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Abstract: The spatial and temporal changes in social vulnerability to natural hazards in Mexico are
analyzed. To this end, using census data from 2000, 2010, and 2020, and a statistical method, different
indices were computed, and with a GIS-based approach, patterns of social vulnerability are examined.
In addition, a risk assessment test for severe weather (thunderstorms, hailstorms, and tornadoes) is
made out. The results show different common social vulnerability driving factors in the 3 analyzed
years, with root causes that have not been addressed since the beginning of the century. Likewise,
a wider gap between Mexico’s most and least vulnerable populations is identified. The changes
in spatial patterns respond to different historical situations, such as migration, urbanization, and
increased population. Also, poverty, ethnicity, and marginalization factors located in very particular
regions in Mexico have remained relatively the same in the last 20 twenty years. These situations
have strongly influenced the spatial–temporal distribution of vulnerability in the country. The role
of social vulnerability in the disaster risk to extreme events such as thunderstorms, hailstorms, and
tornadoes in Mexico is fundamental to understanding changes in disaster distribution at the national
level, and it is the first step to generating improvements in integrated risk management.
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1. Introduction

In recent years, the economic cost of disasters related to natural hazards has increased
worldwide [1]. Some estimations on the impacts of disasters show that in the last decade,
around USD 170 billion in losses, with peaks over USD 300 billion, were reported globally
every year [2]. In Mexico, disasters triggered by natural hazards (2000–2018) caused around
USD 26 million in losses, in addition to 17.7 million people affected and 22,000 people
dying in the period 1900–2018 [3]. Such increases in the economic cost of disasters have
been mainly attributed to population and economic growth in disaster-prone areas, where
both developed and developing countries have shown adverse effects [4]. The weather
phenomena are particularly interesting among the various natural hazards prone to trigger
disasters, first, because of their high dominance in terms of occurrence and damages
associated [5], but also for the projected impact of climate change on its frequency and
intensity [6].

It is important to note that the mere occurrence of a natural phenomenon does not
imply disaster materialization; instead, it must be combined with a series of pre-existing
vulnerability conditions. The vulnerability concept has been studied from a wide variety
of perspectives, but generally, it is understood as the characteristics of the population and
their situation that influence their capacity to anticipate, cope with, resist, and recover from
the impact of a natural (or anthropogenic) hazard [7]. This concept can be explained based
on progression factors divided into three levels: root causes, such as social and economic
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structures, culture, and ideologies; the dynamic pressures as societal deficiencies and
other macro-forces; and, finally, the fragile livelihoods and unsafe situations, such as those
related to natural, physical, human, political, and economical resources [7–9]. Additionally,
vulnerability is considered a multidimensional concept that includes cumulative and
cascade processes [10]. All these characteristics make it an extremely complex risk factor to
analyze and, above all, to quantify.

Increasing knowledge of determining risk-driving factors is fundamental because
of its potential application for generating public policies focused on disaster risk reduc-
tion. In this regard, previous research considers vulnerability assessment a requirement
for efficiently developing emergency management capabilities and effective risk manage-
ment [7,11]. To this end, several approaches to assessing vulnerability have been developed,
which the Social Vulnerability Index (SoVI) proposed several years ago [12] highlights.
Such an approach involves applying a multivariate statistical method to a large set of
socioeconomic and demographic variables to identify the vulnerability driving factors.
The SoVI has been used, for example, in the Philippines [13], Morocco [14], Brazil [15],
Portugal [16], and China [17]. Other approaches using alternative weighted indices were
recently implemented in Italy [18] and Indonesia [19].

In addition to the SoVI computation, the Geographical Information Systems (GIS)
allows mapping of the resulting indices, which is helpful not only to identify the root
causes of vulnerability (or their changes over time) but also the location (or changes) of
the vulnerable population. In this regard, some studies have been focused on the uses of a
GIS-based approach to identify the distribution of social vulnerability along specific sites
such as rivers or coastal zones [20,21], but also their variability at local [22], regional [23],
and national [18] levels. The development of a GIS-based approach has permitted the
identification of critical regions that are highly vulnerable, but also their spatial patterns by
clustering social vulnerability, for example, using spatial autocorrelation techniques [24].
In summary, the results from the available literature show that the SoVI methodology,
accompanied by mapping the results, is an effective tool for disaster risk reduction [25].

Given the nature of the vulnerability, which is not a static parameter, its evaluation
requires systematic updating. In this sense, diverse investigations have been conducted to
examine the changes in the vulnerability, either to visualize spatial differences, changes
in the driving factors, or both. For example, prior research in China shows a gathering–
scattering–gathering pattern of social vulnerability over time, where rural, development,
and economic characteristics were the main driving vulnerability factors [26]. Other studies
in the U.S. have shown how the vulnerability driving forces vary spatial and temporally,
attributable to components such as increasing development and diversity [27]. Similar
findings were in Italy, where, besides examining changes in vulnerability driving factors,
a bivariate spatial correlation analysis was used to investigate the spatial relationship of
social vulnerability over time [24].

In Mexico, the spatial analysis of vulnerability to natural hazards has been carried
out from diverse approaches. For example, a recent methodology to calculate drought
vulnerability (one of the most significant threats in the country) using socioeconomic and
environmental indicators has been presented [28]. Likewise, a climate change vulnerability
index in agriculture using a multidimensional approach to vulnerability (i.e., through
the computation of exposure, sensitivity, and adaptative capacity) has been published
using a series of indicators and historical and future-climate data [29]. The vulnerability to
intense rainfall using land cover and use changes, terrain slope, and basin compactness has
also been assessed [30]. More recently, a social vulnerability index to tornadoes has been
constructed through a multivariate statistical method and socioeconomic indicators [31].
Moreover, a multitemporal assessment of vulnerability to climate change in the agricultural
sector using a large set of environmental, demographic, and agricultural indicators has
been carried out [32].

Despite the progress shown in Mexico regarding the evaluation of vulnerability, to date,
no investigation has focused on the multi-temporal assessment of social vulnerability to
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natural hazards at the national level. To fill this gap, this research used census data from the
last decades to generate vulnerability indices based on the SoVI methodology. Subsequently,
temporal and spatial comparations were made using a Geographical Information Systems
(GIS)-based approach. Furthermore, a severe weather risk assessment was conducted
using diverse hazard indices for thunderstorms, hailstorms, and tornadoes. The paper’s
organization is as follows. Section 2 presents the study area, and Section 3 displays the
data and methods. Section 4 shows the results based on the distribution of the different
vulnerability levels computed. Then, Section 5 discusses the major characteristics and their
root causes of the spatial and temporal changes in social vulnerability in Mexico. Finally,
conclusions are presented in Section 6.

2. Study Area

The study area selected for this study comprises the entire Mexican territory, which
consists of 32 states and 2469 municipalities. According to the last census in 2020 [33], the
population in Mexico ranges from 126 million people, where 51.2% are women and 48.8%
are men. The economically active population in Mexico in 2020 is around 62% (considering
only the population greater than 12 years old), and the economic participation rate is 75.8%
in men and 49.0% in women. Only around 6.1% of the total population in Mexico are
speakers of an indigenous language, and this value decreased from the 6.6% recorded in
2010. In the same way, the illiteracy rate has decreased over the years, and in 2020, was
around 4.7%. Regarding some basic services, the percentage of households with drinking
water is 96.3%, and the average number of occupants per household is on a downward
trend, with a value of 3.6 in 2020.

The area occupied by Mexico comprises 1.97 million km2. Three, major well-defined
biogeographic regions can be observed in Mexico: the Nearctic, Neotropical, and Mexican
transition regions [34]. The first one comprises almost all the northern portion of the
territory, and here, the driest environments are observed. The second one mainly extends
over the southern portions, and moist conditions are prevalent here. Finally, the transition
region is located along the most important mountain ranges, such as the Trans-Mexican
Volcanic Belt and the Western, Eastern, and Southern Sierras Madres. The considerable
heterogeneity of the Mexican territory provides a suitable environment for developing a
great variety of climates, where the interaction of synoptic-scale atmospheric circulations
and the prevailing local conditions can generate a great diversity of extreme weather and
climate events.

3. Materials and Methods

The input data were obtained from the latest three Mexican national censuses: 2000,
2010, and 2020 [33]. The spatial analysis unit selected was the municipality because it
represents the smallest administration unit responsible for risk and disaster management at
the local level [31]. It is important to note that several changes in some municipality limits
were observed across the years but did not impact the calculations performed. An initial set
of 22 variables related to vulnerability was selected based on previous research [12,16,19,24]
with the corresponding adaptations given the Mexican context. The lack of uniformity of
data from the censuses limited the use of a more extensive set of variables. For example,
in the 2000 census, 132 variables were available, significantly differing from the 200 and
286 variables present in the 2010 and 2020 censuses, respectively. Then, multicollinearity
analyses were performed on the initial variables set, and 18 were retained (Table 1).

The selected variables were standardized using z-scores because of their unit’s het-
erogeneity. Then, Kaiser–Mayer–Olkin (KMO) and Bartlett tests were performed to eval-
uate the factor analysis applicability. KMO showed values of 0.87 (2000), 0.84 (2010),
and 0.83 (2020) with p-values < 0.001 in all the cases, proving the feasibility of the se-
lected technique. Subsequently, the factor analyses were carried out using the principal
components technique, the varimax rotation, and the Kaiser normalization, as in previ-
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ous studies [18,19,26]. Finally, factors with eigenvalues greater than one were extracted
(Figure 1).

Table 1. Variables used.

Variable Description Concept

DENPOB Population density Anthropization
POBFEM Percentage of female population

GenderVCJEFF Percentage of female headed households
POB5YM Percentage of young children (under 5 years) Age
PSINSA Percentage of population without health services Health
POBDIS Percentage of disabled population Mobility
PNFENT Percentages of foreign population Migration
PANALF Percentage of illiterate population Education
PHLIND Percentage of Indigenous population Ethnicity
PROMOC Average number of occupants per household Overcrowding
VPHPCT Percentage of households with dirt floors

Infrastructure
VPHSAG Percentage of households without drinking water
VPHSDR Percentage of households without connection with sewer systems
VPHSEL Percentage of households without electricity
PPEINA Percentage of economically active population Employment
VPHSAU Percentage of households without a vehicle

SocioeconomicVPHSTE Percentage of households without a telephone
VPHSNB Percentage of population without any assets
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Figure 1. Scree plot of the factor analysis for (a) 2000, (b) 2010, and (c) 2020 years showing the
eigenvalues by resulting factors. Only the factors with an eigenvalue greater than 1 (those located
upper the red line) were considered for the SoVI computations.

Four, four, and five factors were extracted for the 2000, 2010, and 2020 datasets,
which explained 66.8%, 64.3%, and 67.7% of the total variance, respectively. The vari-
ance explained by the factors in this research is consistent with various previous studies
(e.g., [15,26]). Then, equal-weighted indices were constructed according to the original SoVI
methodology [12]. The resulting SoVI values were categorized from one to five based on
the standard deviation classification method and were integrated into the correspondence
municipality units for spatial analysis. In this respect, 2443, 2456, and 2469 spatial units
were used for 2000, 2010, and 2020, respectively. A summary of the methodology followed
is shown in Figure 2.
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Figure 2. Flowchart of the methodology used.

4. Results
4.1. Changes in Vulnerability Driving Factors

In 2000, four components that (please see supplementary materials, Figure S1), in
conjunction, explain the 66.8% of variance were defined. The first component (F1) was
labeled as education, ethnicity, infrastructure, and socioeconomic, explaining 34.7% of the
variance. The second component (F2) was labeled as anthropization and employment,
holding 11.1% of the proportion variance. The third component (F3) was defined as age,
mobility, and overcrowding, with a 10.8% proportion variance, and, finally, the fourth
component (F4) was gender, with a 10.2% explained variance. For this year, there exists a
clear separation between the first and the rest of the components, which indicates the great
weight that the variables that compose it have for social vulnerability.

Ten years later, in 2010, four components were maintained in the SoVI analysis (please
see supplementary materials, Figure S2), but the explained variance decreased to 64.3%.
The first component (F1) was labeled as education, infrastructure, and socioeconomic, with
a proportion variance of 27.5%. In second place, (F2) was defined the component labeled
as age, mobility, and overcrowding with 13.1% explained variance. The next component
(F3) was labeled as anthropization and migration with a proportion variance of 12%, while
the fourth component (F4) was the same as the previous case, gender, with 11.7% of the
explained variance. This year, the difference between the first component and the rest
decreased significantly but still differentiates the weight of variables such as illiteracy, the
characteristics of the houses, and the assets they hold in the social vulnerability.

Finally, in 2020, the number of components increased to five (please see supplementary
materials, Figure S3), and the total variance explained reached 67.7%. In this year, the
first factor (F1) was labeled (same as in 2000) as education, ethnicity, infrastructure, and
socioeconomic, explaining 25.10% of the variance. The second factor (F2) was defined as age
but also contained a variable from the infrastructure concept, with a proportion variance
of 12.7%. The third factor (F3) was defined as anthropization with a 10.6% proportion
variance and, as in the previous case, also contains a variable from the socioeconomic
concept. The fourth (F4) and fifth factors (F5) were labeled as overcrowding and mobility,
and gender and health, which explained the 10.3% and 8.9% of the variance, respectively.
It is important to note that, in 2020, the differences between the first and the rest of the
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factors were the smallest, indicating a more uniform distribution among the factors related
to social vulnerability.

Interestingly, the first component is almost the same for the analyzed decades, contain-
ing variables from education, infrastructure, socioeconomic, and, in two cases, ethnicity
concepts. The anthropization is also present in the 3 analyzed years in different positions:
two times as part of F2 and one time as F3, accompanying other concepts with a single
appearance, employment (in 2000), and migration (in 2010). The age, mobility, and over-
crowding concepts compose the F2 and F3 for 2000 and 2010 and still appear in 2020 as
F4 without the age concept. Finally, gender concept is a common factor in the analyzed
decades, as the last factor of each year, with the particularity of it being accompanied by
the health concept in 2020. The slight variations in the composition of the factors and
the relative weights, explained by the proportion variance, indicate that the vulnerability
driving factors in Mexico have suffered minor changes since 2000. In the discussion section,
some possible explanations for this behavior are detailed.

4.2. Spatial and Temporal Changes in SoVI

The spatial distribution of social vulnerability in Mexico is shown in Figure 3. The
results indicate some spatial changes in the last 20 years, except for some specific regions.
In this sense, three well-defined hotspots of municipalities classified with very high social
vulnerability are in the northwestern, central-west, and southern Mexican territories. Such
areas showed consistent behavior from 2000 to 2020, with minimal variations (principally
in the northwestern hotspot). Interestingly, these areas coincide with important mountain
ranges: the north and south portions of the Western Sierra Madre, the Southern Sierra
Madre, and the Chiapas Highlands, which may be associated with areas of difficult access
and minimal or non-existent public infrastructure. Furthermore, these regions have been
historically linked with marginalized municipalities housing indigenous populations. The
inherent isolation of these geographic centers makes it challenging to provide infrastructure
and basic services, as well as hindering the swift deployment of emergency services and
adequate recovery efforts following a disaster.

On the other hand, low and very low social vulnerability classes are observed in
the north and central portions of the country, as well as in Mexico City (the capital) and
surrounding areas. Such behavior is consistent in the three analyzed decades. Interestingly,
the very low SoVI classes seem to have undergone a process of rupture and segregation
from 2000 to 2020, concentrating on particular areas, such as the Baja California Peninsula
and the border with the United States (U.S.), in the northern part of the country. A small
cluster with very low SoVI classes in central Mexico is also visible. This area coincides with
the capital and the Metropolitan Zone of the Valley of Mexico, where significant economic
and urban development exists. Finally, other extensive areas with low and very low social
vulnerability are depicted in the country’s central–western portion and the Pacific Ocean’s
lowlands in front of the Baja California Peninsula. Such areas are essential agricultural
production clusters and coincide with one of Mexico’s biggest and most economically
important cities, Guadalajara, Jalisco.

The municipalities classified with medium and high SoVI classes surround those
regions with very high vulnerability classes. Except for specific regions, no significant
changes were observed in the spatial distribution of these classes from 2000 to 2020. In this
sense, it can be mentioned that the Yucatan Peninsula transitions from low and medium-to-
high SoVI classes. The same pattern but from medium and high to very high is depicted in
the southeastern part of the country, over the Chiapas Highlands. The results show that the
spatial distribution of diverse classes of social vulnerability to natural hazards in Mexico
has not suffered critical changes in the last decades; in this sense, the highest vulnerable
regions have been the same since the beginning of the millennium.

In terms of territorial extensions in km2 and the percentage of municipalities associated
(Figure 4), the territory with low SoVI class showed a consistent predominance in the three
analyzed decades, with variations from 28.08% of municipalities in 2000 to 29.59% in
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2010 and 27.91% in 2020. In the lower extreme (i.e., very low social vulnerability class),
there are interesting changes with a severe decrease in the 2000–2010 period in terms
of territorial extension (around 0.25 million km2) but not too large in the percentage of
municipalities (derived from a transition from very low to low SoVI in municipalities
with large territorial extensions). The high SoVI class suffered changes ranging from
around 0.21 million km2 (21.22% of municipalities) in 2000 to 0.15 million km2 (18.32%
of municipalities) and 0.25 million km2 (24.71% of municipalities) in 2020. There are no
critical changes in the very low and medium social vulnerability classes, which vary around
1% (around 0.03 million km2) and 4% maximum (around 0.09 million km2), respectively.
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The total population exposed to different SoVI classes and their percentage are shown
in Figure 5. The majority of the Mexican population showed low social vulnerability in the
three analyzed decades: 45.93% in 2000, 50% in 2010, and 44.39 in 2020. On the contrary, the
lowest proportion is observed in the very high vulnerability class, with minimal variations
from 2.85% in 2000, 2.86% in 2010, and 2.13% in 2020. The percentage of the population
in the medium SoVI class is 26.68% (in 2000), 33.61% (in 2010), and 20.37% (in 2020). The
high SoVI class suffers minimum changes over time, with 6.07%, 10.85%, and 7.33% for 200,
2010, and 2020, respectively. The population classified in the very low SoVI shows the most
significant changes, decreasing more than 16% from 2000 to 2010 and increasing around
24% from 2010 to 2020.
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The population and territorial extension changes for each SoVI class show two different
and well-defined patterns. For the period 2000–2010, where a population increase was
observed (around 16 million people), there was also an increase in the low, medium, and
high SoVI classes, as well as a decrease in the very low SoVI class. Such changes involve
around 16 million people. In the upper end (i.e., very high SoVI class), a minimal variation
exists in this period, which is an increase of around 0.5 million people. The changes in
territorial extensions follow the same pattern. In this sense, the increase observed in the
low SoVI class (and the decrease in the very low SoVI class) is explained by the change in
category in municipalities with large territorial extensions in the northwest, particularly in
the Baja California Peninsula. This behavior also supports the increased number of people,
given the change from very low to low SoVI class of one of the densest populated cities in
Mexico: Tijuana, Baja California, which is on the border with the U.S.

The second pattern is from 2010–2020, while the population is still growing (around
9.6 million people in 10 years). In this period, the population in the low, medium, and
high SoVI classes showed a critical decrease (behavior contrary to the previous period),
and the very low class increased significantly. The upper end also shows a change, with a
shallow decrease. The change in territorial extensions follows this same pattern. In this
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period, the Baja California Peninsula changes (from low to very low SoVI class) strongly
affect territorial extension changes. Also in this period, the separation between very low
and low SoVI classes from the rest becomes much more evident.

4.3. Severe Weather Risk Assessment

Using the previous SoVI computations, a severe weather risk assessment in the study
area was performed. Among the different convective hazards associated with severe
weather, thunderstorms, hailstorms, and tornadoes are three of the principal ones. The
three above-mentioned meteorological hazards are related to convective storms, natural
phenomena with generally quick development and minimal predictability. In countries
like Mexico, where there is a lack of meteorological instrumentation (e.g., weather radars),
monitoring and nowcasting are a real challenge.

In this sense, diverse investigations have pointed out the country’s dangers and
impacts of these convective hazards. For example, it is estimated that there were over
7300 lighting stroke-related deaths in 1979–2011 [35]. On the other hand, it is approximated
that around 72% of tornado events in Mexico (in the period 2000–2012) caused some dam-
age [36], highlighting significant tornadoes such as that occurred in Cd. Acuña, Coahuila,
(in northern Mexico) in 2015 that caused around 14 deaths [37]. In the case of hailstorms,
despite the fact that there is not an official database in Mexico on their associated dam-
age, previous research mentioned that this convective hazard affects more than 50 million
people, especially in municipalities with intensified agricultural activities [32].

In this context, the Thunderstorm Risk Index (ThRI), Hailstorm Risk Index (HaRI),
and Tornado Risk Index (ToRI) were computed as the product of the Social Vulnerability
Index (SoVI), and the Thunderstorm (ThHI), Hailstorm (HaHI), and Tornado (ToHI) hazard
indices. Since large datasets on these phenomena are unavailable to Mexico, the ThHI,
HaHI, and ToHI were considered static parameters. The ThHI was obtained from the
CENAPRED [38] and constructed using in situ observations and lighting data. The HaHI
was obtained from the same national agency [39] but only considers in situ observations.
Finally, the ToHI was provided by previous research [31], and it was made by combining
historical tornado reports and reanalysis data. Then, the risk index for each hazard was
computed using a 2D matrix approach (Figure 6).
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In the computed values for the case of thunderstorms (Figure 7), the risky areas are
located in the northwest and south portions of the country in the 3 analyzed years. These
risky areas coincide with principal mountain ranges such as the Western, Eastern, and
Southern Sierras Madres. Interestingly, the ThHI and SoVI hotspots with high values also
coincide, resulting in areas proper to societal impacts from thunderstorms. Such impacts
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can be related to lightning strikes, floods from heavy rainfall events, or indirect effects
such as landslides. Given that thunderstorms associated with tropical cyclones are also
included in the ThRI, some regions in the Yucatan Peninsula also show a high risk of this
natural phenomenon.
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Figure 7. Risk values by municipality for (a–c) thunderstorms, (d–f) hailstorms, and (g–i) tornadoes.

A similar spatial pattern follows the hailstorm risk. However, for this convective haz-
ard, the higher values are concentrated in less extended areas (i.e., specific municipalities),
principally in northwest and central Mexico. These areas also coincide with higher eleva-
tions and particular mountain ranges, such as the Trans-Mexican Volcanic Belt (TMVB), the
Western Sierra Madre, and the Sierra of Chiapas. For this convective hazard, municipalities
with large extensions of agricultural activities are the principal affected. In this sense, some
of these areas with high SoVI values are found on the north coasts of the Pacific Ocean.

Finally, the ToRI identifies several important hotspots in the northwest coastal plains
and the northeast. In these regions, significant tornadoes have impacted in recent years,
with substantial socioeconomic impacts associated; however, the computed risk values are
intermediate. The above explains the medium-low SoVI values prevalent in these areas. On
the other hand, along the TMVB, high-risk values are identified, principally at the central-
east portion, which is related to a high incidence of tornadoes and intermediate-high SoVI
classes. Likewise, the Pacific coasts and the Yucatan Peninsula show high-risk values, given
the high SoVI values and the recurrent generation of waterspouts.

As the SoVI changes, risk changes over the three decades do not show significant vari-
ability. The proportion of municipalities in each risk category is quite similar, with a little
increase in 2010. This increase is more evident in the northwest territory for thunderstorms
and hail but is not visible for tornadoes (Figure 7). In this last one, the most remarkable
changes are observed in the northeast border with the U.S. and the east portion of the
TMVB. It is important to note that, generally, higher severe weather risk zones are the same
for the three convective hazards. Likewise, the areas with lower risk values are always the
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central-north portion of the territory and the Baja California Peninsula. Although severe
weather events are not commonly documented here, it is one of the zones where tropical
cyclones make landfall in the greatest proportion [40].

5. Discussion

Derived from the SoVI computations, diverse common vulnerability driving factors
are identified with the highest importance in the 3 analyzed years. Such factors include
education, ethnicity, socioeconomic, and infrastructural variables. Other similar studies
have mentioned them as common factors related to vulnerability (e.g., 12, 16–19, 24).
Regarding the role of education in social vulnerability, some authors have related this
parameter to constraints in understanding warning information and access to recovery
actions [12]. The variable used in this study for the education concept is illiterate, which,
in addition to the previously mentioned impacts, could affect vulnerability by limiting
the possibility of accessing a better-paid job and favoring situations of poverty. In Mexico,
literacy campaigns began with the creation of the Secretary of Public Education in the
1920s [41], and, in recent times, the percentage of the illiterate population at the national
level has decreased from around 25.8% in 1970 and 9.5% in 2000 to only 4.7% in 2020 [42].
Despite these significant reductions in the population without primary education, some
remnants have been dragging on for years in this subject, particularly in the country’s
southern states. The impact of illiteracy, which is confined to very particular regions of
Mexico, is such that, despite the campaigns already mentioned, it continues to stand out as
a primary factor associated with vulnerability.

Similar behavior can be mentioned for infrastructure and socioeconomic concepts, the
other two constants in the primary vulnerability driving factors observed in Mexico from
2000 to 2020. Both are related to marginalization and poverty, which can be understood as
the socioeconomic, political, or cultural exclusion of the population in front of the dominant
system and a low-income situation leading to underconsumption. In this sense, the previous
literature has extensively discussed their relationships with social vulnerability [43,44].
In this research, such concepts include variables such as access to public services (e.g.,
drinking water or electricity) and diverse assets (e.g., vehicle or telephone). Similar to what
happens with education, poverty has suffered changes with a generally decreased trend
in the last decades [45], and marginalization has also shown a generalized decrease but
persistence of a gap between the south and the rest of the country [46].

Finally, ethnicity is another common primary vulnerability driving factor in two of the
three analyzed decades. This concept is understood as the percentage of the indigenous
population, and recent research found a significant relationship between these groups and
high-vulnerable regions to extreme meteorological phenomena [31]. Some determinants
of the increasing vulnerability in these minority groups are their localization in rural
areas (which makes it challenging to access essential services), the economic disparities
compared with the non-indigenous population, the access to education and health services,
and their historical land dispossessions [47]. These ethnic inequalities have been historical
and structural, rooted in the socio-economic disparities arising from the geographical and
ethnic origins of the population within the country. Hence, it is also referred to as an
ethnic structural gap [48]. These situations have caused a persistent inequity for indigenous
peoples in Mexico, an issue widely discussed in the literature in the national context
(e.g., [49,50]).

As can be observed, the most significant percentage of crucial social vulnerability
driving factors tends to be reduced, given the government’s generation and implementation
of support programs. However, these concepts continue to have a major influence on SoVI
computations. In this regard, vertical structural gaps in productivity and innovation,
poverty, and infrastructure have been documented, negatively impacting the Mexican
population, particularly those in rural areas, although urban areas have also been affected
to a lesser extent. Furthermore, these structural gaps manifest differentially across the
various regions of the Mexican Republic [48]. It can be hypothesized that there are root
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causes related to vulnerability, which the programs mentioned above have not addressed.
Changes in crucial government positions and the lack of continuity (i.e., they are intended
for immediate impact only) in generated programs could be some of the main reasons.
Likewise, relationships exist between the variables that can cause cumulative and feedback
effects, highlighting vulnerability situations. The above-mentioned seems particularly
important to minority groups, for example, the indigenous population in Mexico.

The mentioned associations are evidenced by minimal changes observed in the spatial
distribution of municipalities classified with high and very high social vulnerability from
2000 to 2020. In this sense, the relation between these areas with the location of the highest
marginalized population [51] and indigenous population [52] is clear. Some examples of
this are visible in the location of indigenous groups in the northwest (e.g., Tarahumaras), the
central-west region (e.g., Coras and Huicholes), and the southern regions (e.g., Zapotecos,
Mixtecos, and Tzotziles). Additionally, the location of these groups, and generally, of the
most marginalized municipalities, also coincides with important mountain ranges, such as
the north and south portions of the Western Sierra Madre, the Southern Sierra Madre, and
the Sierra of Chiapas (in the southeast). As previously mentioned, the isolation of these
areas can be associated with increasing vulnerability, given the difficulty that faces the
emergency services in accessing these regions, but also for effective communication in the
face of potential threats.

Starting from the consideration that disasters and risk stem from social processes that
generate conditions of vulnerability, it is essential to examine the impact of the neoliberal
political–economic project on the lives of the Mexican population. Some analysts suggest
that the economic outcomes have been insufficient for six presidential terms after the
Mexican economy became a laboratory for neoliberal experimentation by implementing
structural reforms and economic disciplines recommended by international financial insti-
tutions. The neoliberal strategy has brought about increased income inequality and a severe
decline in the well-being of the vast majority of Mexicans [53]. While structural conditions
of inequality and poverty predate neoliberalism, various studies highlight the connection
between neoliberalism and social vulnerability. The above is because the spatiality of
neoliberalism, its global reach, and local manifestations synthesize the roles of the state
and the market in the economy and their repercussions on the living conditions of society
members. This configuration shapes expressions of vulnerability in the population and the
government’s role in safeguarding the population against disasters [54].

Another determining factor of social vulnerability during the analyzed period has
been gender. This factor is both pervasive and structural, as in Mexico, there is a higher
proportion of women than men who lack their own income and have a lower rate of
economic participation. This gap is even wider in rural areas compared to urban ones [48].
In this regard, various studies from international organizations have promoted and advo-
cated for a gender perspective in disasters, as well as the intersection of different forms of
discrimination and gender-based violence that can affect women, girls, and adolescents
with disabilities due to reasons of race, religion, class, sexual preference or identification, or
others. These discriminations and violence contribute to conditions of social vulnerability
(e.g., [55–57]).

Although the computed indices do not consider a different weight between the factors
that compose them, the variance explained by each factor varies from decade to decade.
These changes, which can be majorly identified as reductions between the variances, are
related to a decrease in the importance of one factor to the rest. This behavior has also been
observed in other similar studies [26]. In this research, the reductions observed between
the first and the last factor obtained by the statistical analyses are associated with matching
the different parameters related to social vulnerability. Other investigations have weighted
the SoVI using the explained variances of each factor [18,19], with which it is intended
to position the differences between the factors. This research shows that even without
considering the differences between factors in the SoVI computations, it is possible to
observe their impact, minimaxing the influence of any factor on another. The above is
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spatially important given that there is no consensus about which parameters are most
important to social vulnerability.

Generally, the spatial changes of SoVI in Mexico (Figure 8) could be classified into those
areas with a constant social vulnerability increase, those with a continuous decrease, and
other municipalities with no change. Concerning the municipalities with constant social
vulnerability increase, it is noteworthy to highlight the northwest and border municipalities
with the U.S., the southeast, and the Yucatan Peninsula (Figure 8). The greatest changes in
the border with the U.S. could be associated with migration processes (principally in the
2000–2010 period), coinciding with the social vulnerability driving factor found for 2010.
In this sense, previous research mentioned that the increasing migration from Mexico–US
stalled in the 2000s and turned to a zero net rate in 2010, derived from the economic crisis
and deportations [58]. The same pattern observed in the Yucatan Peninsula can be mainly
linked to the migration of low-income workers to the outskirts of large tourist centers such
as Cancun and Playa del Carmen [23,59]. Finally, for the southeast, this constant increase in
SoVI values is probably related to a higher prevalence of poverty and economic inequality
compared to other parts of the country, where a significant portion of the population lacks
access to basic services, education, and healthcare [60]. Calculating vulnerability from
factor analysis for each year independently thus allows highlighting the growth of the
social gap between areas of constant low vulnerability and areas where it was not possible
to reduce.
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The municipalities with a constant decrease in SoVI values are observed mainly
in the central portion of the country (Figure 8). Likewise, such behavior is similar in the
country’s capital and surrounding areas. Such municipalities change (in general terms) from
medium SoVI classes to low and very low ones. The decreasing patterns are likely related
to increased economic and industrial development in recent years. For example, some
studies have mentioned that foreign direct investment in The Bajio region in central Mexico
(including San Luis Potosí, Guanajuato, Querétaro, and Aguascalientes states) affected the
economic-social development of the region [61]. Likewise, the constant urban development
in the surrounding areas of the Mexican capital has also impacted the observed decrease in
the SoVI computed values; however, it is important to note that such urbanization processes
can adversely affect environmental vulnerability [30]. Finally, given that such areas of the
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country comprise a great percentage of the population, such spatial changes are reflected
in the increase in population with low and very low social vulnerability to natural hazards
in Mexico.

The municipalities without SoVI changes can highlight those holding very high classes,
principally in the southeast side and the hotspot south of the Western Sierra Madre. This
manuscript has widely discussed the reasons for the permanence of these municipalities
with very high social vulnerability. In this sense, the root causes still need to be addressed
appropriately to generate a decreasing effect on these communities’ vulnerability to natural
hazards. Other regions without changes are located in the municipalities classified as low,
medium, and high social vulnerability. The above coincides with the previously mentioned
increased gap between very high and very low socially vulnerable regions in Mexico. In
this sense, recent research has focused on the impact of rising economic inequality and its
influence on social vulnerability to natural hazards [62]. The results of this research provide
some evidence of what could be called the social vulnerability gap in the Mexican context.

Concerning the changes in severe weather risk, the results indicate a convergence
between municipalities classified with high hazard levels and high SoVI classes. The above
is particularly clear for thunderstorms in the hotspots of very high SoVI classes. In these
areas, not only are direct effects of thunderstorms possible but indirect effects such as
landslides could also be expected due to the prevalent topography. Previous studies [63]
have provided landslide inventories coincident with the thunderstorm risk here defined
(particularly over the southeastern region). In the case of hailstorm risk, the spatial pattern
is similar but markedly different, mainly over the high altitudes of central Mexico. For
tornadoes, a recently introduced hazard in the Mexican literature, the highest risk values
are over the plains of the Pacific Ocean and along the coast of the Gulf of Mexico, but also
in the highlands of the south and central part of the country. In this sense, some previous
investigations have described important societal impacts derived from tornadoes in the
mentioned areas [64–66].

It is important to note that, despite the hazard component being considered a static
element in these computations (due to the data limitations), future studies should focus
on generating evolving hazard indices to complement the changing nature of risk. In this
sense, generating confident, updated, and official databases on severe weather is crucial.

6. Conclusions

This research analyzed the spatial and temporal changes in social vulnerability to
natural hazards in Mexico. Likewise, the impact of this risk component was evaluated
for three severe weather hazards poorly explored in the Mexican context: thunderstorms,
hailstorms, and tornadoes. The main findings of this research were:

1. The main drivers of social vulnerability in Mexico are associated with education,
infrastructure, socioeconomic, and ethnicity concepts and do not majorly vary from
2000 to 2020;

2. Shallow spatial changes in very high social vulnerability regions have been observed
in the last two decades in Mexico, with a high coincidence with high-marginalized
and indigenous population regions;

3. The root causes of social vulnerability have not varied in the last 20 years in Mexico,
and social programs and policies appear not to have a long-term effect in reducing
vulnerability, especially in marginalized regions;

4. There is a widening gap between the highly and very highly vulnerable populations
and those with low and very low vulnerability to natural hazards in the country.

5. SoVI spatial changes show different increment–decrement behaviors, where migration
and anthropization concepts seem to play an essential role;

6. The impact of social vulnerability to extreme weather events is important in maximiz-
ing the risk to which these regions are exposed. The above is particularly important
because the most socially vulnerable regions are also coincident with highly hazardous
areas, at least for these natural phenomena.
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The evaluation of changes in social vulnerability to natural hazards from 2000 to 2020
helps to identify some of the root causes of this risk component and to point out elements
that decision-makers should evaluate in generating public policies focused on disaster risk
reduction. The impact of the COVID-19 pandemic is barely visible in this analysis, and
a future evaluation is necessary to understand the impact of this international event on
the risk-disaster construction process. Finally, changes in SOVI can be associated with
parameters such as poverty and marginalization on a large scale but do not help reflect
local changes. Starting with studies at the national level serves to identify priority regions
for attention, both by decision-makers and academia.
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