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Abstract: It is essential to establish a digital twin scene, which helps to depict the dynamically
changing geographical environment accurately. Digital twins could improve the refined management
level of intelligent tunnel construction; however, research on geographical twin models primarily
focuses on modeling and visual description, which has low analysis efficiency. This paper proposes a
knowledge-guided intelligent analysis method for the geometric deformation of tunnel excavation
profile twins. Firstly, a dynamic data-driven knowledge graph of tunnel excavation twin scenes was
constructed to describe tunnel excavation profile twin scenes accurately. Secondly, an intelligent
diagnosis algorithm for geometric deformation of tunnel excavation contour twins was designed by
knowledge guidance. Thirdly, multiple visual variables were jointly used to support scene fusion
visualization of tunnel excavation profile twin scenes. Finally, a case was selected to implement
the experimental analysis. The experimental results demonstrate that the method in this article can
achieve an accurate description of objects and their relationships in tunnel excavation twin scenes,
which supports rapid geometric deformation analysis of the tunnel excavation profile twin. The
speed of geometric deformation diagnosis is increased by more than 90% and the cognitive efficiency
is improved by 70%. The complexity and difficulty of the deformation analysis operation are reduced,
and the diagnostic analysis ability and standardization of the geographic digital twin model are
effectively improved.

Keywords: geographic digital twins; knowledge graph; tunnel excavation profile; geometric
deformation diagnosis; fusion visualization

1. Introduction

The geographical environment is a highly complex dynamic system where multiple
factors such as climate, topography, hydrology, soil, and biology interact and influence
each other, resulting in continuous and uncertain dynamic changes. Such changes pose
significant challenges for the future development of human society [1–3]. Tunnel excavation
projects are typical examples influenced by changes in the geographical environment.
Environmental factors, such as geotechnical mechanics, could change the tunnel excavation
profile, resulting in construction safety and project quality problems [4,5].

In recent years, with the development of geographical digital twin technologies, intel-
ligent construction has gradually become an essential direction for tunnel excavation [6,7].
By constructing a digital twin geographical scene of tunnel excavation and establishing a
dynamic connection between the physical world and the information world, it is possible
to accurately control changes in tunnel excavation, which can alleviate or even eliminate
the problem of over- and under-excavation during the construction process [8,9]; however,
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current geographical twin models in tunnel engineering primarily focus on modeling and
visual description, and there are few studies in which digital twin ideas are integrated
into deformation diagnosis during construction [10–12]. The lack of diagnostic analysis
functions has become a significant obstacle to achieving intelligent construction and pre-
cise management of tunnel projects. It is necessary to use fast and automatic geometric
deformation analysis methods to improve the diagnostic capabilities of tunnel excavation
profile twins [13,14].

Currently, common methods for analyzing the geometric deformation of tunnel ex-
cavation profiles include traditional instrument measurements, finite element analysis,
and 3D laser scanning. Traditional measuring instruments (total stations and profilers)
provide precise measurements and monitoring of tunnel excavation profiles, which directly
reflect the deformation and stability of structures. This type of method is the most widely
used in practical engineering [15,16]; however, such methods tend to ignore local micro-
deformations, the processing process is long, and labor costs are enormous, which is not
suitable for the requirements of intelligent construction. The finite element analysis method
obtains the response and behavior rules of the tunnel structure under different conditions
through simulation and analysis based on considering the tunnel boundary parameters
and geological rock properties [17,18]. This method analyzes the deformation mechanism
of tunnel excavation but it requires a lot of time to re-establish the analysis model when
the geological structure changes. It lacks real-time and accurate capabilities, making it
unsuitable for the requirements of tunnel excavation digital twins. Three-dimensional laser
scanning technology could rapidly and accurately obtain the three-dimensional shape and
surface features of the tunnel structure with millimeter-level accuracy. This type of method
is very suitable for the construction of tunnel excavation profile twins, which provides
adequate data support for comprehensive monitoring and rapid diagnosis of large-scale
structures [19–22].

However, the tunnel construction environment is complex and changeable. Tunnel
excavation is a continuously dynamic process with many influencing factors and complex
relationships [23]. Existing diagnostic methods are difficult to directly apply to tunnel
excavation profile twins, leading to problems such as difficulty in identifying dynamic
deformation, low diagnostic efficiency, and low intelligence [24]. In addition, existing tunnel
excavation profile twins lack appropriate semantic constraints and domain knowledge
guidance in visual expression, resulting in difficulty and irregularity in user analysis and
the user’s cognitive efficiency needs to be improved.

In response to the above problem, this paper innovatively introduces knowledge
graph technology into the tunnel excavation process based on the existing achievements
of digital twins in tunnel construction. A knowledge-guided intelligent analysis method
for the geometric deformation of tunnel excavation profile twins is proposed in this paper.
Firstly, considering the dynamic changes in the tunnel excavation process, a dynamic data-
driven knowledge graph of the tunnel excavation twin scene was established. Secondly,
a knowledge-guided intelligent diagnosis algorithm for geometric deformation of tunnel
excavation profile twins was proposed to improve the efficiency and accuracy of geometric
deformation diagnosis. Finally, a fusion visualization method of tunnel excavation twin
scenes driven jointly by multiple visual variables was developed, which reduces the
complexity and difficulty of analysis and improves the degree of standardization.

2. Methods
2.1. Framework

Figure 1 illustrates the overall framework of this paper, which consists mainly of
four parts: the construction of the tunnel excavation profile scene knowledge graph,
geometric deformation diagnosis of the tunnel excavation profile, fusion visualization of the
tunnel excavation twin scene, and case experiment analysis. Firstly, we establish a domain
ontology model and dynamically extract knowledge based on multi-source data of tunnel
construction scenarios to construct a 3D visual knowledge graph of the tunnel excavation
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profile twin. Secondly, we establish a knowledge graph-guided geometric deformation
diagnosis of the tunnel excavation profile algorithm to analyze the deformation over-limit
behavior of tunnel excavation. At the same time, based on the tunnel structure information
and deformation diagnosis results, we combine multiple visual variables to achieve the
fusion expression of the tunnel excavation diagnostic information. Finally, we conduct a
case experiment analysis to ensure the effectiveness and feasibility of this method.
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2.2. Dynamic Data-Driven Construction of Knowledge Graphs for Twin Tunnel Excavation Scene

Tunnel excavation is a dynamic process that evolves over time. As time goes by,
information on the tunnel excavation process—such as the surrounding rock level, mileage
information, and tunnel structure—is constantly and iteratively updated. Utilizing these
data to dynamically construct a knowledge graph cannot only accurately describe the tunnel
excavation process but also accumulate knowledge for future excavation work [25–28]. The
construction process of the knowledge graph is illustrated in Figure 2.
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Firstly, feature analysis is performed on basic data of the tunnel excavation, such as
standard specifications, design parameters, geographic data, and monitoring data. These
data are categorized into static features that do not change during the excavation process
and dynamic data that continually change with the excavation progress. After that, based
on the results of data analysis, knowledge modeling for the tunnel excavation takes place.
This involves dividing concepts, defining entities, establishing a domain ontology of the



ISPRS Int. J. Geo-Inf. 2024, 13, 78 4 of 17

tunnel excavation profile scene for the content, and forming the establishment of knowledge
expression. Furthermore, according to the structure of the ontology, the corresponding
entities, attributes, and relationships are extracted from the dynamic data. The extracted
content is then integrated, processed, and quality assessed to ensure the integrity and
validity of the knowledge. Finally, based on the extracted knowledge, the knowledge graph
is constructed, stored, and 3D expressed. This knowledge graph is then applied to the
integral and dynamic construction of the knowledge graph, resulting in its realization.

As far as domain ontology is concerned, it aims to provide a shared, standardized,
precise, and reusable conceptual framework. Knowledge interaction and information
sharing between different systems require the induction, abstraction, and modeling of the
conceptual system in the field. To achieve tunnel field modeling in this paper, firstly, based
on the long-line construction characteristics of the tunnel, the tunnel ontology model entities
are divided into tunnel structure entities (such as tunnel lining, guide tunnels, inverts,
etc.), construction section entities (mileage start, mileage length, etc.), contour features
(curves, etc.), radius (center point coordinates, etc.), construction environment (surrounding
rock grade, groundwater level, etc.), construction information (construction equipment,
support library, etc.). Secondly, the entity relationships and attributes in the ontology are
predefined. The entity relationship describes the interconnection status between entities,
which is equivalent to the bridge between things; the entity attributes describe the detailed
information inside the entity and increase the user’s understanding of the essence of things,
mainly including the hypernym relationship (taking the ontology relationship of the tunnel
structure as an example, the inverted arch can be regarded as the hypernym of lining, and
the lining is the hypernym of the guide tunnel), semantic association relationships (tunnel
design geometric parameters, material property characteristics, etc.), and spatio-temporal
coupling relationships (construction mileage connection relationships, spatial relationships,
etc.). Based on the content mentioned above, a clear conceptual hierarchical structure
relationship is formed, and the tunnel ontology model is shown in Figure 3.
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2.3. Knowledge-Guided Geometric Deformation Intelligent Diagnosis Algorithm of Tunnel
Excavation Profile Twin

It is necessary to diagnose the deformation of the contour structure in the process
of tunnel excavation to prevent excessive deformation from affecting the safety of the
construction project. The amount of over–under-excavated tunnel is uncontrollable, and
the deformation monitoring points and deformation variables will also change. In order
to solve the problems with low accuracy and incomplete analysis of tunnel deformation
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detection, this paper innovatively introduces the knowledge graph. A knowledge-guided
intelligent diagnosis algorithm for the geometric deformation of a twin in-tunnel excavation
profile was proposed to improve the efficiency and accuracy of geometric deformation
diagnosis. Firstly, based on the twin scene knowledge graph of the tunnel excavation, the
geometric features of the tunnel excavation profile are constrained in knowledge guidance
to determine the search threshold of the deformation range, which provides a basis for
deformation over-limit analysis. Secondly, the line-surface feature constraints of the ge-
ometric extraction algorithm for the deformation information of tunnel excavation twin
are established, which achieves the accurate extraction of tunnel contour deformation
geometric features. Finally, through knowledge guidance, the intelligent diagnosis algo-
rithm of tunnel geometric deformation is designed. The efficient diagnosis and analysis for
geometric deformation of the tunnel excavation profile twin is achieved, which is used to
update and iterate the tunnel twin, as shown in Figure 4.
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First, based on the knowledge graph, an algorithm is designed to calculate the de-
formation search threshold of the tunnel excavation scene. Based on the spatial position
correlation calculation, the spatial correlation strength between the deformation monitoring
position of the tunnel excavation scene and the tunnel scene structure is determined. A
knowledge correlation network is established to support the space search threshold S
calculation for geometric deformation of the tunnel excavation. According to the spatial
semantic correlation Ss, spatial proximity Sp, and spatial overlap So, the search threshold
calculation formula is shown in Formula (1):

S = ωs × Ss + ωp × Sp + ωo × So (1)

where ωs, ωp, and ωo are the weight factors corresponding to each parameter. The sum of
the weight factors is 1, and their settings are related to the actual geometric deformation
degree of the tunnel at different construction stages.

Next, we establish an algorithm for geometric deformation information extraction of
the tunnel excavation twins constrained with line-surface feature constraints. Accurate
extraction of tunnel excavation contours is the key to geometric deformation analysis.
Taking the direction of the central axis of the tunnel as the benchmark to determine the
direction of micro-segment division and record it as

→
m = (A, B, C). For each division unit,

due to the limited number of point clouds that intersect with the normal plane, the point
set obtained by direct intersection may be sparse and difficult to summarize the real profile
information, further affecting the centroid solution. Therefore, it is necessary to expand
the point cloud quantity where the normal plane is located. Using the normal plane as the
reference, and slicing it after extending the distance d forward and backward to make a
slice, all the inner points of the slice orthogonally project to the normal plane. The true
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coordinates of any projected point Pop can be calculated using Formula (2), from which the
tunnel excavation profile can be obtained.

xop =
(B2+C2)xm−A(Bym+Czm+Di)

A2+B2+C2

yop =
(A2+C2)ym−B(Axm+Czm+Di)

A2+B2+C2

zop =
(A2+B2)zm−C(Axm+Bym+Di)

A2+B2+C2

(2)

where Pm(xm, ym, zm) is any point in the slice of Ni; Pop
(
xop, yop, zop

)
is the coordinate of

the projection point on the normal plane of the point in the slice.
After the geometric feature extraction of the tunnel excavation profile is completed,

the over–under-excavation results of the tunnel excavation profile can be quickly analyzed
based on the comparison of the theoretical model with the measurement model. By
comparing the two-phase measurement models, the geometric deformation of the tunnel
excavation profile can be diagnosed. Since there are some uncontrollable implicit data
operations in the methods of calculating point clouds to the best-fitting plane and mesh
surfaces, this paper chooses to calculate deformations by directly comparing the distances
between individual points within the point cloud. Calculating the Euclidean distance d
from each point p in the point cloud P to the nearest neighbor point in the reference point
cloud R as the local distance. As shown in Formula (3), the cloud-to-cloud distance problem
is converted into a point-to-point distance calculation.

d(p, R) = min
r∈R

∥p − r∥2 (r < S) (3)

where S is the deformation search threshold.
This is an approximate estimation method, which does not consider the point cloud

surface and only searches for points but is fast and straightforward; however, this method
requires calculating the distance from the point to all points within the neighbor points. The
setting of the neighbor points’ size and the density of the reference point cloud will affect the
calculation speed. This paper optimizes the corresponding point search results through the
interpolation method. For the reference point cloud, an interpolation grid is established in
a plane orthogonal to the point cloud deformation direction. The corresponding points on
the grid orthogonal to the comparative point cloud are established. Gaussian regression Is
performed on the data grid point where each corresponding point is located. Estimating the
true position of actual point pairs through this method achieves a higher-precision deviation
calculation, which further provides a more comprehensive twin geometric deformation
evaluation of the tunnel excavation profile twin using multiple evaluation parameters. The
schematic diagram of the intelligent diagnosis of the twin geometric deformation is shown
in Figure 5.
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rical. The correct comparison result cannot be obtained, and the larger error value is taken 
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In order to ensure the accuracy of the deformation intelligent diagnosis results and
the correct use of later construction guidance, the accuracy of the results is evaluated
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before use. PR and PV , respectively, represent the reference point cloud and the result to be
evaluated. When calculating the error between the two, PR and PV are used as references,
respectively, to calculate the Euclidean geometric distances DR,V and DV,R between the
two points, as shown in Figure 6.
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For each point r in PR, the corresponding point v in PV is found using the nearest
neighbor method. If the point cloud normal vector of point r is Nr, then the distance
calculations for point r and point cloud PV based on point-to-point and point-to-plane are
as follows:

dP2P(r, PV) = ∥
→
d r,PV∥

2

2 (4)

dP2L(r, PV) =

(→
E r,PV · Nr

)2
(5)

Due to the non-corresponding characteristics of point clouds, the point errors between
the reference point cloud and the point cloud to be evaluated are usually asymmetrical.
The correct comparison result cannot be obtained, and the larger error value is taken
as the accuracy evaluation result of Pv, which is the maximum value of the two errors
(max(D(PR, PV), D(PV , PR))) taken. Finally, in order to better quantify the error, the error
values are standardized.

F = 10 log10

(
Pv

2

max(D(PR, PV), D(PV , PR))

)
(6)

2.4. Multivariate Visual Variable Integration in the Digital Twin Visualization of Tunnel
Excavation Scenes

Visualization methods enhance human understanding of complex information by
displaying data features in an intuitive and attractive way [29–33]. In order to improve users’
accurate understanding of this key information when conveying diagnostic information
about tunnel excavation deformation, this information must be transformed into easy-
to-understand visual variables [34–38]. The digital twin scenes of tunnel excavation are
complex and changeable. They not only contain information about the tunnel excavation
section but also involve multi-dimensional data such as geotechnical properties, supporting
structures, and construction equipment. These complex information elements may interfere
with people’s effective visual search, leading to an increase in cognitive load. Therefore, a
visualization method of multi-visual variable fusion is proposed, as shown in Figure 7.



ISPRS Int. J. Geo-Inf. 2024, 13, 78 8 of 17

ISPRS Int. J. Geo-Inf. 2024, 13, 78 8 of 18 
 

 

2.4. Multivariate Visual Variable Integration in the Digital Twin Visualization of Tunnel 
Excavation Scenes 

Visualization methods enhance human understanding of complex information by 
displaying data features in an intuitive and attractive way [29–33]. In order to improve 
users’ accurate understanding of this key information when conveying diagnostic infor-
mation about tunnel excavation deformation, this information must be transformed into 
easy-to-understand visual variables [34–38]. The digital twin scenes of tunnel excavation 
are complex and changeable. They not only contain information about the tunnel excava-
tion section but also involve multi-dimensional data such as geotechnical properties, sup-
porting structures, and construction equipment. These complex information elements 
may interfere with people’s effective visual search, leading to an increase in cognitive 
load. Therefore, a visualization method of multi-visual variable fusion is proposed, as 
shown in Figure 7. 

Tunnel structure

Tunnel Support

Geotechnical 
information

Construction equipmentTunnel excavation digital twin

Diagnosis information

Information 
filtering

Fusion expression

−0.2m 0.2m
Deformation

Color grading

Semantic annotation

Overview-detail joint

Morphological position fusion

Highlight visualization

under-
excavation

−0.15m

−0.2m

−0.13m

−0.2m −0.17m

Including

Display

Key information

Visua-
lization
fusion

Enhance expression

 
Figure 7. Tunnel excavation twin scene fusion visualization method. 

Firstly, content screening is performed to prioritize the focus of the information, 
which includes the tunnel structure and excavation diagnostic information. Next, the tun-
nel structure is presented in the form of a 3D model to demonstrate its geometric proper-
ties. The diagnostic information uses a layered coloring method, integrating with the tun-
nel 3D model for display. The introduction of color bands helps users with visual posi-
tioning and search, enabling them to quickly and accurately obtain key diagnostic results. 
Furthermore, considering that minute deformations of centimeters or even millimeters 
may occur during tunnel excavation, enhanced expression is performed based on diag-
nostic information. This enhancement method displays the over–under-excavation status 
of the tunnel by zooming in on local details of the excavation location while using seman-
tic annotations to assist in the interpretation of diagnostic information. Finally, integrating 
the above information expression methods to establish an overview–detail visualization 
method that combines multiple visual variables to improve users’ cognitive efficiency of 
complex tunnel excavation information. 

3. Experiments and Results 
3.1. Case Study 

A case study was conducted on an extra-long tunnel for deformation diagnosis anal-
ysis of the tunnel excavation profile. The tunnel is a single-bore tunnel with a total length 

Figure 7. Tunnel excavation twin scene fusion visualization method.

Firstly, content screening is performed to prioritize the focus of the information, which
includes the tunnel structure and excavation diagnostic information. Next, the tunnel
structure is presented in the form of a 3D model to demonstrate its geometric properties.
The diagnostic information uses a layered coloring method, integrating with the tunnel 3D
model for display. The introduction of color bands helps users with visual positioning and
search, enabling them to quickly and accurately obtain key diagnostic results. Furthermore,
considering that minute deformations of centimeters or even millimeters may occur during
tunnel excavation, enhanced expression is performed based on diagnostic information.
This enhancement method displays the over–under-excavation status of the tunnel by
zooming in on local details of the excavation location while using semantic annotations
to assist in the interpretation of diagnostic information. Finally, integrating the above
information expression methods to establish an overview–detail visualization method that
combines multiple visual variables to improve users’ cognitive efficiency of complex tunnel
excavation information.

3. Experiments and Results
3.1. Case Study

A case study was conducted on an extra-long tunnel for deformation diagnosis analysis
of the tunnel excavation profile. The tunnel is a single-bore tunnel with a total length of
11.75 km and a maximum burial depth of approximately 550 m. It is a double-track tunnel
within a single bore. The geological conditions of the tunnel are complex, crossing multiple
rock contact zones along the alignment. The lithology is complex and changeable, with
developed local joints and fissures, resulting in poor integrity of the rock mass. There
are several sections of high-temperature environments and extremely high-stress sections,
making it one of the critical control projects on the entire rail line. By collecting data on
the tunnel scene multiple times during the construction process, a twin tunnel excavation
scene was constructed (Figure 8).
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At the same time, a knowledge graph was constructed based on the multi-source data
of tunnel excavation. A total of 36 entity nodes and 202 relationships were selected. A Neo4j
graph database was used to store these nodes and relationships. Finally, a knowledge graph
of the twin scenes of the tunnel excavation was formed to accurately depict the entities and
relationships of the twin scenes (Figure 9).
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We constrained the tunnel twin model through tunnel segment attribute information
to distinguish the tunnel twin knowledge data of different segments. The excavation
contour knowledge is dynamically extracted during the forward excavation process of
the tunnel project, which can help the tunnel excavation scene knowledge storage and
the excavation stage form a corresponding relationship, and the content of the knowledge
graph is continuously updated. It guided the diagnosis and visualization process of
complex tunnel excavation scenarios, reducing the difficulty and complexity of diagnosis
and visualization.

The experiment takes the tunnel excavation section DK49+574 as an example, record-
ing the section number and other attribute information and synchronously updating the
knowledge of the twin scenario of this tunnel section in the knowledge base. When anal-
ysis is required for a specific feature point, the surrounding rock grade is determined
through the knowledge base. Utilizing the knowledge data stored in the knowledge graph,
combined with other environmental conditions and excavation environments affecting
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the point, the type and degree of geometric deformation of the point are analyzed. It is
determined that the point has undergone curvature deformation, and the deformation
level is classified as first-level curvature deformation. The geometric diagnosis results can
provide effective guidance for subsequent construction during the excavation process. The
common construction treatment measures for first-level curvature deformation involve
mild interventions, such as strengthening observation records and adjusting excavation
speed, etc. (Figure 10).
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Figure 10. Excavation scene ontology model of tunnel DK49+574 section.

In the subsequent excavation process, the same method is used to dynamically update
the twin scene knowledge of the newly excavated tunnel section. At the same time, the
prior knowledge of the excavated section can guide the subsequent construction and update
of the knowledge map, forming a knowledge-guided tunnel digital twin model geometric
deformation diagnosis and visualization.

3.2. Experimental Results and Analysis

To test the intelligent analysis method of geometric deformation of tunnel excava-
tion profile twins proposed in this article, the system server was built using Node.js
v6.11.2. Neo4j community 4.4.2 was used to store graph data. The browser was built using
HTML5, CSS3, and JavaScript. The 3D rendering engine digital twin platform was built
through the open-source virtual earth Cesium.js v1.45. The program ran on Google Chrome
192.168.101.201.103. Based on the development environment mentioned above, the twin
geometric feature extraction and deformation diagnosis of the tunnel excavation and the
visual cognition experiments were carried out. The environment configuration information
involved in these experiments is listed in Table 1.

Table 1. Development environment configuration.

Content Details

Hardware

CPU InteI) I(TM) i5-10210U CPU @1.60 GHz 2.11 GHz
GIIntel(R) UHD Graphics

Memory 16 GB
Eye tracker Tobii Pro Spectrum

Software

IDE Visual Studio 2019
System server Node.js v6.11.2

Graph database Neo4j community 4.4.2
Digital twin platform Cesium.js v1.45

System Windows 10
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3.2.1. Tunnel Geometric Deformation Diagnosis Experiment and Analysis

Based on the spatial geometric relationship in the knowledge graph, the geometric
feature-constraint of the tunnel profile is performed. The geometric features of the tunnel
are mainly the linear tunnel section. Based on the technical method proposed in Section 2.3
of this paper, the geometric features of the twin point cloud of tunnel excavation are
extracted after preprocessing. Taking the excavation profile of DK49+575 tunnel as an
example, the geometric feature extraction of tunnel excavation contour is carried out,
and the tunnel excavation twin data are divided into micro-segments with a thickness of
1 cm and an interval of 10 cm, as illustrated in Figure 11a. After the reference section
is determined, the actual excavation contour feature line is obtained by generating the
optimal comparison point set of the tunnel excavation contour, as illustrated in Figure 11b.
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Based on the tunnel data and the actual excavation contour feature line extraction
results, deformation diagnosis and analysis were conducted. The results are illustrated in
Table 2, and the deformation results in Figure 12. From the experimental results, monitoring
points P01~P07 from the two phases of data are located on the periphery of the design curve,
with monitoring points P04 and P05 being the furthest from the design curve. During actual
construction, the geological conditions of the tunnel construction area are difficult to predict
accurately. To ensure project quality, the working section is often expanded beyond the
design surface, and over-excavation construction is generally carried out. The deformation
data for each monitoring point align with the actual construction situation on site. This is
because, after tunnel construction, the pressure on the top of the tunnel is much greater than
the pressure on both sides, causing the entire tunnel to sink noticeably at the top position
with no significant change in the horizontal direction, which is a reasonable deformation.

Table 2. Diagnostic analysis results of tunnel excavation deformation.

Monitoring
Point

Theoretical Position S1 Cross-Section Point
Cloud Position

S2 Cross-Section Point
Cloud Position

Direction
Deviation

(cm)

X (m) Y (m) X (m) Y (m) X (m) Y (m) S1 Dxy S2 Dxy

P01 −7.2066 3.2451 −7.2848 3.2123 −7.2916 3.2156 −8.48 −9.00
P02 −6.2435 6.0158 −6.2528 6.1165 −6.2549 6.1198 10.11 10.46
P03 −3.6656 8.7455 −3.5359 8.8864 −3.5366 8.9806 19.15 26.82
P04 0 9.6355 0 9.8339 0 9.9164 19.84 −28.09
P05 3.6301 8.739 3.4960 8.8929 3.484 8.9508 20.41 25.73
P06 6.2188 6.2516 6.2501 6.1369 6.2523 6.1304 −11.89 12.57
P07 7.2142 3.1214 7.2612 3.1618 7.2656 3.1659 6.20 6.80
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As an important reference for effectiveness evaluation, the accuracy and efficiency of
the algorithm are crucial factors for its potential widespread adoption and application in
practical production scenarios. This paper innovatively incorporates a knowledge graph,
aiming to enhance the accuracy of deformation detection through knowledge-based guid-
ance. Building on the deformation search threshold calculation for the tunnel excavation
scene outlined in Section 2.3 of this paper, the optimal comparison point set is derived
through threshold range constraints. Table 3 illustrates the deformation position detection
method presented in this paper under the same geometric deformation of the tunnel exca-
vation contour. Compared to conventional methods, the deformation detection accuracy
of the proposed method is improved by approximately 47%, significantly enhancing the
accuracy of deformation detection and aiding in the efficiency of deformation diagnosis
and analysis.

Table 3. Comparison of accuracy of tunnel excavation deformation diagnosis results.

Monitoring
Point

Theoretical
Position Control Group Experimental Group

(With Knowledge Constraints) Accuracy
Improvement

X (m) Y (m) X (m) Y (m) Direction
Deviation X (m) Y (m) Direction

Deviation

P01 −7.2066 3.2451 −7.2848 3.2123 0.0848 −7.2554 3.2310 0.0508 40.10%
P02 −6.2435 6.0158 −6.2528 6.1165 0.1011 −6.2498 6.0903 0.0748 45.75%
P03 −3.6656 8.7455 −3.5359 8.8864 0.1915 −3.5954 8.8229 0.1045 45.44%
P04 0 9.6355 0 9.8339 0.1984 0 9.7410 0.1055 46.82%
P05 3.6301 8.739 3.4960 8.8929 0.2041 3.5677 8.8155 0.0987 51.64%
P06 6.2188 6.2516 6.2501 6.1369 0.1189 6.2408 6.1948 0.0609 48.77%
P07 7.2142 3.1214 7.2612 3.1618 0.0620 7.2447 3.1445 0.0383 48.36%

Table 4 illustrates the difference in total processing time between Cloud Compare and
the method described in this paper for detecting geometric deformation of the same tunnel
excavation profile. With identical device parameter settings and hardware configurations,
the results indicate that the overall computation time of the diagnostic algorithm intro-
duced in this paper is less than 5 min for data volumes on the order of 100,000, whereas
the total processing time using Cloud Compare software (2.13.0) exceeds 100 min. In
comparison to Cloud Compare, the total time consumption of this method is significantly
reduced, enhancing overall efficiency by more than 90%. This paper’s method does not



ISPRS Int. J. Geo-Inf. 2024, 13, 78 13 of 17

require setting relevant parameters, which lowers the demands on the knowledge and
experience of operators and eliminates the need for complex human–computer interaction.
It offers considerable advantages in handling complex tunnel twin models. The data pro-
cessing efficiency in the measurement industry is noticeably superior to Cloud Compare,
directly addressing the issue of time-consuming direct comparison methods in large-scale
data scenarios.

Table 4. Comparison with Cloud Compare software.

Monitoring Mileage
Range

Data Scale
(Points)

Time Consumed (min)
Efficiency

ImprovementCloud Compare
Processing

Method of Processing in
This Paper

1 # Tunnel Twin Model 182,359 31.14 2.75 91.17%

2 # Tunnel Twin Model 236,877 32.86 3.12 90.50%

3 # Tunnel Twin Model 240,688 36.18 3.57 90.13%

4 # Tunnel Twin Model 276,445 39.45 4.11 89.58%

5 # Tunnel Twin Model 199,709 30.25 3.08 89.98%

3.2.2. Experiment and Analysis of Visual Cognition

Furthermore, this paper compares and analyzes the cognitive efficiency of visualizing
tunnel diagnostic information. It selects diagnostic data from a specific period of tunnel
excavation and organizes and displays the content in three distinct ways. First, this paper
documents the 3D coordinates and deformation values of each point in tabular form,
referred to as the basic group. Second, building on the table data, this paper employs
three-dimensional visualization to depict the location of each point and allows for the
inspection of each point’s deformation value, termed the display group. Lastly, this paper
adopts the visualization method described in Section 2.4 to integrate multiple visual
variables, showcasing both the position and deformation value of the points, known as the
augmentation group. This approach is depicted in Figure 13.
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Each group searched for 20 individuals to conduct experiments, and the experimental
process is as follows:

1. Introduce the meaning of the data to participants;
2. Distribute tasks to participants, who need to search for 10 points with a deformation

value of −0.16 in the visualization materials of their group;
3. Participants wear an eye tracker to search for points and record the time for each point

they find;
4. Wait for the participants to complete the search for 10 points, stop the timer, and end

the experiment.

The experimental results are illustrated in Figure 14. As the number of search points
increases, the time spent in the base group also increases. For the display group and the
enhancement group, due to the clustering effect of space, the increment of time spent on
finding other points is relatively stable after finding the first point. For the augmentation
group, the speed of finding the initial point was significantly accelerated due to the help of
multiple visual variables. The cognitive efficiency of this method is more than 70% higher
than that of form viewing and more than 50% higher than that of simple 3D visualization.
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Furthermore, the eye movement distribution results were observed, with the findings
illustrated in Figure 15. In the basic group, the gaze range of participants is primarily
concentrated on the column listing the deformation values, as they search for the corre-
sponding values. Attention shifts to the coordinates of the point only after the correct value
is identified. In the display group, the gaze range of participants is quite dispersed, with
a global observation pattern. Conversely, in the augmentation group, the focus is more
concentrated on areas where the deformation values change, enabling quicker identification
of the relevant points.
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4. Conclusions and Future Work

Digital twin scenes can accurately portray the dynamic changes in the geographic
environment, effectively promoting tunnel engineering toward intelligent construction [39];
however, lacking a diagnostic analysis function makes it difficult for geographic twin mod-
els to reflect the actual engineering situation in the physical world promptly. Therefore, we
proposed a knowledge-guided intelligent analysis method of geographic digital twin mod-
els, taking the tunnel excavation scenario as an example, and innovatively integrated the
knowledge graph technology into diagnosing and visualizing the geometric deformation of
the tunnel excavation profile. We improved the automation level of tunnel profile geometry
calculation and constructed a tunnel excavation twin scene that meets the public perception.
Our method provides a new paradigm for the diagnostic analysis of geographic twin
models, which can effectively support the refined management of the tunnel excavation
process. Specifically, the practical contributions of this paper are mainly threefold.

First, we constructed a twin scene knowledge graph that considered the dynamic
process of tunnel excavation and realized the efficient management of dynamic data of
tunnel excavation engineering. On the one hand, the constructed knowledge graph guides
the subsequent geometrical deformation diagnosis and visualization expression; on the
other hand, it accurately portrays the twin scene objects of the tunnel excavation profile
and their interrelationships. It effectively improves the information processing efficiency in
tunnel excavation engineering.

Second, we innovatively utilized a knowledge graph to guide the diagnostic process
of geometric deformation of the tunnel excavation profile, realizing the rapid diagnosis
of the tunnel excavation profile. Through the knowledge graph’s guidance, the proposed
method’s deformation detection accuracy is improved by about 47% compared with the
general method, and the diagnosis efficiency is enhanced by more than 90% compared
with the commercial software Cloud Compare. In addition, the diagnostic process of the
method in this paper does not need to set relevant parameters. It requires less knowledge
and experience of the operator, which significantly improves the processing efficiency and
automation of tunnel profile geometric deformation calculation.

Finally, we combined multiple visual variables to represent the fusion of tunnel ex-
cavation profile diagnostic information and constructed a tunnel excavation twin scene
that users can quickly recognize. Eye-movement-based cognitive experiments show that
the scene we created can effectively enhance people’s understanding of the complex infor-
mation of tunnel excavation, and the cognitive efficiency is improved by more than 70%
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compared to viewing with a form and more than 50% compared to simple 3D visualization.
It realizes the efficient expression of the diagnostic and analytical results of the geographic
twin model.

However, the method in this paper mainly focuses on the external geometric features
of the tunnel and does not consider the structural forces. Therefore, in our future work,
we will consider combining finite elements and adding mechanical analysis to deepen
the deformation diagnosis of tunnel profile twins. In addition, the participants of the
experiments in this paper are all from China and are limited in number. In the future, we
will recruit more people from different countries and races to participate in our cognitive
experiments to help us further improve the information transfer capability of the tunnel
excavation twin scenes to support the intelligent construction of tunnel excavation better.
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