝑖,0:𝑙𝑙−1 into subword-
level input representations 𝑡𝑡𝑖𝑖,0:𝑙𝑙−1  which were then fed into the pretrained RoBERTa 
model in order to obtain a deep representation of RoBERTa denoted as 𝑅𝑅𝑖𝑖:0:𝑙𝑙−1. 

𝑅𝑅𝑖𝑖,0:𝑙𝑙−1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑅𝑅�𝑡𝑡𝑖𝑖,0:𝑙𝑙−1� (1) 

Subsequently, we appended a fully connected layer to the end of the RoBERTa model 
for pooling, which compressed the dimensionality of the output from 768 to 512, thereby 
producing the final encoder output, denoted as 𝑅𝑅𝑖𝑖. 

𝑅𝑅𝑖𝑖,0:𝑙𝑙−1 = 𝑊𝑊 ⋅ 𝑅𝑅𝑖𝑖,0:𝑙𝑙−1  + 𝑏𝑏 (2) 

This helped the model to better compress, integrate, and transform the information 
from the input address text in order to adapt to the requirements of the decoder, optimize 
computational efficiency, and meet the needs of the downstream S2 encoding prediction 
task. 
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3.2.2. Cross-Attention-Enhanced Decoder 
As mentioned in Section 2, previous studies [15,29] have often overlooked the hier-

archical characteristics of the address text and S2 tokens. To address this, we employed a 
cross-attention-enhanced recurrent neural network as the decoder, and a specific type of 
recurrent neural network was chosen as the gated recurrent unit (GRU) [40]. With its gat-
ing mechanism, the GRU can effectively alleviate the problem of gradient disappearance 
and maintain long-term dependencies when dealing with long-term time series data. 
Thus, it performs well at capturing details and context relationships within address texts, 
surpassing traditional recurrent neural networks. 

Specifically, the initial hidden state of the decoder is defined as ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,0 =  𝑅𝑅𝑖𝑖,0 , 
where 𝑅𝑅𝑖𝑖,0 refers to the vector representation of the first token “[CLS]” output by the en-
coder. We use the token “<sos>” as the initial input, denoted as 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖,0, and the update 
formula of GRU is: 

𝑟𝑟𝑖𝑖,𝑡𝑡 ,ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝐺𝐺𝑅𝑅𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖,𝑡𝑡 ,ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡−1� (3) 

To effectively capture the hierarchical relationship between address text elements 
and S2 tokens, we introduced a cross-attention mechanism into the decoder. While pre-
dicting each character by calculating the cross-attention scores between the current hidden 
state of the output sequence and various parts of the deep feature representations of the 
input address text sequence, the decoder dynamically weights the input address text, thus 
facilitating effective interaction between different modalities. This allows the model to fo-
cus dynamically on the most relevant hierarchical levels of address text elements at each 
character prediction step, thereby accurately capturing the contextual information closely 
associated with the corresponding scale of the geographic grid. 

Specifically, for the current hidden state ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 , we compute the cross-attention 
weights 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑡𝑡  and the weighted context vector 𝑐𝑐𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖,𝑡𝑡  with the semantic vectors 𝑅𝑅𝑖𝑖 
output by the encoder: 

𝛼𝛼𝑖𝑖,𝑗𝑗,𝑡𝑡 =
exp �𝑓𝑓�ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 ,𝑅𝑅𝑖𝑖,𝑗𝑗��

∑ exp �𝑓𝑓�ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 ,𝑅𝑅𝑖𝑖,𝑘𝑘��𝑙𝑙
𝑘𝑘=0

 (4) 

𝑐𝑐𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖,𝑡𝑡 = � 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑡𝑡 · 𝑅𝑅𝑖𝑖,𝑗𝑗  
𝑙𝑙

𝑗𝑗=0
 (5) 

Given the characteristics of S2 tokens, the front characters of the sequence represent 
broader geographical scales, whereas the back characters tend to indicate finer scales. This 
makes it possible to precisely focus on the address element information of the correspond-
ing hierarchical level when predicting characters at different positions of the S2 tokens. 
This mechanism enables effective information interaction between the input address text 
and output grid label sequence. Additionally, we effectively preserved the original global 
context information through residual connections, promoted efficient information trans-
fer, and enhanced the model learning capability. By balancing local and global infor-
mation, our model efficiently and comprehensively perceives the hierarchical structure of 
address texts and geographic grids, establishing a correspondence between address text 
elements at different hierarchical levels and geographic grids of varying scales. 

𝑐𝑐𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖,𝑡𝑡 + 𝑅𝑅𝑖𝑖,𝑗𝑗 (6) 

Ultimately, the decoder needs to integrate the output of the GRU with the contextual 
information based on attentional weighting and transform it through a linear layer into a 
probability distribution equal to the size of the target vocabulary, thereby completing the 
character-by-character prediction of the S2 tokens. 

𝑐𝑐𝑅𝑅𝑐𝑐𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝐶𝐶𝑅𝑅𝑖𝑖𝑐𝑐𝑅𝑅𝑡𝑡𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡𝑖𝑖�𝑟𝑟𝑖𝑖,𝑡𝑡 , 𝑐𝑐𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑡𝑡 𝑖𝑖,𝑡𝑡� (7) 
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Pr𝑖𝑖,𝑡𝑡 = 𝑆𝑆𝑅𝑅𝑓𝑓𝑡𝑡𝑐𝑐𝑅𝑅𝑐𝑐 �𝐹𝐹𝐶𝐶 �𝐿𝐿𝑅𝑅𝐿𝐿𝑖𝑖𝑟𝑟𝐿𝐿𝑅𝑅𝑟𝑟𝑐𝑐 �𝑐𝑐𝑅𝑅𝑐𝑐𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡��� (8) 

Specifically, Pr𝑖𝑖,𝑡𝑡 represents the probability distribution of the output classified as 
different S2 encoding characters 𝑐𝑐𝑖𝑖  at time step t, where 𝑖𝑖 ∈ { 0,1, … 15 }  (with 𝑐𝑐𝑖𝑖  in-
cluding the 6 English letters a–f and 10 Arabic numerals 0–9), i.e., Pr𝑖𝑖,𝑡𝑡 is a 16-dimensional 
probability vector. We define the predicted character of the final output based on Pr𝑖𝑖,𝑡𝑡 as 
𝑠𝑠𝑖𝑖,𝑡𝑡 and simultaneously use it as the input for the next time step, denoted as 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖,𝑡𝑡+1. 
This process is repeated until a full S2 token sequence is generated, with the resulting 
sequence being represented as 𝑆𝑆𝑖𝑖,1:𝑇𝑇 =  {𝑠𝑠𝑖𝑖,1, 𝑠𝑠𝑖𝑖,2, … , 𝑠𝑠𝑖𝑖,𝑇𝑇} and the center of the S2 cell being 
used as the final predicted coordinate. 

To ensure the robustness of the model and accelerate the training process, we intro-
duced layer normalization (LN) [54] before the final classification layer. The LN can nor-
malize the input of each layer, thereby smoothing the flow of information and enhancing 
the robustness of the model. 

3.3. Evaluation Metrics 
We utilized four commonly used geocoding metrics to evaluate the model compre-

hensively: accuracy [3] (also known as accuracy @N km), mean distance error, median 
distance error, and area under the curve (AUC) for the error curve [55]. In this study, we 
first used the Haversine formula (a well-known method for calculating the geodetic dis-
tance between a pair of latitude and longitude points on an ellipsoidal Earth model) to 
calculate the great-circle distances between the predicted coordinates (𝑐𝑐_𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖,𝐿𝐿_𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 ) 
and ground-truth coordinates (𝑐𝑐_𝑙𝑙𝑅𝑅𝑏𝑏𝑖𝑖𝑙𝑙,𝐿𝐿_𝑙𝑙𝑅𝑅𝑏𝑏𝑖𝑖𝑙𝑙), and then calculated each evaluation met-
ric based on the obtained error distances. 

Accuracy @N km measures the percentage of predicted locations that are less than N 
km from the true location. A higher percentage indicates that most predicted locations are 
within the allowable error threshold from the actual location, indicating that the model 
has higher precision in predicting geographical locations. Given the scope of this study, 
we set N to 0.05, which is equivalent to 50 m, because an error within 50 m can be consid-
ered relatively accurate. Although this metric is direct and straightforward, it disregards 
all errors exceeding 50 m. 

Mean Distance Error measures the average distance between all predicted and true 
locations of the target address, and lower error values are preferred [14]. It is calculated 
by dividing the sum of all the geocoding errors by their total number, revealing the overall 
performance of the geocoder and the general error trend. However, it is extremely sensi-
tive to outliers, because it treats all errors as equivalent. 

Median Distance Error measures the median distance between all the predicted loca-
tions and the true locations of the target address. Lower values are desired, signifying a 
greater alignment of the predictions with the true location. Compared to the mean dis-
tance error, the median distance error provides a more robust assessment of the perfor-
mance of the geocoder because it is not affected by extreme errors. 

AUC represents the area under the discrete curve of the sorted error distances, which 
serves as a significant comprehensive metric [55] because it captures the overall distribu-
tion of errors and is not affected by outliers. The larger the AUC value, the more stable the 
performance of the geocoding model. In our study, the AUC was calculated using the 
logarithm of these distances, which shifted the focus of the metric towards smaller error 
distances when comparing models and reduced the importance of larger errors. 

A versatile geocoding model should comprehensively consider all metrics in order 
to maximize performance [6]. We further explored the performances and trends of the 
various models at different S2 levels. 
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4. Experiments and Results 
4.1. Study Area and Dataset 

We collected addresses from Dongcheng District, Beijing as the dataset for this study. 
Located in central Beijing, Dongcheng District covers an area of approximately 41.84 km2 
and encompasses 17 streets and 177 communities. At the S2 level 20, this area contained 
644,334 S2 cells. The original address dataset comprised 64,025 entries, covering various 
types of addresses, such as restaurants and shopping malls. Each entry includes detailed 
field information, such as place name, address description, longitude, latitude, and ad-
ministrative divisions at various levels. We selected address descriptions containing rich 
geographical information as our input data. However, owing to irregularities in data entry 
and the variety of formats used, the quality and validity of the data vary; therefore, ap-
propriate data processing is required. 

To ensure the accuracy and consistency of the data, we conducted targeted prepro-
cessing, which included: (1) identifying and removing duplicate and empty addresses in 
the dataset; (2) correcting invalid data, such as addresses with internal repetition or those 
containing special characters, full-width characters, or half-width characters; (3) combin-
ing the administrative division fields and name fields so as to randomly adjust address 
descriptions through supplementation, deletion, and concatenation, aiming to simulate 
query texts in real-world scenarios, and thereby increasing the diversity and practicality 
of address data. After preprocessing, we obtained 59,717 valid addresses, of which the 
longest address contained 82 tokens, and the average number of tokens for all addresses 
was 28.21. The text types considered in this study included completely hierarchically 
structured address descriptions and address descriptions with missing hierarchical ele-
ments. Some examples of address data are shown in Table 2, in which some data lack 
elements such as cities, districts, streets, or roads, indicating that they are not standard 
hierarchical structured addresses. 

Table 2. Data examples. 

Address (Chinese) Address (English) 
S2 Tokens 

Level 15 Level 16 … Level 20 

北京市东城区东华门街道南

池子大街 85 号德景盛 

Dejing Sheng Building, No. 85 Nanchizi 
Street, Donghuamen Subdistrict, Dong-
cheng District, Beijing 

35f052bfc 35f052bff … 5f052bfee9 

东城区和平里街道和平里七

区 16 号楼 530 室邦利生活 

Bangli Life, Unit 530, Building 16, Hep-
ingli Seventh Block, Hepingli Subdis-

trict, Dongcheng District, Beijing 
35f05354c 35f05354d … 35f05354dd7 

北京市龙潭街道广渠门内大

街安化北里 1 号院 

No. 1 Court, Anhua North Alley, 
Guangqumen Inner Street, Longtan Sub-

district, Beijing 
35f1ad5ac 35f1ad5ab … 35f1ad5aa7b 

北京市东城区朝内小区 7 号

楼二单元 701 室 
Unit 2, Room 701, Building 7, Chaonei 

Community, Dongcheng District, Beijing 
35f1ad2a4 35f1ad2a3 … 35f1ad2a39b 

We leveraged the S2 geometry to convert the geographic coordinates of each address 
description into the corresponding S2 tokens, serving as the ground truth for the ad-
dresses. Specifically, we utilized the Python package s2sphere to calculate the S2 cell grid 
labels (S2 Tokens) for each address. First, we converted the latitude and longitude coordi-
nates of each address from degrees to radians. Subsequently, based on the converted ra-
dians, we identified the S2 cell at different levels that contained the given geographic lo-
cation and calculated its corresponding grid ID. Finally, we converted the S2 cell ID into 
the corresponding S2 tokens and used them as the ground-truth label for the address. 
Thus, we completed the conversion of the output space, which satisfied the modeling re-
quirements of the sequence-to-sequence analysis. Finally, we split the preprocessed 59,717 
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labeled valid address data in a 9:1 ratio. The training set contained 90% of the data and 
was dedicated to model training. The remaining 10% of the data served as the test set to 
evaluate the model’s performance. 

4.2. Training and Experimental Setup 
4.2.1. Training Details 

During the training process, the input of our model was the preprocessed address 
description, the output was the predicted sequence of S2 tokens, and the corresponding 
truth labels were the sequences of S2 tokens previously computed from the latitude and 
longitude labels of the address text. The predicted output of each sequence character was 
a 16-dimensional vector of probability distributions, as shown in Figure 1b. We selected 
the character with the highest probability at each prediction step as the final output for 
that time step and used it as the input of the next time step. For each time step, we com-
puted the cross-entropy loss between the probability distributions of the characters pre-
dicted by the model and the real characters, summing the losses of all time steps to obtain 
the total loss. By minimizing the total loss, we can optimize the model parameters to better 
understand the relationship between the input and output sequences. Additionally, dur-
ing the training, we employed a teacher-forcing strategy. This strategy involved using true 
sequence characters as inputs for the next time step with a certain probability, rather than 
relying solely on the model’s predicted results. This approach helped increase the robust-
ness of the sequence-to-sequence model and accelerated the convergence process of the 
model. The total loss was calculated using the following equation: 

Loss𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑙𝑙 =  � CrossEntropyLoss(Pr𝑡𝑡,𝐿𝐿𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
 (9) 

Our model was trained on a single NVIDIA GeForce RTX 3090 GPU with a memory 
of 24 GB using the PyTorch framework. To better handle the difference in structural com-
plexity between the encoder and decoder, we set different learning rates: the learning rate 
for the encoder was set to 1 × 10-5, and the learning rate for the decoder was set to 7 × 10-4. 
After the initial warm-up phase, the learning rate decayed exponentially with an increase 
in batches, which helped stabilize the training process of the model. Throughout the train-
ing process, we used the Adam optimizer for stable parameter updates, processing 64 
samples per training batch, and training the model for a total of 200 epochs. Adam is an 
algorithm used for optimizing gradient descent. This algorithm is especially suitable for 
dealing with sparse gradients and adaptively adjusting the learning rate and can effec-
tively improve the efficiency of deep learning model training [56]. To improve the gener-
alizability of the model and prevent overfitting, we introduced dropout technology and 
set it to 0.5. 

4.2.2. Experimental Setup 
To compare the performance of our model with other geocoding models, we selected 

the SLG [29] (single-level geocoding), MLG [29] (multi-level geocoding), and MLSG [14] 
(multi-loss geocoding) models as baselines to evaluate the strengths and improvements 
of our proposed model in fine-grained geocoding tasks. These models are representative 
of different processing strategies and design ideas for geocoding tasks in recent years. 
Among them, the SLG model is the most basic grid-based classification geocoding 
method. The MLG model mitigates the problem of growing output spatial dimensionality 
by combining multilevel grids, and the MLSG model demonstrates another way to cope 
with the spatial complexity of high-dimensional outputs by combining the classification 
loss with the coordinate regression loss. All of these methods employed RoBERTa to ob-
tain feature representations from the input address and aimed to predict the correspond-
ing grid label and coordinates under the S2 partition as their shared objective in order to 
ensure consistent evaluation. 
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Moreover, to evaluate our model comprehensively, we categorized the study area 
into sparse regions (less than 2), dense regions (more than 10), and regular regions (be-
tween 2 and 10) based on the number of address data entries within the unit area. We 
evaluated the performance metrics for each of these regions as well as the overall region 
to verify the consistency and accuracy of the model for various geographical data distri-
butions. We also assessed the accuracy and generalization of the model at all levels, from 
15 to 20, to explore its performance at different spatial granularities, thereby determining 
the optimal scale for geocoding. Additionally, we explored the model performance in fine-
grained geocoding tasks by setting N in the Accuracy@N km metric to 10, 25, and 50. 

To explore the effectiveness of the model and the contribution of each component, 
we conducted ablation experiments on key modules, including the cross-attention mech-
anism and layer normalization. Furthermore, to enable meaningful comparisons with the 
method in [48], we focused on core module differences, given our adoption of more ad-
vanced backbone and grid partitioning techniques, along with the integration of residual 
connections and layer normalization modules. Specifically, we replaced the HGAM’s 
cross-attention module with the self-attention module used in [40] to achieve a fair com-
parison. In this way, we can analyze the respective contributions of each module to the 
model performance, allowing for a more comprehensive and objective evaluation of our 
model. 

4.3. Results 
We evaluated the performances of SLG, MLG, MLSG, and our model across different 

density distribution areas and various S2 levels for all metrics. All of the results of the 
comparison models were based on our own implementation, and training and testing 
were conducted under the same environment and dataset to ensure the fairness of the 
experiments. 

4.3.1. Overall Trends 
As shown in Tables 3 and 5, our model demonstrated a significant advantage across 

all evaluation metrics compared to SLG, MLG, and MLSG. The AUC metric of our model 
reached its highest value at 0.59, surpassing the values achieved by SLG, MLG, and MLSG 
by 4, 5, and 6 percentage points, respectively, implying that our model had an excellent 
overall error distribution that tended towards lower error values. The median distance 
error of our model was as low as 41.46 m, which is at least 6 m better than that of the other 
models. For the more stringent metric, Accuracy@50m, our model scored up to 0.56, which 
is an improvement of at least 4 percentage points compared to other models, suggesting 
that most of the predictions of our model are quite accurate. Moreover, the mean distance 
error metric of our model was 93.98 m, outperforming SLG, MLG, and MLSG by approx-
imately 31 m, 26 m, and 8 m, respectively. This implies that our model maintains good 
predictive quality in most scenarios, demonstrating its resilience to noise and robustness. 
As shown in Figure 3, the predicted results of our model closely matched the actual dis-
tribution in most regions with smaller distance errors. 

Table 3. Performance comparison of SLG, MLG, MLSG, and our model at their optimal levels. 

Model AUC Accuracy@50m Median Mean Best Level 
SLG 0.55 0.50  50.49  124.95  17 
MLG 0.54  0.52  47.20  120.19  18 

MLSG 0.53  0.50  49.18  101.90  17 
HAGM 0.59  0.56  41.46  93.98  20 
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Figure 3. Examples of geocoding results visualization for (a) SLG, (b) MLG, (c) MLSG, and (d) 
HAGM (ours) at their optimal levels. 

Furthermore, our HAGM model achieved the best accuracy when the S2 level was 
set to 20, whereas the other models peaked at S2 levels of 17 or 18. As shown in Table 5, at 
L20, our model surpassed the baseline models by at least 3 percentage points on the AUC 
and outperformed comparative models by a minimum of 9 percentage points on the Ac-
curacy@50m dataset. Meanwhile, the median and mean distance errors of our model were 
reduced by at least 13.72 m and 30.42 m, respectively. As shown in Table 4, our model 
achieved the best results for the Accuracy@10m, Accuracy@25m, and Accuracy@50m met-
rics. This suggests that when the output space features more detailed and refined grid 
partitioning, the HAGM can successfully learn more granular spatial information than the 
other models, making it better suited for learning fine-grained geocoding tasks. 

Table 4. Fine-grained geocoding evaluation results of SLG, MLG, MLSG, and our model. 

Model Accuracy@50m Accuracy@50m Accuracy@50m 
SLG 0.16  0.27  0.50  
MLG 0.24  0.33  0.52  

MLSG 0.19  0.31  0.50  
HAGM 0.28  0.38  0.56  

In summary, our model demonstrates a more comprehensive and balanced perfor-
mance with significant advantages, which is in line with the standards of a versatile geo-
coder. Table 5 and Figure 4 provide a detailed presentation of the performance of the 
model at different S2 levels and in regions with varying data distributions; a deeper anal-
ysis and discussion will be carried out in the subsequent sections. 
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Figure 4. Visualization of performance comparison between SLG, MLG, MLSG, and HAGM. The 
evaluation results presented in the graph are, in clockwise order, overall, dense area, regular area, 
and sparse area. We have normalized the mean and median distance errors for intuitive comparison. 
A larger value on the radar chart indicates better performance on that metric. 

Table 5. Performance comparison between SLG, MLG [1], MLSG [14], and our HAGM on the same 
dataset across different S2 levels and area densities. 

Level Region 
AUC Accuracy@50m Median Mean 

SLG MLG MLSG HAGM SLG MLG MLSG HAGM SLG MLG MLSG HAGM SLG MLG MLSG HAGM 

15 

Overall 

0.47 0.48  0.49  0.43  

0.10  0.09  0.30  0.09  115.82  117.21  72.52  117.08  148.85  160.64  108.76  146.26  
Dense 0.10  0.10  0.54  0.10  104.95  105.94  46.27  106.42  114.75  115.66  61.93  116.26  

Regular 0.09  0.09  0.26  0.09  115.96  117.07  76.67  117.29  144.84  147.92  107.06  143.16  
Sparse 0.10  0.09  0.20  0.09  125.49  128.57  91.30  127.76  180.52  214.73  145.97  173.41  

16 

Overall 

0.53  0.53  0.49  0.51  

0.30  0.29  0.43  0.31  68.36  68.85  57.74  67.33  124.64  125.07  102.99  117.45  
Dense 0.41  0.39  0.70  0.40  55.73  58.47  36.76  58.93  70.20  72.85  51.43  72.53  

Regular 0.31  0.31  0.43  0.32  65.21  65.54  56.55  64.94  112.37  115.89  97.29  104.81  
Sparse 0.19  0.19  0.23  0.24  93.11  92.94  90.33  83.49  184.93  178.59  150.31  171.35  

17 

Overall 

0.55  0.56  0.53  0.52  

0.50  0.51  0.50  0.53  50.49  49.28  49.18  47.35  124.95  118.80  101.90  98.77  
Dense 0.69  0.68  0.77  0.68  36.57  36.57  27.88  36.63  65.70  60.62  47.17  56.96  

Regular 0.55  0.56  0.52  0.56  44.63  44.04  46.47  43.31  108.55  100.47  93.33  85.29  
Sparse 0.26  0.29  0.28  0.36  88.71  82.90  82.54  70.12  195.59  191.87  156.28  151.78  

18 

Overall 

0.57  0.54  0.51  0.57  

0.50  0.52  0.46  0.55  50.54  47.20  55.56  43.71  138.36  120.19  108.31  96.54  
Dense 0.71  0.73  0.74  0.72  27.81  27.93  27.88  29.50  57.94  48.72  47.49  53.36  

Regular 0.54  0.57  0.46  0.60  42.94  40.83  55.14  38.63  121.59  99.18  105.02  88.35  
Sparse 0.26  0.27  0.25  0.36  103.01  96.21  93.48  69.86  225.17  207.43  158.41  141.80  

19 

Overall 

0.54  0.54  0.50  0.57  

0.41  0.47  0.39  0.56  68.77  55.30  66.15  41.58  212.94  158.11  117.47  95.54  
Dense 0.75  0.73  0.74  0.71  25.16  23.89  29.22  28.69  52.59  50.63  49.85  49.20  

Regular 0.41  0.52  0.36  0.61  70.01  47.03  68.74  36.00  202.72  137.13  114.89  83.23  
Sparse 0.16  0.20  0.17  0.36  154.87  126.95  108.40  74.83  347.60  271.79  171.40  149.94  

20 

Overall 

0.49  0.52  0.50  0.59  

0.33  0.38  0.33  0.56  108.32  83.10  76.33  41.46  379.84  277.89  124.40  93.98  
Dense 0.67  0.74  0.69  0.72  30.94  25.25  33.71  28.07  68.56  69.25  53.69  47.12  

Regular 0.31  0.37  0.28  0.60  118.94  83.29  80.71  36.46  366.49  269.65  124.06  85.27  
Sparse 0.11  0.12  0.15  0.38  273.02  203.55  118.38  66.27  630.53  444.74  176.89  142.79  

4.3.2. Performance across Different S2 Levels 
To explore the performance of the models at various spatial partitioning scales, we 

evaluated the accuracy of each model at the S2 levels 15–20. As shown in Figure 4 and 
Table 5, the accuracy of SLG, MLG, and MLSG initially showed an increasing trend as the 
S2 level increased but started to decline after reaching an optimum between L17 and L18. 
Meanwhile, HAGM demonstrated weaker performance at L15 and L16, but steadily im-
proved as the S2 level increased, surpassing other models and peaking at L20. This 
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suggests that the HAGM can learn granular spatial information more effectively and han-
dle high-resolution geospatial data. 

As the S2 level increases, the granularity of the output space partitioning becomes 
even more refined, leading to a sharp increase in the number of S2 cells within the study 
area; thus, traditional classification models such as SLG, MLG, and MLSG face the prob-
lem of dimensionality explosion in the output space, which leads to a decrease in accu-
racy. Although MLG and MLSG have attempted to mitigate this issue by fusing the results 
from multiple levels or adopting weighted predictions, their performance still suffers at 
finer scales, such as L19 and L20. By contrast, HAGM adopts a character-by-character pre-
diction strategy in which each character’s prediction involves only a 16-dimensional out-
put space, and, thus, effectively avoids this problem and successfully gathers knowledge 
at finer scales. 

4.3.3. Performance across Different Area Densities 
To explore the performance of the models across varying data distribution regions, 

we assessed the precision of each model in the sparse, regular, dense, and overall regions. 
As shown in Table 5 and Figure 4, all of the models exhibited substantially lower perfor-
mance metrics in sparse and regular regions than in dense regions. This difference can be 
attributed to the higher data density in denser regions, which provides the model with 
more opportunities to capture geospatial patterns. By contrast, sparse regions have a more 
scattered data distribution, causing the model to be easily influenced by dense regions 
and thereby leading to bias, which is also consistent with the view expressed in [29]. 

Specifically, as shown in Figure 4, as the level increased beyond the respective opti-
mal S2 level, the performance indicators in the dense regions for the baseline models did 
not decline severely. However, at the same time, there is a significant decline in perfor-
mance in sparse and regular regions, as observed in the performance of MLG and MLSG 
at L18, L19, and L20 in sparse and regular regions, which ultimately impacts the model’s 
overall performance. This suggests that the underperformance of geocoders based on grid 
prediction methods in high-precision geocoding tasks may stem from their inadequacy 
when learning from sparse regions. 

In contrast, our model shows significant advantages in both sparse and regular re-
gions while maintaining good performance in dense regions. Particularly at L20, the Ac-
curacy@50m of our model achieves 0.38 in sparse regions, an improvement of at least 9 
percentage points compared to other models, while the median and mean metrics reach 
66.27 m and 142.79 m, respectively, a reduction of 16.27 m and 7.52 m. These figures indi-
cate that our model can effectively learn geospatial distribution patterns even in sparse 
regions with strong generalization and stability across different data distributions. This 
advantage may be related to the strategy of our model, which tends to learn a pattern of 
mapping from address elements of different hierarchical levels to the corresponding S2 
tokens characters. Therefore, even in sparse regions, our model can apply the knowledge 
of spatial hierarchies learned from other regions, partially reducing the impact of the data 
distribution density and achieving relatively good accuracy. 

4.3.4. Performance across Various Address Types 
To explore the performance of the models across different data types, we evaluated 

each model for complete and incomplete address descriptions with missing elements. The 
results indicate that our model outperformed the other models for both address types. In 
particular, as shown in Table 6, our model achieved the best median and mean distance 
errors in incomplete address descriptions, reducing at least 6.30 m and 27.15 m compared 
to the baseline model. Moreover, it showed a significant advantage, with a 4-percentage-
point increase in the AUC metric, compared with that of the other models. Owing to the 
limited information in incomplete address descriptions, all models showed a decrease in 
performance for incomplete address descriptions compared with complete address de-
scriptions. However, the HGAM exhibited markedly lesser performance degradation for 
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incomplete address descriptions, significantly outperforming the baseline model. Specifi-
cally, the mean distance error of the HGAM increased by only 24.28 m, whereas the aver-
age distance errors of the baseline models SLG, MLG, and MLSG increased by 51.46 m, 
39.31 m, and 44.54 m, respectively. In addition, the median distance error of HGAM in-
creased by only 1.88 m compared to the full address description. This indicates that the 
proposed model is more robust. By considering both local and global information, it can 
better cope with missing elements and maintain a relatively good performance even in 
cases of insufficient information. 

Table 6. Performance of SLG, MLG, MLSG, and our model across various address types. 

Model 
Accuracy@50m Median Mean 

SLG MLG MLSG HGAM SLG MLG MLSG HGAM SLG MLG MLSG HGAM 
Complete 0.51  0.53  0.51  0.57  48.03  44.93  47.16  39.87  117.52  112.96  93.99  87.11  

Incomplete 0.49  0.51  0.48  0.56  51.93  48.05  50.37  41.76  167.98  152.27  138.53  111.39  

4.3.5. Ablation Study 
As shown in Table 7, incorporating the cross-attention (CA) mechanism resulted in a 

3-percentage-point improvement in both the AUC and Accuracy@50m metrics of our 
model and reductions of 3.87 m and 3.42 m in the median and mean distance errors, re-
spectively. Introducing the layer normalization mechanism led to a 2-percentage-point 
improvement in both the AUC and Accuracy@50m metrics and reductions of 1.44 m and 
2.16 m to the median and mean distance errors, respectively. Additionally, compared to 
the self-attention (SA) module, using the cross-attention (CA) module improved the AUC 
and Accuracy@50m metrics for our model by 1 and 2 percentage points, respectively, and 
reduced the median and mean distance errors by 2.73 m and 3.01 m, respectively. These 
results demonstrate the effectiveness and superiority of the cross-attention and layer nor-
malization modules. 

Table 7. Results of the ablation study. 

Model AUC Accuracy@50m Median Mean 
HAGM-CA 0.59  0.56  41.46  93.98  

-w/o CA 0.56  0.53  45.33  97.40  
-w/o LN 0.57  0.54  42.90  96.14  

HAGM-SA 0.58  0.54  44.19  96.99  

The cross-attention mechanism enables the model to dynamically perceive and focus 
on different elements of the address text, thereby accurately capturing the contextual in-
formation of the corresponding geographical scale. This enhances the prediction precision 
by establishing a correspondence between the input address text elements and geographic 
grids across different scales. The model focuses on large-scale textual description features 
(e.g., provinces) when predicting characters at the front of the sequence and focuses on 
finer-scale textual geographic information features (e.g., specific buildings) when predict-
ing characters at the back of the sequence, which matches the hierarchical structure of the 
address text. 

The LN module not only accelerates the training process of the model through the 
layer normalization process but also provides stability and avoids gradient explosion or 
vanishing of the model during the training process, which further improves the robust-
ness and prediction accuracy of the model. 
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4.4. Discussion 
In summary, SLG exhibited the lowest performance metrics in all aspects; MLSG 

stood out in the mean distance error but was relatively weaker in AUC, median distance 
error, and Accuracy@50m; and MLG performed well in Accuracy@50m and median dis-
tance error but fell short in mean distance error. By contrast, our model performed best in 
all four evaluation metrics—AUC, Accuracy@50m, mean distance error, and median dis-
tance error—demonstrating a well-balanced performance. 

Compared with the simple single-level geocoding model (SLG), both MLG and 
MLSG demonstrate partial performance improvements. MLG integrates the classification 
results of multi-level grids, which, to some degree, mitigates dimensionality explosion 
and shows enhanced performance in sparse regions. MLSG combines classification and 
coordinate regression losses and derives the final prediction coordinates by weighting the 
classification results, which enhances its robustness. However, they still have limitations 
because their accuracies decrease at finer spatial partitioning scales. 

In contrast, our model achieved the best performance for all four metrics, demon-
strating a more comprehensive performance. Moreover, it is worth noting that our model 
has significant advantages in sparse and regular regions, as shown in Table 5 and Figure 
4. Taking the evaluation results at level 20 as an example, in sparse and regular regions, 
HGAM reduced the metric of median distance error by at least about 52 m and 44 m, 
respectively, compared to other models. Moreover, it showed an increase of at least 23 
percentage points in the Accuracy@50m metric compared to the other models. It adopts a 
sequence-to-sequence approach to predict S2 tokens character by character, which leans 
towards learning the mapping patterns from specific elements of the text to the corre-
sponding S2 token characters. By integrating the cross-attention and residual connection 
module, it learns the hierarchical structure of the address text and the output S2 token 
sequence in more detail in order to establish the correspondence between address text 
elements at different hierarchical levels and geospatial grids of varying scales. This en-
sures that the prediction of different locations of S2 tokens dynamically focuses on the 
corresponding geographical scale information rather than simply predicting the entire 
grid label category based on the address text as a whole. 

Although our model shows good performance, these deep learning methods, includ-
ing ours, often require new pretraining or fine-tuning in unknown regions, which may 
lead to increased geocoding costs. In the future, we will expand our study area and ex-
plore efficient fine-tuning methods to reduce the construction costs of geocoding models. 

5. Conclusions and Future Work 
In this study, we modeled geocoding as a sequence-to-sequence task and introduced 

a grid-based hierarchy-aware geocoding model (HGAM) that incorporated a cross-atten-
tion mechanism within the Seq2Seq framework. It predicts the S2 tokens corresponding 
to the input address text character-by-character and takes the coordinates of the center of 
the corresponding grid cell as the final predicted geographical location. HAGM aims to 
“translate” textual language (specific, human-readable address descriptions) into geo-
graphical language (precise, machine-recognizable S2 token sequences). Comparative ex-
periments with several mainstream models demonstrated the superior performance of 
our model for most evaluation metrics, highlighting its accuracy and stability. In particu-
lar, our model exhibits better problem-solving capabilities than other models in solving 
the two major challenges of geocoding—dimensional explosion and inadequate learning 
from sparse regions—demonstrating the great potential of sequence-to-sequence models 
in such application scenarios. Furthermore, given that the Seq2Seq model allows for the 
processing of variable-length input and output sequences, we plan to further explore the 
dynamic generation of grid labels of corresponding scales based on the address text of 
different hierarchical levels in the future. 
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