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Abstract: Persistently, urban regions grapple with the ongoing challenge of vehicular traffic, a predica-
ment fueled by the incessant expansion of the population and the rise in the number of vehicles
on the roads. The recurring challenge of vehicular congestion casts a negative influence on urban
mobility, thereby diminishing the overall quality of life of residents. It is hypothesized that a dynamic
clustering method of vehicle trajectory data can provide an accurate and up-to-date representation
of real-time traffic behavior. To evaluate this hypothesis, data were collected from three different
cities: San Francisco, Rome, and Guayaquil. A dynamic clustering algorithm was applied to identify
traffic congestion patterns, and an indicator was applied to identify and evaluate the congestion
conditions of the areas. The findings indicate a heightened level of precision and recall in congestion
classification when contrasted with an approach relying on static cells.

Keywords: congestion; dynamic clustering; classification; GPS trajectories; road networks

1. Introduction

Examining and analyzing urban vehicular traffic is an extremely important issue in
contemporary society. The persistent growth of urban populations and the subsequent rise
in vehicular volume create notable impediments to effective traffic management within
urban landscapes [1]. This area of management must address crucial aspects, such as
environmental impact and road safety, and is fundamental to improving the quality of life
of citizens.

Efficient traffic management becomes imperative to improve road flow, reduce travel
times, and minimize pollutant emissions. It is important to note that traditional approaches
may not be agile enough to adapt to variations in traffic conditions, which can be significant
throughout the day.

In this environment, the imperative to comprehend the real-time interactions of vehi-
cles and pedestrians in urban landscapes necessitates the comprehensive collection of data
from diverse outlets, such as traffic sensors and navigation systems. The utilization of clus-
tering techniques proves to be indispensable in effectively portraying these data streams,
enabling the discernment of traffic patterns, the structuring of data into clusters founded
on similarities, and the anticipation of forthcoming trends in urban traffic dynamics. Vital
for crafting traffic plans and managing intricacies, these techniques are pivotal in tailoring
approaches to meet the distinct demands of individual areas.
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Thus, the succeeding research queries come into play: How to identify dynamically
patterned traffic areas? How does the use of a clustering algorithm influence the identi-
fication of realistic congestion? What is the impact of using a congestion indicator in the
process of classifying congested areas? The resolution to these inquiries is reserved for the
conclusion of this investigative inquiry.

The focal point in this scenario is the development of a method for identifying and
classifying congested areas based on a dynamic clustering algorithm and a congestion
indicator. This method will process vehicle trajectory data and road network maps in order
to identify and classify congestion zones accurately and efficiently.

This article unfolds in the following manner: Section 2 delves into pertinent literature,
dissecting related works and proposing diverse solutions; Section 3 articulates the details
of the proposed method; Section 4 showcases the acquired results; Section 5 engages in
a discourse on the outcomes; and finally, Section 6 elucidates the conclusions drawn and
outlines future avenues of research.

2. Related Work

The exploration of vehicular trajectory data streams in research has been thorough, with
numerous studies devising clustering methods tailored to diverse applications [2–4]. Through
the use of data streams, alternatives have been proposed to improve traffic management by
analyzing the spatial structure and extracting traffic-related features [5]. The improvement in
efficient traffic management is evidenced by the enriched analysis of data streams when users
actively participate, providing feedback that contributes to improve the systems [6].

While there are challenges such as scalability and the volume of data present in the
processing that can impact the identification objectives, several studies have proposed alterna-
tives to overcome them, such as techniques that deal with data validation to process more
compact datasets without impacting the quality or performance of the processing [7–9].

Many of the methods have proven useful in identifying clusters with similarities and
analyzing their collective behavior [10], enabling the discernment of patterns and structures
within vehicle trajectory data, encompassing the identification of areas prone to congestion.

Previous research has proposed strategies that combine trajectory segmentation [11]
with the clustering process in order to obtain higher-quality clusters [12,13]. In the field
of vehicular trajectory analysis, researchers have frequently adjusted classical clustering
algorithms, such as k-means [2] and DBSCAN [14], incorporating similarity metrics tailored
to address the intricacies inherent in vehicular trajectories [15,16].

There are identification proposals for static clustering that use, as a basis, a fixed
grid-based technique to process data streams from various features [17,18]. Although
this processing method leads to the identification of different congestion patterns in a
simple way [19], they have the disadvantage that they keep in the background the temporal
characteristic present in the data of the trajectories; this disadvantage causes a situation
where the information of the clusters can present persistent patterns that should not be
present if it is analyzed temporally.

Conversely, emphasizing the need to account for the dynamics of vehicular flow in
traffic management, one viable option is to handle trajectory data in brief, periodic flows,
allowing for more frequent updates to the clusters [20]; this alternative has the disadvantage
that these results entail a slight delay to keep the clusters updated for each period, being
unfavorable for cases where it is required to show results in real time.

In addition, researchers have delved into the realm of dynamic clustering algorithms
to manage the continuous influx of trajectory data and dynamically adjust to shifts in traffic
patterns over time. Through the implementation of these dynamic approaches, a timely
identification of an emerging congestion is possible [21,22].

In the most current studies, the combination of machine learning and data mining
methodologies has been employed to unearth concealed patterns and anomalies within
the dynamics of traffic circulation [23–25], as well as to predict vehicle flow in real time.
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Integrating clustering approaches with diverse analytical methods affords a holistic and
systematic perspective on vehicular movement across different scenarios [26–28].

In parallel, traffic congestion assessment has established itself as a critical component
in the effective management of road networks. Numerous investigations have devised
methodologies and approaches for accurately pinpointing congested zones, employing a
diverse array of criteria, spanning intricate elements like delay constraints as well as more
straightforward factors such as traffic speeds [23,27,29–31]. In addition, machine learning
has proven effective in making use of both historical and real-time data to detect recurring
congestion and anticipate congestion conditions in real time [32,33].

Due to the continuous increase in information that in certain cases can make it chal-
lenging to visualize results, effective and innovative ways to represent traffic congestion
trends are being sought [34].

In examining data flows from vehicular trajectories, a dual approach is evident, with a
primary focus on both assessing traffic congestion and employing clustering algorithms [35–37].
The convergence of these perspectives represents a promising area of research, offering an
effective approach to vehicular flow analysis.

A multitude of papers have showcased diverse solutions, including a methodology
for examining vehicular flow in defined zones, identifying speed ranges, and upkeeping
an interactive map that stays current, aiding in the manual inspection of congestion-
prone regions [18]. Although this representation provides a summarized view of real-
time traffic, it is essential to incorporate additional information to enrich the analysis of
vehicular flow [38], such as information from the road infrastructure or information from
different sensors.

The present study introduces an approach for examining vehicular movement involv-
ing the clustering of vehicle trajectory data alongside GPS coordinates. Clusters are used to
identify areas with diverse vehicle patterns. The dynamic refreshment of clusters ensures
the availability of current data, promoting a realistic approach to the management of vehicu-
lar congestion. Furthermore, a traffic congestion metric is applied to assess traffic saturation,
presenting a dynamic overview of the traffic status across different geographical areas.

The proposed method offers promising solutions to address the aforementioned
challenges, making use of methods such as distance-based clustering and evaluation of
a congestion indicator. Distinguished by its capacity to adjust to traffic fluctuations, it
guarantees the periodic update of clusters with minimal activity, preventing the buildup of
outdated data.

3. Materials and Methods

A combined approach of dynamic clustering and classification is proposed as a promis-
ing strategy to address the complexity of vehicular congestion. The complexity related to
traffic dynamics requires advanced approaches that not only identify patterns in vehicle
trajectories, but also effectively classify the congestion state of the corresponding zones.

Figure 1 represents the relationship between the components of the method presented
in this study, which is composed of two main components that operate independently:
one dedicated to identifying areas where vehicular traffic has similar characteristics and
the other focused on analyzing whether these areas have congestion or not. In addition
to the previous components, there are two complementary components for the operation
of the method: the first one is in charge of generating preloaded areas to be used for the
congestion evaluation, and the second one is in charge of the visualization of the results.
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Figure 1. Components of the proposed method.

3.1. Component 1: Preloaded Area Generator

This component is in charge of generating preloaded areas with dimensions similar to
the size of the clusters in order to reduce the processing cost necessary to analyze different
road geometries; in addition, it contains referential information from historical data neces-
sary for the congestion indicator that will be used later. The execution of this component is
done a priori to the clustering and classification components; this component only needs to
be executed once, and the information it generates can be applied to different situations.

First, the definition of uniformly distributed points that serve as reference to locate
each area is made; then a projection around the point is made—this will be the extension of
the area for the road analysis.

A projection is made on the road networks of this area, and the identification of all
roads is carried out. Subsequently, the geometry of the roads intersecting the defined
area is cut out. This process involves the identification of all roads crossing the study
area, which often requires the use of high-precision geographic information systems (GISs).
The trimming ensures that only the relevant roads are considered in the analysis of the
specified area.

Once the geometry of the networks is delineated, discrete data streams of historical
trajectories are analyzed by reviewing vehicle movement data with GPS devices. The
objective is to understand vehicle behavior in each area, identifying relevant information
related to roadway capacities.

During the execution of this component, the maximum number of vehicles and the
maximum allowed speeds per road are determined these are essential values to evaluate
the capacity of the road infrastructure in each area. The generated data are efficiently
stored in memory and can be saved in specialized database management systems to ensure
integrity and availability for future experiments.

These data generated from preloaded areas contribute to improve the performance
of the method as it is a resource that is generated prior to clustering and does not require
updating during the processing of new data streams.

Algorithm 1 summarizes the process described above.
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Algorithm 1 Preloaded area generator component
Input: RList: list of road networks; HList: list of historical GPS points; maxX: maximum

number of X-axis centers; maxY: maximum number of Y-axis centers; maxinst: maximum
number of historical instants to be captured

Output: AREASList: list of precharged areas
1: AREASList ← ∅ {list of preloaded areas}
2: for CELDxy to x := maxX, y := maxY do
3: CENTER = (longitude, latitude)← establish the center of the area
4: LList ← calculating minimum and maximum limits based on CENTER
5: CList ← cut out RList intersecting LList
6: PList ← filter HList within LList
7: DList ← ∅ {list of historical densities}
8: for Ii to i := maxinst do
9: DATAList ← filter PList according to the period of Ii

10: for all CList do
11: CList.v← assign vehicles near roads (DATAList)
12: CList.d← calculate density (CList.v, CList.longitude)
13: DList ← add CList.d
14: end for
15: end for
16: for all CList do
17: Calculate maximum density from DList
18: Extract speed limit
19: end for
20: CELDxy = (id(x, y), CENTER, LList, CList)
21: AREASList ← add CELDxy
22: end for

3.2. Component 2: Dynamic Point Clustering Algorithm

To process in real time a steady stream of GPS trajectories in this study, an agile and
efficient data processing process was implemented.

For this work, a steady stream was simulated and processed by a spatial clustering
method to group trajectories with similar motion characteristics. This method allows for
efficiently processing the steady flow of GPS trajectories and using the resulting information
for analysis.

3.2.1. Cluster Formation

A cluster consists of a set of GPS points represented by an average centroid or location.
The coverage area of the cluster will be determined by an area called a hyperbox. The
centroid is characterized as the geographical reference point that serves as the central
representation within the cluster’s set of points. Utilized as a representative focal point
for the cluster, this central marker eases the comprehension and analysis of the spatial
arrangement. The hyperbox is characterized as a rectangular geometric structure in a
two-dimensional space. Its position in space is determined by the centroid of the cluster
to which it is associated; the center of the hyperbox coincides with the centroid of the
cluster. The incorporation of this rectangular model offers a method to demarcate a region
centered on the centroid, streamlining the spatial depiction of the cluster in the analysis
while specifying its sphere of influence within the examination.

In Figure 2, a visual illustration showcases the composition of a cluster, providing a
graphical overview of its elements.
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Figure 2. Elements that compose a cluster.

Each GPS point extracted from the flow is processed individually and contains infor-
mation on geographic coordinates (latitude and longitude), vehicle identifier, and time of
entry. Executing the clustering task involves applying a similarity criterion centered on
Euclidean distance, harnessing the geographical coordinates of latitude and longitude from
the processed data.

Analysis is conducted on every GPS point, computing the Euclidean distance from
the point to the centroids of all currently established clusters. Identification is made of
the cluster exhibiting the minimal spatial separation between the examined point and its
centroid. If the coordinate of the analyzed GPS point coincides within the hyperbox area
of the selected cluster, the point is affiliated with the cluster and will be considered an
integral part of the cluster. With the incorporation of new GPS points into a given cluster,
the centroid undergoes an update to reflect the evolving spatial center of the cluster. During
this process, the clusters that receive new points will be updated, and in scenarios devoid
of proximate clusters, the system generates new clusters.

If the point is not situated within the hyperbox area, a fresh cluster comes into existence.
Once a point forms an association with a specific cluster, any reassignment to another cluster
is precluded.

In Figure 3, the central details comprising a cluster’s content are depicted. Figure 3
illustrates the dynamic formation of clusters based on the proximity of GPS points within a
hyperbox. The visual representation highlights the difference in color according to the age
of the points, indicating the tendency to eliminate older points over time. It is observed in
a specific cluster: 4 vehicles driving on 10 of the 11 road segments at a constant speed of
15.03 km/h, thus generating 23 GPS points.
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Figure 3. Cluster-related information.

3.2.2. Percentage of Data Forgotten

To ensure that the system is up-to-date and does not retain data that are too old, a
forgetting mechanism is introduced, utilizing a percentage approach tied to the entry time
of the most recent point.

This forgetting mechanism indicates the percentage of data relevance for each unit of
time in seconds elapsed, using Equation (1) to determine this percentage:

F = e−1×λ×δt (1)

where e corresponds to a function of exponential nature, and λ (lambda) is the parameter
that regulates the pace at which the decay unfolds. The decay unfolds more rapidly as λ
attains higher values. Lastly, δt represents the time gap in seconds between the timestamp
of the analyzed point and that of the most recent point assimilated into the cluster.

Each cluster has a numerical indicator that reflects the number of points to remember;
this indicator first decreases by a percentage calculated by the forgetting mechanism from
each second of time that has elapsed since the last point entered the cluster and then
increases by 1 in case a new GPS point is added.

Establishing a 5% tolerance threshold linked to the most effective lambda parameter
setting facilitates the choice of this parameter in terms of elapsed time; this threshold has
been established from simulations that determine approximately how much percentage of
data should be considered according to the time you want to keep data.

This forgetting mechanism is used to filter data or results, focusing attention on
those that exceed the tolerance threshold and discarding those that do not. By applying
a 5% tolerance cap, we seek to ensure that only values that have a significant degree of
importance are remembered in the cluster analysis.

Within the clustering procedure, this mechanism defines the count of GPS points that
will endure within the cluster. This will ensure that the system adapts to changes in traffic
and avoids accumulation of obsolete data. Those clusters whose GPS points have lost
importance due to not receiving a sufficient amount of new GPS points are removed in
order to maintain an up-to-date analysis of the traffic situation. At the same time, those
active clusters that continue to receive new GPS points will be kept up-to-date for proper
traffic analysis.

A visual representation of the percentage of forgetting and relevance that is considered
during the forgetting mechanism is shown in Figure 4; it can be seen that with a time
difference of zero seconds, the relevance is 100%, and as the elapsed time difference in
seconds increases, the percentage of relevance decreases.
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The area with the relevant percentage is marked with a green background, and when
the percentage falls below the tolerance threshold set at 5%, it is considered not relevant;
this area is marked with a red background.

The percentage forgetting mechanism is applied each time a point is added to a cluster.
Additionally, the forgetting mechanism is applied periodically to clusters that have not
received recent points in order to ensure that these particular clusters are kept up-to-date.

Algorithm 2 summarizes the process of component 2.

Algorithm 2 Dynamic point clustering component
Input: S: data stream; ti: initial data capture time; te: final data capture time; lambd:

lambda value
Output: IList: list of snapshots, CLUSTERING: clustering status

1: GList ← ∅ {cluster list}
2: T ← ∅ {general environment time}
3: while S ̸= NULL do
4: CLUSTERING ← TRUE
5: P = (x, y, time, speed, id)← extract (S)
6: T ← P.time
7: G ← nearest cluster (GList, Px,y) using Euclidean distance
8: if G > 0 then
9: O← calculate forgetting (lambd, G.time, P.time)

10: G.n← G.n ∗O
11: G.LSx,y ← G.LSx,y ∗O
12: G.n← G.n + 1
13: G.LSx,y ← G.LSx,y + Px,y
14: G.centroidx,y ← update centroid (G.LSx,y, G.n)
15: G.points← filter (G.points, G.n)
16: G.time← P.time
17: else
18: G = (time, centroidx,y, n, LSx,y, pointsList)← ∅
19: G.n← 1
20: G.LSx,y ← Px,y
21: G.centroidx,y ← update centroid (G.LSx,y, G.n)
22: G.time← P.time
23: GList ← añadir (G)
24: end if
25: Periodic updating of clusters (GList, T)
26: Perform periodic elimination of clusters (GList, T)
27: Capture and Save snapshot (IList, GList)
28: end while
29: CLUSTERING ← FALSE

Figure 4. Percentage of forgetting and relevance of data per unit of elapsed time for a lambda value
set at 0.05.
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3.3. Component 3: Cluster Classifier

Through the execution of this component, it becomes possible to individually examine
and categorize each cluster based on its congestion level, assisting in the recognition of
problematic regions and those displaying improved traffic circulation. While the clustering
of the data is performed in real time, a parallel process is used to capture the results of the
clustering periodically, using an “Observer”.

3.3.1. Observer

The Observer assumes a vital function in the recurrent oversight and categorization of
the clusters based on their conditions; it is responsible for taking periodic snapshots of the
state of the clusters at regular intervals.

The incorporation of the Observer ensures that the information about the state of the
clusters that was captured by the snapshots is the most recent and that the classification is
based on recent data. This plays a pivotal role in ensuring result accuracy and a thorough
comprehension of how traffic congestion evolves across the study areas as time progresses.

At each capture, the Observer records relevant variables describing the status of the
clusters. This includes information such as geographic location, number of vehicles present
in the area, average speed, and other data related to traffic congestion.

Each snapshot capture is stored in memory, thus minimizing the waiting times required
to store each snapshot without affecting the clustering process and avoiding to a large
extent the loss of GPS points in the flow. This storage is essential for analyzing trends over
time and detecting patterns in traffic congestion.

After each capture, the Observer runs the process of classifying the clusters into
congested and noncongested categories. The classification of the clusters is kept up-to-date
with each new capture, thus providing a dynamic view of traffic congestion. This periodic
update makes it possible to detect changes over time and analyze how congestion varies
according to different conditions and events.

3.3.2. Classification

In this component, the classification of the clusters is carried out in two main categories:
those that were congested and those that were not. Unlike the clustering component, the
classification is not performed in real time. It is related to the frequency in which the
snapshots are generated, so this parameter has a direct impact and can cause additional
waiting times if it is set to low frequency values. This factor must be taken into account if
you want to show results very close to real time.

The process of analyzing each snapshot involves the iterative execution of each cluster
of processes described below:

First, we proceed to the identification of the closest preloaded area, with a precise
focus on determining which preloaded area has the greatest similarity with respect to the
area that is covered by the cluster being analyzed. Achieving this involves computing the
Euclidean distance between the preloaded areas’ centers and the centroids associated with
the scrutinized clusters. This metric provides an objective measure of the proximity of
each cluster to the preloaded areas, ensuring that the choice of the closest preloaded area
determines the reference conditions to be used for the cluster congestion analysis.

Once the nearest preloaded area is identified, detailed information about the road
networks present in that area is retrieved. This includes data on the topology of the roads,
their maximum capacity, maximum allowable speed, and other relevant attributes that
facilitate an analysis of the road infrastructure in the area.

Subsequently, the points that make up each cluster are analyzed, and these points
are assigned to the road segments closest to each point. This process makes it possible to
clearly establish to which road network each point in the cluster is associated, which in
turn simplifies subsequent analyses.

With the assignment of points completed, average densities and speeds are calculated
for each road segment. This provides a quantitative description of roadway operation and
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allows the identification of segments with a higher vehicular flow and, therefore, a higher
probability of congestion.

Density and speed indices are then calculated from the average density and speed
data for each road segment. These indices serve as key indicators to assess the state of
congestion in the areas of interest.

The classification of the clusters is done based on the values obtained in the TCC,
which allows for a detailed characterization of traffic congestion in each area.

3.3.3. Calculation of the Traffic Congestion Coefficient (TCC)

The traffic congestion coefficient (TCC) is an indicator used to measure the level of
traffic congestion or saturation in a given area or roadway. The TCC provides a quantitative
measure of traffic saturation that reflects how much traffic flow is affected at a given location
as a function of vehicle density and speeds. A higher TCC value correlates with increased
congestion, whereas a lower TCC value is indicative of reduced congestion and a more
seamless traffic flow. To compute this indicator on a road segment, it is essential to account
for the potential overlap of a cluster’s hyperbox with multiple segments. Initially, the TCC
indicator is individually calculated for each segment, and a cohesive value, determined as
a percentage based on the length of segments with at least one registered vehicle, results in
a distinctive TCC value for each cluster. The TCC is calculated by the relationship between
two indexes as shown in Equation (2):

TCC = IND/INV (2)

where IND serves as an indicator of area density, while INV functions as an indicator of
the area velocity of the analyzed region.

3.3.4. Density Index

This metric serves as a numerical representation of the vehicular count observed
on a designated road segment or within a specified area over a defined time interval.
This numerical indicator is computed by dividing the observed vehicle count within the
analyzed region by the highest number of vehicles recorded at the same location. The
formula for the density index is shown in Equation (3):

IND = d/Dmax (3)

where d indicates the number of vehicles per length of traveled route and Dmax indicates
the maximum vehicle density recorded historically.

Established through historical records or thorough traffic assessments specific to the
region, this upper threshold for density plays a pivotal role in understanding and analyzing
traffic patterns. For this work, the value of the maximum density of each road segment
is obtained in the component that generates the areas preloaded with this information
from historical data. The traffic density index of the different roads in the cluster is
then calculated.

The maximum capacity may vary according to the size of the road and other relevant
factors. In instances where the density index approximates 1 or reaches 1, it denotes that
the quantity of vehicles on the studied thoroughfare is approaching or surpassing the
maximum capacity observed, suggesting a significant likelihood of traffic congestion. That
is, the greater the number of vehicles relative to maximum capacity, the higher the density
index and, therefore, the greater the congestion.

3.3.5. Speed Index

This metric denotes the mean velocity of vehicles traversing the surveyed roadways.
Quantifying the mean velocity of all trajectories in the examined section or region, this
index provides a measure of vehicle movement. It is determined by taking the average
vehicle velocity and dividing it by the maximum speed allowed according to the regulations
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in the given city or area. The maximum allowable speed is usually defined by traffic laws
and regulations to ensure road safety and proper traffic flow. The formula for the speed
index is presented in Equation (4):

INV = v/Vmax, (4)

where v indicates the average speed of the recorded vehicles and Vmax indicates the maxi-
mum allowable speed on the road on which the vehicle traveled.

If this metric approaches, equals, or exceeds the value of 1, it indicates that vehicles
are operating at the velocity at which significant traffic congestion is unlikely to occur. If
the average speed is low, the speed index will be lower, indicating higher congestion and
slower traffic.

Algorithm 3 summarizes the process of component 3. The algorithm concludes its
operation based on the execution state of component 2 and the presence of snapshots ready
for processing.

Algorithm 3 Cluster classifier component
Input: IList: list of snapshots, CLUSTERING: clustering status; AREASList: list of

precharged areas
Output: IList: list of snapshots

1: while CLUSTERING is true or ∃I ∈ IList do
2: if ∃I ∈ IList then
3: for all G = (time, centroidx,y, n, LSx,y, pointsList) ∈ I = GList do
4: A = CList ← nearest preload area (G.centroidx,y, AREASList)
5: for all C ∈ A do
6: C.IND ← calculate density index (G.pointsList, C)
7: C.INV ← calculate speed index (G.pointsList, C)
8: C.TCC ← calculate TCC (C.IND, C.INV)
9: end for

10: G.TCC ← calculate proportional TCC (A)
11: if G.TCC ≥ 1 then
12: G.estado ← 1 {“Congested”}
13: else if G.TCC ≥ 0 and G.TCC < 1 then
14: G.estado ← 0 {“Noncongested”}
15: end if
16: end for
17: IList ← Update (I)
18: Execute component: Results viewer (IList)
19: else
20: Wait
21: end if
22: end while

3.4. Component 4: Results Viewer

This study involves the periodic analysis of trajectory data, enabling the precise
identification of fluctuations in vehicular traffic.

An interactive map has been devised to dynamically present the outputs of each
clustering process. This map is generated using snapshots created during clustering or
can be examined utilizing the congestion indicator. Through this map, one can conduct
real-time graphical scrutiny of pertinent details within each cluster. Distinct colors on the
map delineate areas sharing similar traits, as depicted in the illustration found in Figure 5.

Algorithm 4 summarizes the process of component 4.
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Figure 5. Clusters projected on the map.

Algorithm 4 Results viewer component
Input: IList: list of snapshots
Output: Mi: snapshot maps

1: for each I = GList ∈ IList do
2: M← ∅ {Empty map rendering}
3: for all G = (time, centroidx,y, n, LSx,y, pointsList, estado) ∈ I do
4: C ← ∅ {Empty layer}
5: C ← add G.centroidx,y
6: C ← add G.pointsx,y
7: C ← add general statistics
8: M← add C
9: end for

10: Store M
11: end for

4. Results
4.1. Used Data
4.1.1. San Francisco Dataset

The dataset for the city of San Francisco was collected on 2 June 2008; it contains
290 trajectories recorded by cabs using GPS devices. Each record contains the following
data: trajectory id, latitude, longitude, time, speed, and direction. For this set of trajectories,
the analysis included all the trajectories recorded between 12:30 p.m. and 13:30 p.m. As
a result of this filtering process, 2382 records were obtained, representing 290 trajectories
from the entire dataset.

These trajectories have been reconstructed by applying a routing and interpolation
method every 5 m from which a total of 182,559 points have been obtained.

4.1.2. Rome Dataset

The dataset for the city of Rome was collected on 12 February 2014 and contains
137 trajectories performed by cabs collected by GPS devices with an average time interval
of 10 s between consecutive points. Each record contains trajectory id, latitude, longitude,
time, speed, and direction.
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For this second set of trajectories, the analysis was performed between 18:00 and
19:00 h. As a result of this filtering process, 33,793 records were obtained, representing
137 trajectories of the entire dataset.

These trajectories have been reconstructed by applying a routing and interpolation
method every 5 m from which a total of 7790 points have been obtained.

4.1.3. Guayaquil Dataset

This dataset was collected on 28 October 2017 and corresponds to 218 trajectories
performed by university students traveling by some means of transportation, such as cab,
motorcycle, and Metrovia. The GPS points in this dataset were collected by smartphones
with an average time interval of 5 s between consecutive points. Each record contains id,
latitude, longitude, time, user name, email, and type of transportation.

Given that this is a small set of trajectories, the analysis was carried out between 17:10
and 18:10 h as it was considered to be the time with the highest concentration of records. As
a result of this filtering process, 30,557 records were obtained, representing 206 trajectories
of the entire dataset.

These trajectories have been reconstructed by applying a routing and interpolation
method every 5 m from which a total of 135,237 points have been obtained.

4.2. Model Parameter Selection

Within this study, a two-dimensional space was defined for analysis, spanning an
area of 1200 × 800 square meters. Hyperboxes, each with a consistent size of around
35 × 25 m, were employed, collectively representing approximately 3% of the designated
area. The capture and analysis of snapshots was performed at a frequency of 1 min each.
The similarity measure used was the Euclidean distance, and the lambda parameter (λ)
was set to 0.068, which means that the GPS points of the clusters were considered relevant
until 45 s, and GPS points that exceeded that time were considered not relevant and
were eliminated. Updating at 30 s intervals, clusters characterized by low activity were
maintained, while those clusters lacking GPS points for a duration of at least 2 min were
removed from the system.

4.3. Comparison Method

In this study, two methods for analyzing vehicular flow were compared: dynamic
clusters and a static grid, using the TCC to classify congestion.

In the dynamic clustering method, data from vehicle trajectories with similar patterns
were grouped and evaluated to determine congestion based on speed and the number of
vehicles. Employing the static grid method, we partitioned the study area into uniform
cells, each characterized by speed and vehicle count information, assessed in accordance
with the TCC.

For the dynamic clusters, the cluster hyperbox was projected, as seen in Figure 6, and
the TCC values of the overlapping cells were adjusted, considering a tolerance derived
from the inherent variability observed in traffic data.

Introducing a tolerance factor offers the flexibility needed to correct potential TCC
values influenced by the inherent variability of the data, thereby preventing the misclassifi-
cation of congestion or noncongestion situations.

This adjustment increases the matching matches in the comparison. For congested
clusters, the TCC tolerance of the cells is added, and for noncongested, it is subtracted.

An assessment is carried out, comparing the congested and noncongested states within
cells and clusters. Recorded are matches deemed valid when, at a minimum, one cell aligns
its classification with that of the cluster.
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Figure 6. Cluster projected on the grid.

4.4. Validation of the Model

An initial experiment was undertaken to showcase the dynamic method’s superior-
ity over its static counterpart, illustrating its distinct advantages. The objective of this
experiment was to analyze how each method handles the evolving characteristics of traf-
fic information and the circulation of vehicles within a road system. The analysis was
conducted to identify specific situations where one method outperforms the other. The
experiment is poised to furnish precise data, facilitating a comprehension of variances and
underscoring the superiority of the dynamic approach outlined in this study.

To carry out this experiment, we worked with a representative dataset of the city of San
Francisco that contemplates 6 min of execution, capturing snapshots every 1 min in an area
of 100 × 100 m. Randomly chosen from the experiment’s data cluster, a group underwent
a detailed comparative analysis. Special focus was placed on the characteristics of the
proposed dynamic method, highlighting how it adapts to variations in data distribution
over time. These results were compared with a static method based on a fixed grid,
highlighting notable differences in its responsiveness to changing traffic conditions and
data distribution.

In the proposed dynamic method, the ability to adapt to changing conditions of the
spatial distribution of data is a crucial feature. Figure 7 illustrates the adaptive and precise
adjustments of the centroid and hyperbox location at various time instances, ensuring
coverage along road segments and adeptly capturing changes in both cluster density and
shape. This update not only reflects the current distribution of the data, but also allows the
model to adjust for possible deviations and changes in the shape of the clusters over time.

A representation of the dynamism over a cluster over 4 consecutive seconds of pro-
cessing GPS points is shown in Figure 7; the new points that are integrated into the cluster
update the centroid and hyperbox, causing a slight displacement of both according to the
coordinates of the new GPS points. It can also be identified that the oldest GPS points lose
relevance as time goes by (in the graph, they are marked in red) and are the ones that will
eventually be removed from the cluster in future instants (marked with red edges).
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Figure 7. Dynamism of a cluster as a function of elapsed time: 1 s (a), 2 s (b), 3 s (c) and 4 s (d).

In this method, the data are processed in time order, which is important to distinguish
old points and to keep the cluster location updated. The points processed for each time
instant in the clustering can be visualized in Figure 8. A representation of the hyperbox of
the analyzed cluster has been projected to identify the points that have been assigned to
this particular cluster; moreover, as the points can only be assigned to a single cluster, the
other points that are displayed and are outside the projected hyperbox are assigned to some
cluster other than the analyzed one. The points displayed with black color correspond to
points that entered at one time instant, while the points with red borders are points that
entered at the previous time instant.

Figure 8. Processed data flow in function of time: 1 s (a), 2 s (b), 3 s (c) and 4 s (d).

On the other hand, the static method, which is based on a fixed grid, has certain
limitations in terms of adaptability. In Figure 9, it can be seen how the data are assigned to
predefined cells in the grid. GPS points transiting a road are assigned and analyzed as part
of a cell, and this cell serves a certain specific region; therefore, several cells are required
to analyze a large road, and GPS points will be distributed among the different cells. The
distribution of cells in a fixed grid ensures complete coverage, allowing for an understand-
ing of the spatial dynamics of roads in their respective areas, and the consideration of how
GPS points are distributed between cells suggests attention to efficiency in spatial data
management. However, in a fixed grid, the need to use several cells to analyze a road that
traverses multiple areas also presents its own disadvantages; for example, the road may
appear to be divided, which may affect the understanding of its whole. This management
of cells may require more computational and storage resources; in addition, some risks of
errors may occur when coordinating data between cells.
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Figure 9. Static grid showing the distribution of the cells that make it up.

As for the dynamism of the data when analyzing the snapshots using the classifier
component, the dynamic method shows a clear advantage. Figure 10 shows the selection
of road segments for the snapshots captured at minutes 1 (Figure 10a), 3 (Figure 10b), and 5
(Figure 10c) used for congestion assessment; this capacity to flexibly adapt to shifts in data
location and make adjustments to centroids and hyperboxes as required positions it as an
excellent option for identifying segments affected by changes in vehicular flow and traffic
density. On the other hand, the static method grapples with managing these dynamics, as
the rigid lattice fails to effectively adjust to fluctuations.

Figure 10. Selection of dynamic road segments at the snapshots of minutes 1 (a), 3 (b), and 5 (c).

In real scenarios, such as a road network traversing an urban area with multiple routes
and traffic patterns, diverse situations arise. During peak traffic hours, roads can fill up
with a large number of vehicles, resulting in congestion. In contrast, during off-peak times,
the number of vehicles on the roads decreases. If we focus on a static method that does not
consider these fluctuations in data flows, as can be seen in Figure 11, the road segments
being analyzed remain fixed at all times; there is a possibility that roads with very different
traffic volumes will be incorrectly selected for each cell. This erroneous choice may result in
an imprecise portrayal of how vehicles behave throughout various periods within the day.
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Figure 11. Choosing road segments to establish fixed cells.

During this initial experiment, a salient feature of the dynamic approach can be
observed, in contrast with the static alternative that computes the congestion indicator
using all observed points but without considering the evolution of the vehicle route. The
static method only retains the recent points considered relevant to the vehicles, as these are
the ones that approximate a real-time route of the vehicles.

Within the dynamic approach, as vehicles navigate and fresh GPS data are logged, the
clustering algorithm assimilates these GPS points into their designated clusters, thereby
triggering an autonomous update of the centroid. This suggests that the definition of
real-time congestion is more significantly influenced by the most recent GPS points, while
the relevance of earlier GPS data gradually diminishes.

This differentiation is crucial, since in one trip, a vehicle may cross multiple cells and its
trajectory may span a variety of GPS points. If all these GPS points were considered without
taking into account temporal dynamics, erroneous conclusions about congestion could be
reached, identifying congestion that does not actually exist. Consequently, the dynamic
method secures a real-time assessment of congestion that is both precise and adaptable,
effectively responding to the dynamic nature of vehicle mobility on urban roadways.

4.5. Obtained Results

This section presents performance indicators through execution times and quality
based on confusion matrices.

In order to measure the effectiveness of this method, a table has been generated with
the execution times. This table provides a detailed and objective view of how the method
behaves in practical conditions.

In the parallel execution process, it is relevant to note that the times of the clustering
component are measured independently, while the classification and visualization compo-
nents are evaluated together and separately to the classification component; the results of
the execution times are shown in Table 1 for 60 s snapshots and in Table 2 for 30 s snapshots
both in minutes as unit of measure and are obtained from running 1 h of data in the cities
of San Francisco, Rome, and Guayaquil. This individualized measurement strategy allows
for a more precise analysis of each component and its contribution to the total run time.
In addition, in parallel executions, it is common to observe that the maximum time of the
processes to be measured is taken as a reference.
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Table 1. Execution times (min) of the proposed method for snapshots of 60 s.

Component San Francisco Rome Guayaquil

Clustering 28:23 10:46 18:32
Classification 19:11 8:30 7:40

Maximum time 28:23 10:46 18:32

Table 2. Execution times (min) of the proposed method for 30 s snapshots.

Component San Francisco Rome Guayaquil

Clustering 27:34 11:02 18:37
Classification 39:01 15:13 31:41

Maximum time 39:01 15:13 31:41

The results show significant differences in the execution times of the clustering and
classification components in the cities of San Francisco, Rome, and Guayaquil. Although
areas of very similar dimensions were used, there are several reasons that may explain
these disparities.

In the case of the clustering component, the experiments with 60 s snapshots showed
that the city of San Francisco shows the longest time, at 28 min and 23 s. This could be due
to the complexity of the data in that city or a larger amount of data requiring processing.
On the other hand, Rome and Guayaquil show shorter times, 10 min and 46 s and 18 min
and 32 s, respectively.

Experiments with 30 s snapshots showed that the city of San Francisco requires 27 min
and 34 s for clustering, while the city of Rome requires 11 min and 2 s, and the city of
Guayaquil requires 18 min and 37 s.

This could indicate a higher efficiency in the clustering process in those cities or a lower
workload that could be directly related to the number of trajectories. In the experiments
with 60 s snapshots, San Francisco was processed with 290 trajectories and has obtained the
longest processing time, Guayaquil with 218 trajectories has obtained a shorter time than
San Francisco, and finally, Rome has obtained the shortest processing time by processing
137 trajectories. This trend is also present in the 30 s experiments, which reaffirms that there
is a direct relationship between processing time and the amount of clustered trajectories.

The storage of each snapshot takes less than 0.02 s. During this time, the clustering
stops momentarily; however, this time is relatively small, which does not affect the cluster-
ing processing time since, if compared with the time between snapshots, which is 60 s, this
time represents 0.03%.

As for the classification component, the experiments performed with 60 s snapshots
showed that the Guayaquil dataset stands out with the lowest time, 7 min and 40 s, followed
by Rome with 8 min and 30 s. San Francisco, in this case, shows the longest time, 19 min
and 11 s. For the experiments with 30 s snapshots, the order is preserved with respect to the
time required to classify each cluster, obtaining 39 min and 1 s in the city of San Francisco,
31 min and 41 s in the city of Guayaquil, and 15 min and 13 s for the city of Rome. These
times could be related to the availability of processing resources in each location or the
complexity of the road networks found in the areas used for classification in each city.

For ease of understanding and a concise presentation of the key characteristics, a
summary is presented in Table 3. This table contains a synthesis of some characteristics
that can influence the time required to process GPS points. As can be seen, the complexity
of the results varies according to various factors, and there are also other possible impacts
that have not been fully analyzed in this study. Divergences in execution times between
cities can be attributed to various factors correlated to the complexity of road networks and
trajectory patterns. The variability in times could be correlated with the specific charac-
teristics of the networks, where the presence of complexities, as illustrated in Figure 12b,c,
directly impacts the clustering and sorting processes.
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Table 3. Characteristics that can influence the time required to process GPS points.

City Quantity of Roads Quantity of Trajectories Time Lapse

San Francisco 147 290 12:30–3:30
Rome 137 235 18:00–19:00

Guayaquil 218 236 17:10–18:10

The variability in the layout of the available roads in a city can directly influence the
performance of the system. Some examples are given to illustrate some cases faced by
the cluster classification component. Figure 12a shows the simplest case that will require
the least amount of resources to analyze, the case in Figure 12b is a scenario with a very
common urban distribution between cities that will require more time to obtain the traffic
valuation, and Figure 12c shows the case of a complex road network that is composed of
multiple intersecting roads.

Figure 12. Example of different network complexities: (a) a single road, (b) four roads, and
(c) eleven roads.

From the perspective of parallel execution, these results highlight the importance
of considering the performance of each component separately. Parallel execution allows
the workload to be distributed efficiently, but execution times vary depending on the
processing power of each component and how they interact with each other.

To verify the precision of the clustering classification, an evaluation is applied based
on the observed results, which are reflected in different confusion matrices for each city
evaluated. A confusion matrix is a tool used to evaluate the performance of a classification
model, allowing for quantifying the number of hits and misses of the model. In this article,
the columns represent the actual classifications, while the rows represent the classifications
predicted by the model. The confusion matrix delivers a compact portrayal of the classifica-
tion model’s effectiveness in gauging TCC grid congestion. It quantifies the instances of
correct and incorrect predictions within the respective TCC categories.

Each table individually addresses the results for a city, detailing snapshot configura-
tions with different times. Internally, these tables consolidate the results by means of three
confusion matrices corresponding to the 0.2, 0.1, and 0.0 tolerance configurations arranged
in each main row. At the column level, the cell statistics are presented, while the rows
display the group statistics obtained by the proposed method.

Table 4 exhibits the findings of the confusion matrices using 60 s snapshots for the
San Francisco dataset. For a tolerance of 0.2, the matrix reveals that the model was able to
correctly identify 11,237 cases of congestion and 2503 cases of noncongestion. However,
in the cases of incorrect classifications, there are 166 cases in which scenarios without
congestion are identified when the static method indicates that they are congested scenarios,
while in the other category, there are 1748 cases in which congested scenarios are identified,
but the static method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify
10,614 cases of congestion and 2492 cases of noncongestion. However, in the cases of
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incorrect classifications, there are 176 cases in which scenarios without congestion are
identified when the static method indicates that they are congested scenarios, while in the
other category, there are 2371 cases in which congested scenarios are identified, but the
static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify
10,029 cases of congestion and 2457 cases of noncongestion. However, in the cases of
incorrect classifications, there are 211 cases in which scenarios without congestion are
identified when the static method indicates that they are congested scenarios, while in the
other category, there are 2956 cases in which congested scenarios are identified, but the
static method indicates that these scenarios are not congested.

Table 4. Consolidated results using 60 s snapshots with the San Francisco dataset.

Tolerance Cluster Classification Congested TCC Noncongested TCC

0.2 Congested cluster 11,237 1748
Noncongested cluster 166 2503

0.1 Congested cluster 10,614 2371
Noncongested cluster 176 2492

0 Congested cluster 10,029 2956
Noncongested cluster 211 2457

Table 5 exhibits the findings of the confusion matrices using from 30 s snapshots for
the San Francisco dataset. For a tolerance of 0.2, the matrix reveals that the model was able
to correctly identify 14,184 cases of congestion and 3294 cases of noncongestion. However,
in the cases of incorrect classifications, there are 1227 cases in which scenarios without
congestion are identified when the static method indicates that they are congested scenarios,
while in the other category, there are 7062 cases in which congested scenarios are identified,
but the static method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify
13,335 cases of congestion and 3258 cases of noncongestion. However, in the cases of
incorrect classifications, there are 1263 cases in which scenarios without congestion are
identified when the static method indicates that they are congested scenarios, while in the
other category, there are 7911 cases in which congested scenarios are identified, but the
static method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify
12,471 cases of congestion and 3234 cases of noncongestion. However, in the cases of
incorrect classifications, there are 1287 cases in which scenarios without congestion are
identified when the static method indicates that they are congested scenarios, while in the
other category, there are 8775 cases in which congested scenarios are identified, but the
static method indicates that these scenarios are not congested.

Table 5. Consolidated results using 30 s snapshots with the San Francisco dataset.

Tolerance Cluster Classification Congested TCC Noncongested TCC

0.2 Congested cluster 14,184 7062
Noncongested cluster 1227 3294

0.1 Congested cluster 13,335 7911
Noncongested cluster 1263 3258

0 Congested cluster 12,471 8775
Noncongested cluster 1287 3234

The results of the confusion matrices for the city of Rome using 60 s snapshots are
shown in Table 6. Specifically for a tolerance of 0.2, the model was able to get 3195 cases
of congestion and 412 cases of noncongestion correctly. However, in the cases of incorrect
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classifications, there are 30 cases in which scenarios without congestion are identified when
the static method indicates that they are congested scenarios, while in the other category,
there are 309 cases in which congested scenarios are identified, but the static method
indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify
3089 congested cases and 412 noncongested cases. However, in the cases of incorrect
classifications, there are 30 cases in which scenarios without congestion are identified when
the static method indicates that they are congested scenarios, while in the other category,
there are 415 cases in which congested scenarios are identified, but the static method
indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify
2994 cases of congestion and 408 cases of noncongestion. However, in the cases of incorrect
classifications, there are 34 cases in which scenarios without congestion are identified when
the static method indicates that they are congested scenarios, while in the other category,
there are 510 cases in which congested scenarios are identified, but the static method
indicates that these scenarios are not congested.

Table 6. Consolidated results using 60 s snapshots with the Rome dataset.

Tolerance Cluster Classification Congested TCC Noncongested TCC

0.2 Congested cluster 3195 309
Noncongested cluster 30 412

0.1 Congested cluster 3089 415
Noncongested cluster 30 412

0 Congested cluster 2994 510
Noncongested cluster 34 408

The results of the confusion matrices for the city of Rome using 30 s snapshots are
shown in Table 7. Specifically for a tolerance of 0.2, the model was able to hit 4689 cases of
congestion and 509 cases of noncongestion. However, in the cases of incorrect classifications,
there are 390 cases in which scenarios without congestion are identified when the static
method indicates that they are congested scenarios, while in the other category, there are
2159 cases in which congested scenarios are identified, but the static method indicates that
these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify
4594 congested cases and 508 noncongested cases. However, in the cases of incorrect
classifications, there are 391 cases in which scenarios without congestion are identified
when the static method indicates that they are congested scenarios, while in the other
category, there are 2254 cases in which congested scenarios are identified, but the static
method indicates that these scenarios are not congested.

Table 7. Consolidated results using 30 s snapshots with the Rome dataset.

Tolerance Cluster Classification Congested TCC Noncongested TCC

0.2 Congested cluster 4689 2159
Noncongested cluster 390 509

0.1 Congested cluster 4594 2254
Noncongested cluster 391 508

0 Congested cluster 4497 2351
Noncongested cluster 399 500

For a tolerance of 0, the matrix reveals that the model was able to correctly identify
4497 cases of congestion and 500 cases of noncongestion. However, in the cases of incorrect
classifications, there are 399 cases in which scenarios without congestion are identified
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when the static method indicates that they are congested scenarios, while in the other
category, there are 2351 cases in which congested scenarios are identified, but the static
method indicates that these scenarios are not congested.

The results of the confusion matrices for the city of Guayaquil, using 60 s snapshots,
are shown in Table 8. In particular, for a tolerance of 0.2, the model was successful in
2576 congestion situations and 1912 cases of no congestion. However, in the cases of
incorrect classifications, there are 146 cases in which scenarios without congestion are
identified when the static method indicates that they are congested scenarios, while in the
other category, there are 276 cases in which congested scenarios are identified, but the static
method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify
2535 congested cases and 1891 noncongested cases. However, in the cases of incorrect
classifications, there are 167 cases in which scenarios without congestion are identified
when the static method indicates that they are congested scenarios, while in the other
category, there are 317 cases in which congested scenarios are identified, but the static
method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify
2459 cases of congestion and 1872 cases of noncongestion. However, in the cases of incorrect
classifications, there are 186 cases in which scenarios without congestion are identified
when the static method indicates that they are congested scenarios, while in the other
category, there are 393 cases in which congested scenarios are identified, but the static
method indicates that these scenarios are not congested.

Table 8. Consolidated results using 60 s snapshots with the Guayaquil dataset.

Tolerance Cluster Classification Congested TCC Noncongested TCC

0.2 Congested cluster 2576 276
Noncongested cluster 146 1912

0.1 Congested cluster 2535 317
Noncongested cluster 167 1891

0 Congested cluster 2459 393
Noncongested cluster 186 1872

The results of the confusion matrices for the city of Guayaquil, using 60 s snapshots,
are shown in Table 9. In particular, for a tolerance of 0.2, the model was successful in
3364 congestion situations and 2328 cases of no congestion. However, in the cases of
incorrect classifications, there are 1193 cases in which scenarios without congestion are
identified when the static method indicates that they are congested scenarios, while in the
other category, there are 1622 cases in which congested scenarios are identified, but the
static method indicates that these scenarios are not congested.

For a tolerance of 0.1, the matrix reveals that the model was able to correctly identify
3270 congested cases and 2312 noncongested cases. However, in the cases of incorrect
classifications, there are 1209 cases in which scenarios without congestion are identified
when the static method indicates that they are congested scenarios, while in the other
category, there are 1716 cases in which congested scenarios are identified, but the static
method indicates that these scenarios are not congested.

For a tolerance of 0, the matrix reveals that the model was able to correctly identify
3155 cases of congestion and 2281 cases of noncongestion. However, in the cases of incorrect
classifications, there are 1240 cases in which scenarios without congestion are identified
when the static method indicates that they are congested scenarios, while in the other
category, there are 1831 cases in which congested scenarios are identified, but the static
method indicates that these scenarios are not congested.
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Table 9. Consolidated results using 30 s snapshots with the Guayaquil dataset.

Tolerance Cluster Classification Congested TCC Noncongested TCC

0.2 Congested cluster 3364 1622
Noncongested cluster 1193 2328

0.1 Congested cluster 3270 1716
Noncongested cluster 1209 2312

0 Congested cluster 3155 1831
Noncongested cluster 1240 2281

In all cases, it was observed that the accuracy in detecting matching categorizations
in the clusters resulting from clustering is high compared with the categorization of the
grid cells.

Upon evaluating the veracity of positive outcomes, specifically measuring the profi-
ciency to accurately identify the status of traffic congestion, the clusters demonstrated a
noteworthy degree of correlations when juxtaposed with the grid cells experiencing con-
gestion in each city subject to scrutiny. This underscores the clusters’ efficacy in discerning
and matching instances of traffic congestion across diverse urban environments.

Concerning the true-negative rate, associated with the precision in recognizing the
uncongested status of traffic, a discernibly elevated quantity of concordances became
apparent in contrast with noncongested cells within the stationary grid.

The results are favorable in identifying congestion situations in the cities analyzed,
obtaining appropriate execution times for runs of 60 min of processing.

5. Discussion

The method used to identify congestion zones, based on 1 h of data in each city, offers
a valuable approach to understanding and addressing traffic problems in urban areas.
This method is based on real-time data collection and analysis. This approach enables an
adaptive evaluation of traffic dynamics across diverse regions. Some of the advantages and
limitations of this method are discussed below, taking into account the results obtained in
the cities of San Francisco, Rome, and Guayaquil.

This method presents notable advantages, such as spatial and temporal precision, since
the analysis of data at a specific time in each city provides an accurate and real-time view
of traffic conditions, allowing the identification of congested areas in great detail. Real-time
detection is essential, as it makes it possible to take immediate action, such as adjusting
routes or managing traffic, which in turn contributes to reducing congestion and improving
urban mobility. In addition, this method is highly flexible and adaptable to different urban
scenarios, making it a versatile tool to address traffic challenges in different cities.

However, it is relevant to consider its limitations. The representativeness of the data is
a concern, as the choice of a specific time may not fully reflect traffic conditions throughout
the day, especially at peak times or special events. Reliance on real-time data may be an
obstacle in areas with less advanced data collection infrastructure. Finally, the location of
traffic monitoring stations can influence the representativeness of the results, leading to
missing data in specific areas or lack of representation in less traveled areas.

The results of contrasting the congestion prediction method based on a clustering
algorithm with the categorization method utilizing fixed cell regions in San Francisco,
Rome, and Guayaquil are explored within this section. The assessment criteria, comprising
accuracy, precision, and recall rates, contribute to a thorough comprehension of how well
both methods perform.

The accuracy percentages are shown in Table 10. The evaluation of method accuracy
aimed to assess the ratio of accurate predictions to the overall predictions generated. These
values indicate the ability of the proposed method to make accurate categorizations, but
also reflect variations in its performance in each city.
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Using 60 s snapshots with the San Francisco dataset, results reveal accuracy rates of
79.77% using a tolerance of 0, 83.73% using a tolerance of 0.1, and 87.77% using a tolerance
of 0.2. For 30 s snapshots, the percentages decreased to 60.95% using a tolerance of 0, 64.40%
using a tolerance of 0.1, and 67.83% using a tolerance of 0.2.

In the city of Rome, accuracy rates using 60 s snapshots are presented with percentages
of 86.21% using a tolerance of 0, 88.72% using a tolerance of 0.1, and 91.41% using a tolerance
of 0.2. For 30 s snapshots, the percentages decreased to 64.50% using a tolerance of 0, 65.86%
using a tolerance of 0.1, and 67.10% using a tolerance of 0.2.

For the city of Guayaquil, using 60 s snapshots, accuracy rates were 88.21% using a
tolerance of 0, 90.14% using a tolerance of 0.1, and 91.41% using a tolerance of 0.2. For 30
s snapshots, the percentages decreased to 63.90% using a tolerance of 0, 62.62% using a
tolerance of 0.1, and 66.91% using a tolerance of 0.2.

Table 10. Accuracy of the method.

City Tolerance 60 s Snapshots 30 s Snapshots

San Francisco
0.2 87.77% 67.83%
0.1 83.73% 64.40%
0 79.77% 60.95%

Rome
0.2 91.41% 67.10%
0.1 88.72% 65.86%
0 86.21% 64.50%

Guayaquil
0.2 91.41% 66.91%
0.1 90.14% 65.62%
0 88.21% 63.90%

Table 11 presents the precision and recall metrics outcomes pertaining to clusters
marked under the congested category. When analyzing the precision in the city of San
Francisco with congested situations, it is observed that the clustering algorithm using 60 s
snapshots achieved rates of 77.24%, 81.74%, and 86.54% for tolerances of 0, 0.1, and 0.2,
respectively. These results decreased in the results using 30 s snapshots to 58.70%, 62.76%,
and 66.76% for the 0, 0.1, and 0.2 tolerances, respectively.

When analyzing the precision in the city of Rome with congested situations, it is
observed that the clustering algorithm using 60 s snapshots achieved rates of 85.45%,
88.16%, and 91.18% for the 0, 0.1, and 0.2 tolerances, respectively. These results decreased
in the results using 30 s snapshots to 65.67%, 67.09%, and 68.47% for the 0, 0.1, and
0.2 tolerances, respectively.

When analyzing the precision in the city of Guayaquil with congestion situations, it is
observed that the clustering algorithm using 60 s snapshots reached rates of 86.22%, 88.88%,
and 90.32% for the 0, 0.1, and 0.2 tolerances, respectively. These results decreased in the
results using 30 s snapshots to 63.28%, 65.58%, and 67.47% for the 0, 0.1, and 0.2 tolerances,
respectively.

The recall in congestion situations indicates the proportion of real congestion situations
correctly identified by the clustering algorithm. In the city of San Francisco, using 60 s
snapshots, the values obtained were 97.94%, 98.37%, and 98.54%, for the tolerances of 0,
0.1, and 0.2, respectively. Using 60 s snapshots, the values obtained were 90.65%, 91.35%,
and 92.04% for the tolerances of 0, 0.1, and 0.2, respectively.

In the city of Rome, using 60 s snapshots, the values obtained were 98.88%, 99.04%,
and 99.07% for the tolerances of 0, 0.1, and 0.2, respectively. Using 60 s snapshots, the values
obtained were 91.85%, 92.16%, and 92.32% for the tolerances of 0, 0.1, and 0.2, respectively.

In the city of Guayaquil, using 60 s snapshots, the values obtained were 92.97%, 93.82%,
and 94.64% for the tolerances of 0, 0.1, and 0.2, respectively. Using 60 s snapshots, the values
obtained were 71.79%, 73.01%, and 73.82% for the tolerances of 0, 0.1, and 0.2, respectively.
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The precision results highlight the algorithm’s ability to accurately identify congestion
situations and make accurate predictions, while the recall results show the algorithm’s
effectiveness in capturing congestion situations present in the data.

Table 11. Precision and recall of the congested category.

City Tolerance
60 s Snapshots 30 s Snapshots

Precision Recall Precision Recall

San Francisco
0.2 86.54% 98.54% 66.76% 92.04%
0.1 81.74% 98.37% 62.76% 91.35%
0 77.24% 97.94% 58.70% 90.65%

Rome
0.2 91.18% 99.07% 68.47% 92.32%
0.1 88.16% 99.04% 67.09% 92.16%
0 85.45% 98.88% 65.67% 91.85%

Guayaquil
0.2 90.32% 94.64% 67.47% 73.82%
0.1 88.88% 93.82% 65.58% 73.01%
0 86.22% 92.97% 63.28% 71.79%

Table 12 presents the precision and recall metrics outcomes pertaining to clusters
marked under the noncongested category. When considering noncongested situations, the
precision and recall metrics indicate the ability of the clustering algorithm to categorize
these situations where traffic is smooth.

In San Francisco, with 60 s snapshots, for the tolerance values of 0, 0.1, and 0.2, the
precision rates were, respectively, 92.09%, 93.40%, and 93.78% and the recall rates were
45.39%, 51.24%, and 58.88%. Meanwhile, for the results with 30 s snapshots, for the
tolerance values of 0, 0.1, and 0.2, the precision rates were, respectively, 71.53%, 72.06%,
and 72.86% and the recall rates were 26.93%, 29.17%, and 31.81%.

In Rome with 60 s snapshots, for the tolerance values of 0, 0.1, and 0.2, the precision
rates were, respectively, 92.31%, 93.21%, and 93.21% and the recall rates were 44.44%,
49.82%, and 57.14%. Meanwhile, for the results with 30 s snapshots, for the tolerance values
of 0, 0.1, and 0.2, the precision rates were, respectively, 55.62%, 56.51%, and 56.62% and the
recall rates were 17.54%, 18.39%, and 19.08%.

In Guayaquil, with 60 s snapshots, for the tolerance values of 0, 0.1, and 0.2, the
precision rates were, respectively, 90.96%, 91.89%, and 92.91% and the recall rates were
82.65%, 85.64%, and 87.39%. Meanwhile, for the results with 30 s snapshots, for the
tolerance values of 0, 0.1, and 0.2, the precision rates were, respectively, 64.78%, 65.66%,
and 66.12% and the recall rates were 55.47%, 57.40%, and 58.94%.

These results reinforce the ability of the algorithm to differentiate congestion-free
situations. However, in the particular case of this category, a considerable decrease in the
recall metric is observed compared with the previously mentioned values. This decrease in
sensitivity indicates that a considerable amount of false negatives have been encountered
in which real noncongested situations are not being correctly identified and underline a
deficiency of the method to detect and capture a number of the true-negative cases within
this classification.

Through a comprehensive review of the results, it becomes evident that the clustering
algorithm plays a pivotal role in not only identifying but also forecasting vehicular conges-
tion. This sets it apart from the static cell-region-based method. The discernible advantage
lies in the algorithm’s adaptability to real-time changes in traffic patterns, enhancing its
utility in dynamic congestion management scenarios. The robust match rates, as reflected
in accuracy, precision, and recall, affirm the algorithm’s proficiency in identifying patterns
of congestion within the dataset in order to anticipate future scenarios.

Looking at the comparison performed in the initial experiment, it becomes evident
that the inability of the static method to adapt to evolving data and shifts in clusters has
the potential to exert an impact on the overall quality of the acquired outcomes. In the
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absence of adaptability, inaccuracies in identifying congestion and traffic flow data may
compromise the reliability of pinpointing congested areas.

Table 12. Precision of the noncongested category.

City Tolerance 60 s Snapshots 30 s Snapshots

Precision Recall Precision Recall

San Francisco
0.2 93.78% 58.88% 72.86% 31.81%
0.1 93.40% 51.24% 72.06% 29.17%
0 92.09% 45.39% 71.53% 26.93%

Rome
0.2 93.21% 57.14% 56.62% 19.08%
0.1 93.21% 49.82% 56.51% 18.39%
0 92.31% 44.44% 55.62% 17.54%

Guayaquil
0.2 92.91% 87.39% 66.12% 58.94%
0.1 91.89% 85.64% 65.66% 57.40%
0 90.96% 82.65% 64.78% 55.47%

In contrast with conventional methods, the dynamic approach stands out by adeptly
handling the complexities of road dynamics. Notably, its strength lies in the holistic
utilization of information from various recorded vehicles within the cluster, significantly
enhancing the accuracy and comprehensiveness of the representation of road dynamics.
This marks a substantial advancement in our ability to understand and respond to the
intricacies of the traffic environment.

6. Conclusions

The results obtained indicate that the dynamic clustering method is effective and
accurate in identifying vehicle congestion compared with the fixed cell method. The ability
to dynamically cluster vehicle trajectory data into clusters and perform a specific analysis
for each cluster allows for a better identification of patterns and similarities in vehicle
flow. It is aimed at the timely and accurate identification of problem areas with potential
congestion situations.

It has been identified that a strategy with great potential can be the combination of
some data mining methods including clustering and classification, both cases focused on
the processing of dynamic vehicle patterns. These methods adapt to the constant evolution
of traffic in urban areas, identifying changing travel behaviors. The introduction of the
forgetting feature has enabled a more efficient information management, allowing the
clustering to be constantly updated by carefully selecting the most recent GPS points
and removing the oldest ones. The implementation of this method not only ensures an
accurate representation of current traffic variations in the clusters, but also enables the early
detection of congestion in formation.

The results obtained underline the positive impact and usefulness of the proposed
approach, highlighting it as a useful tool to increase the efficiency of managing traffic in
urban contexts.

Based on these results, it is relevant to highlight that the clustering algorithm demon-
strated performance with high hit rates in both categories compared with the fixed-cell-
based method. The higher accuracy, precision, and recall rates indicate that the algorithm
is effective in identifying and classifying congestion situations. This can be attributed to its
ability to learn behavioral patterns in the data and adapt to temporal variations.

With its outstanding adaptability to traffic fluctuations, the dynamic clustering-based
method provides a comprehensive and always updated overview of current car patterns
in urban environments. This innovative approach not only improves traffic management,
but also presents a dynamic element that contributes to the in-depth understanding of
constantly evolving urban dynamics.
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For future work, we propose to improve the adaptability of the algorithm in com-
plex urban environments, prioritizing optimization for intersections and road diversity
and addressing vehicle–pedestrian interaction. We also seek to investigate the causes of
decreased recall in noncongested areas, analyzing factors such as variability in speeds,
vehicle density, infrastructure, and weather conditions. Experiments in extended urban
areas, considering severe conditions and complex scenarios, will allow us to evaluate the
scalability and robustness of the algorithm.

To reinforce the relational understanding of the congestion problem, we propose to
further explore the influence of the road network topology on traffic dynamics including
analysis of the interconnection between different nodes, their design, spatial distribution,
and their impact on congestion. In addition, it is recommended to explore possible correla-
tions between road network configuration and traffic behavior patterns, using advanced
spatial analysis tools.

We suggest expanding the inclusion of other modes of transportation, such as pri-
vate cars, bicycles, and pedestrians. It is also proposed to conduct specific analyses by
vehicle type to better understand variations in driving patterns, recognizing the differ-
ences between taxis, private cars, and trucks to better understand congestion in different
urban environments.

In addition to vehicular data, the integration of multimodal data, including public
transport, points of interest, traffic lights, and pedestrians, is considered essential for a
complete view of urban mobility. Finally, it considers the implementation of predictive
models based on artificial intelligence, supported by historical and real-time data, as a key
way to anticipate and prevent congestion patterns.
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on the floating car data. Comput. Environ. Urban Syst. 2021, 87, 101604. [CrossRef]

28. Kim, J.; Mahmassani, H.S. Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories.
Transp. Res. Procedia 2015, 9, 164–184. [CrossRef]

29. Boarnet, M.G.; Kim, E.J.; Parkany, E. Measuring Traffic Congestion. Transp. Res. Rec. J. Transp. Res. Board 1998, 1634, 93–99.
[CrossRef]

30. Pei, Y.; Cai, X.; Li, J.; Song, K.; Liu, R. Method for Identifying the Traffic Congestion Situation of the Main Road in Cold-Climate
Cities Based on the Clustering Analysis Algorithm. Sustainability 2021, 13, 9741. [CrossRef]

31. Seong, J.; Kim, Y.; Goh, H.; Kim, H.; Stanescu, A. Measuring Traffic Congestion with Novel Metrics: A Case Study of Six U.S.
Metropolitan Areas. ISPRS Int. J. Geo-Inf. 2023, 12, 130. [CrossRef]

32. Liu, Y.; Yan, X.; Wang, Y.; Yang, Z.; Wu, J. Grid Mapping for Spatial Pattern Analyses of Recurrent Urban Traffic Congestion
Based on Taxi GPS Sensing Data. Sustainability 2017, 9, 533. [CrossRef]

33. Chen, C.M.; Pi, D.; Fang, Z. Artificial Immune K-means Grid-density Clustering Algorithm for Real-time Monitoring and Analysis
of Urban Traffic. Electron. Lett. 2013, 49, 1272–1273. [CrossRef]

34. Li, A.; Xu, Z.; Zhang, J.; Li, T.; Cheng, X.; Hu, C. A Vector Field Visualization Method for Trajectory Big Data. ISPRS Int. J. Geo-Inf.
2023, 12, 398. [CrossRef]

35. Azimi, M.; Zhang, Y. Categorizing Freeway Flow Conditions by Using Clustering Methods. Transp. Res. Rec. J. Transp. Res. Board
2010, 2173, 105–114. [CrossRef]

36. Rempe, F.; Huber, G.; Bogenberger, K. Spatio-Temporal Congestion Patterns in Urban Traffic Networks. Transp. Res. Procedia 2016,
15, 513–524. [CrossRef]

http://dx.doi.org/10.1145/1247480.1247546
http://dx.doi.org/10.3390/s17092013
http://www.ncbi.nlm.nih.gov/pubmed/28869503
http://dx.doi.org/10.1007/s10462-016-9477-7
http://dx.doi.org/10.1155/2022/5234230
http://dx.doi.org/10.3390/ijgi12030117
http://dx.doi.org/10.24215/16666038.22.e11
http://dx.doi.org/10.1007/978-3-031-45682-4_20
http://dx.doi.org/10.1007/978-3-031-19961-5_11
http://dx.doi.org/10.3390/s20082295
http://www.ncbi.nlm.nih.gov/pubmed/32316468
http://dx.doi.org/10.1016/j.trb.2017.08.021
http://dx.doi.org/10.1016/j.procs.2020.04.241
http://dx.doi.org/10.1177/1550147719847440
http://dx.doi.org/10.1016/j.comnet.2022.108836
http://dx.doi.org/10.3390/ijgi5050071
http://dx.doi.org/10.1016/j.compenvurbsys.2021.101604
http://dx.doi.org/10.1016/j.trpro.2015.07.010
http://dx.doi.org/10.3141/1634-12
http://dx.doi.org/10.3390/su13179741
http://dx.doi.org/10.3390/ijgi12030130
http://dx.doi.org/10.3390/su9040533
http://dx.doi.org/10.1049/el.2013.2514
http://dx.doi.org/10.3390/ijgi12100398
http://dx.doi.org/10.3141/2173-13
http://dx.doi.org/10.1016/j.trpro.2016.06.043


ISPRS Int. J. Geo-Inf. 2024, 13, 73 29 of 29

37. Shang, Q.; Yu, Y.; Xie, T. A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral
Clustering. Sustainability 2022, 14, 11068. [CrossRef]

38. Gao, H.; Yan, Z.; Hu, X.; Yu, Z.; Luo, W.; Yuan, L.; Zhang, J. A Method for Exploring and Analyzing Spatiotemporal Patterns of
Traffic Congestion in Expressway Networks Based on Origin–Destination Data. ISPRS Int. J. Geo-Inf. 2021, 10, 288. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/su141711068
http://dx.doi.org/10.3390/ijgi10050288

	Introduction
	Related Work
	Materials and Methods
	Component 1: Preloaded Area Generator
	Component 2: Dynamic Point Clustering Algorithm
	Cluster Formation
	Percentage of Data Forgotten

	Component 3: Cluster Classifier
	Observer
	Classification
	Calculation of the Traffic Congestion Coefficient (TCC)
	Density Index
	Speed Index

	Component 4: Results Viewer

	Results
	Used Data
	San Francisco Dataset
	Rome Dataset
	Guayaquil Dataset

	Model Parameter Selection
	Comparison Method
	Validation of the Model
	Obtained Results

	Discussion
	Conclusions
	References

