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Abstract: Accurate building geometry information is crucial for urban planning in constrained spaces,
fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods
like oblique photogrammetry and LiDAR prove time consuming and expensive for low-cost 3D
reconstruction of expansive urban scenes. Addressing this challenge, our study proposes a novel
approach to leveraging single-view remote sensing images. By integrating shadow information with
deep learning networks, our method measures building height and employs a semantic segmentation
technique for single-image high-rise building reconstruction. In addition, we have designed complex
shadow measurement algorithms and building contour correction algorithms to improve the accuracy
of building models in conjunction with our previous research. We evaluate the method’s precision,
time efficiency, and applicability across various data sources, scenarios, and scales. The results
demonstrate the rapid and accurate acquisition of 3D building data with maintained geometric
accuracy (mean error below 5 m). This approach offers an economical and effective solution for
large-scale urban modeling, bridging the gap in cost-efficient 3D reconstruction techniques.

Keywords: 3D reconstruction; urban 3D probabilistic model; deep learning; building height
estimation; shadow length measurement

1. Introduction

With the development of modern cities, the tension between the drastic increase in
urban populations and a shortage of building plots is growing [1]. With the rapid growth of
urban areas, the height of buildings has increased drastically, and high-rise buildings have
become the city’s landmarks. The investigation and maintenance of high-rise buildings is
not only related to the safety and sustainable development of the buildings themselves, but
also involves the image of the city, environmental protection, and many aspects of urban
development, which is of broad and far-reaching significance and has become the key work
of urban planning departments in countries around the world [2].

Three-dimensional city models can facilitate the planning and management of the
architectural environment, which leads to a high user demand for this type of data. Despite
the growing recognition of the importance of such data, obtaining them in a low-cost and
efficient manner remains challenging [3]. With the development of geographic informa-
tion technology, 3D city models based on satellite remote sensing, oblique photography,
light detection and ranging (LiDAR), and other measurement technologies have become
increasingly detailed. However, the capability of 3D city modeling based on satellite remote
sensing technology is limited, and oblique photogrammetry is relatively time-consuming.
The amount of 3D point-cloud data acquired based on LiDAR is staggering, reaching ter-
abytes over large areas, and the acquisition cost is high. By contrast, the 3D reconstruction
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of buildings based on single-view images avoids these limitations. It has excellent potential
for large-scale non-measurement scene applications and has become an important research
direction in recent years [4]. The open sourcing of geospatial data such as satellite images,
building footprint vector data, and LIDAR point clouds [5] creates opportunities to generate
large-scale 3D city models cost-effectively.

Compared to LiDAR data and multi-view images, the 3D reconstruction of single-view
remote sensing images is challenging [4]. The invisibility of building footprints and façade
information, severe shadowing effects, and extreme variations in building heights limit
the application scenarios for the 3D reconstruction of single-view remote sensing images,
with the majority of studies carried out on low-rise buildings. A simple understanding of
3D modeling involves assigning elevation information to 2D data and displaying it in 3D
form [6]. The 3D reconstruction of buildings based on single-view images can also assign
building height information to 2D building outline data. In recent years, with the rapid
development of deep learning, obtaining building outlines has become easier; however,
it is still challenging to accurately obtain height information. Although existing building
extraction algorithms can obtain building boundaries better, for remote sensing images with
non-orthographic projection, the acquired boundaries contain both roofs and façades, which
deviate from the real building footprints [7]. In addition, building height increases as the
measurement area expands, making it challenging to learn an accurate height value directly
through deep neural networks. Shadows in images have many adverse effects on remote
sensing interpretation; however, building heights can be calculated based on the length
of a building’s shadow and its geometric relationship with the sun and the sensor. This
method of inferring information regarding the building height by analyzing the shadow
cast and its relationship to the ground is called the shadow method of height determination
(hereinafter referred to as the “shadow method”), and it provides an effective means of
measuring and analyzing the 3D form of a building. The shadow method has some errors in
building height estimation because shadows are affected by a variety of factors, such as the
occlusion of other features, adhesion between shadows, complex building structures, and
terrain undulation, which lead to irregular shapes or challenges in analyzing shadows and
affect the accuracy of height estimation [8–11]. Despite some drawbacks and challenges,
the shadow method remains a valuable and common method that can be combined with
other techniques to improve the accuracy and effectiveness of height estimation.

This paper proposes a new method for the 3D reconstruction of single-view remote
sensing images that addresses the above problems, including the poor accuracy and low
applicability of shadow-based building height, and the problem that the initial building
profile contains roof and façade information. This work also provides new ideas for non-
specialized mappers to acquire large-scale urban 3D information, and reduces the need
for data, hardware and software, and professional capabilities. It is worth noting that this
paper is an extension of our previous work on shadow measurement [12,13], in which we
solve the problems of inefficiency and the poor accuracy of shadow length measurement
by proposing a method for partitioning shadows, which reduces the data requirements of
the algorithm and improves the accuracy and applicability of the algorithm.

The contributions of this paper can be summarized as follows:

1. A new method for the 3D reconstruction of single-view remote sensing images is
proposed. This method combines the advantages of the shadow method and deep-
learning semantic segmentation technology to address the challenge of 3D recon-
structing high-rise buildings in cities. Compared to the single-view depth estimation
method, the method proposed in this study has the advantages of easy reproducibility,
reliable precision, low time, and cost-effectiveness.

2. The complex shadow measurement algorithms and designed building contour correc-
tion algorithms are combined to further improve the vertical and level precision of 3D
building models.
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3. We explore the accuracy, time, and applicability issues of the method for different data
sources, scenarios, and scale tasks, as well as the limitations of the shadow method in
obtaining building heights.

The remainder of the paper is organized as follows: Section 2 presents studies on
estimating building heights from single-view images; Section 3 describes the datasets
and methodology used in this study, including the extraction of buildings and shadows,
the measurement of building height, and the correction of building outlines; Section 4
reports the qualitative and quantitative results of the method; and Section 5 discusses the
validity and applicability of the proposed method. Finally, the conclusions are presented in
Section 6.

2. Literature Review

Recently, studies on building height estimation using single-view images have at-
tracted significant attention. This task is important for urban planning, remote-sensing
analysis, and 3D reconstruction [14]. Owing to the lack of depth information in single-view
images, researchers have worked on estimating building heights using methods such as
shadow methods and depth estimation.

Since 1989, various aerial photogrammetry researchers have used shadow information
to estimate building height [15]. Shettigara et al. [16] used shadow information from SPOT
panchromatic images to develop a model and derive building heights. Wang et al. [17]
established the geometric relationship between shadow length and building height using
ZY3 images by calculating building height in conjunction with the shadow length. Based
on this, 3D models of the city buildings were developed. Liasis [9] implemented a new
active outline model using spectral and spatial analysis information from satellite images,
which optimized the shadow segmentation process of a building, improved the accuracy
of shadow extraction, and estimated the building height from the shadow length. Izadi
et al. [11] proposed a method for calculating building heights by detecting the boundaries
of buildings and shadows and implementing building heights in fast-bird images. Shao
et al. [18] proposed a method that combined the object space index of images to improve
the precision of shadow extraction and used IKONOS images as an example to estimate
building heights with shadow lengths. Xie et al. [19] analyzed scene descriptions by
analyzing the shapes of building shadows, distribution density, and regional topography.
They classified the building scenes into three major types: ordinary, dense, and complex.
Subsequently, a multi-scene building height estimation model was developed to explain the
geometric relationship between buildings and shadows in different scenes. Zhao et al. [20]
labeled sample building heights using photons collected by ICESat-2 and developed a
height estimation model by minimizing the global error for all sample buildings. This
complements the shadow-height estimation method. While the shadow method has made
significant strides in building height acquisition, shadows in densely built-up areas are
prone to be obscured and stick to each other, which makes the accurate measurement of
shadow lengths difficult, further leading to unreliable estimates of building heights.

Another approach is to utilize depth-estimation techniques for building height estima-
tion. In recent years, deep learning has also been added to the extraction of feature elevation
or height information from aerial or satellite images [21–23], opening up a new avenue for
building height estimation. Amirkolaee and Arefi [24] developed a deep CNN to estimate
the digital surface model (DSM) from a single aerial image and proved its effectiveness on
the ISPRS dataset. Liu et al. [25] proposed an end-to-end trainable convolutional-inverse
convolutional deep neural network architecture that allows mapping from a single aerial
image to a DSM to analyze city scenes. Ghamisi et al. [26] utilized conditional generative
adversarial networks (cGAN) to generate a synthetic DSM from a single aerial image.
Bittner et al. [27] used a cGAN to optimize building roof surfaces by mapping DSMs
from stereo aerial images to LOD2 detail-level models. Carvalho et al. [28] introduced a
multitask learning network to take full advantage of the mutual information of different
tasks while dealing with land cover mapping and normalized DSM (nDSM) estimation



ISPRS Int. J. Geo-Inf. 2024, 13, 62 4 of 21

and found that multitask learning outperformed single-task learning. This method over-
comes the limitations of the shadow method to some extent and improves the accuracy
and stability of building height estimation. Obtaining large amounts of accurately labeled
single-view image data is time-consuming and expensive. The lack of large-scale standard-
ized datasets and high-quality annotations limits algorithm performance improvement and
general-purpose scaling.

In addition to these approaches, other innovative research methods are available. For
example, the multitask building reconstruction network developed by Li et al. [4] can
retrieve the roof and footprint information of a building from oblique images and estimate
the building height based on the offset between them. Yan and Huang [29] combined the
vanishing point method with deep learning to design a framework for extracting building
height information from a single street-view image, which increased its competitiveness
for large-scale building height estimation with minimal input. Sun et al. [30] accomplished
large-scale building height retrieval using only a single SAR image and converted the
building height retrieval problem into a boundary-box regression problem. The building
heights were computed using the positional relationship between the building footprint and
its boundary box. More innovative methods and technologies should be applied in this field
in the future to further enhance the accuracy and reliability of building height estimation.

3. Materials and Methods
3.1. Study Area and Data

Three representative study areas in Zhengzhou City, China are selected for this study
(Figure 1). Study area (a) has a neat and orderly building plan with moderate density and
is mainly dominated by residential buildings. Multistory high-rise buildings with high
densities dominate the study area (b). Study area (c) is a commercial area characterized
by high density, various types, and a complex distribution of buildings. We use data from
China’s Gaofen (referred to as “GF”) and ZiYuan (referred to as “ZY”) series of satellites,
such as GF1, GF2, GF7, and ZY3 (Table 1). GF1 has a higher spatial resolution and a
shorter revisit period. GF2 reaches a submeter spatial resolution and can capture more
detailed features of buildings, thus providing richer data support for building height
inversion. In addition, GF7 and ZY3 have high-precision stereo imaging capabilities, which
can provide more accurate 3D information about buildings and can be used as reference
data for building height assessments. Three-dimensional real-scene models of the study
area (c) are collected simultaneously. The applicability and performance of the method
can be fully assessed by selecting study areas and data with different characteristics. The
data used in this paper are downloaded from the Natural Resources Satellite Remote
Sensing Cloud Service Platform (http://114.116.226.59/chinese/normal/ (accessed on
23 September 2023)).

Table 1. Data details.

Data Area Resolution/m Time

GF1 b 2 25 June 2020 11:25:38
GF1 b, c 2 11 September 2020 11:24:28
GF1 b 2 30 October 2021 10:57:59
GF1 b 2 12 January 2021 11:18:18
GF1 b 2 8 April 2021 11:11:03
GF1 b 2 14 March 2023 10:50:49
GF2 c 0.8 7 June 2020 11:28:33
GF7 a, b, c 0.65 20 September 2020 11:31:19
ZY3 c 2.1 4 September 2020 11:17:58

3D model c 0.1 12 November 2021

http://114.116.226.59/chinese/normal/
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3.2. Methodology

The 3D information of a city is typically constructed using vectorized architectural
data coupled with urban surface topography data, which are much less expensive to store
and compute than 3D real-scene models and laser point clouds. An abstract generalization
of a real cityscape is performed to eliminate or suppress unimportant details and enhance
and highlight important information in the data. The most direct manifestation of this is
that the model expresses only two major elements: urban surface and buildings, eliminat-
ing elements such as vegetation, water bodies, and aboveground facilities that have less
impact and are not amenable to data collection. This data model, which consists of data
representing the urban terrain and vector building data with building heights, is referred
to as an urban 3D probabilistic model.

The urban 3D probabilistic model has relative height, which refers only to the building
height and excludes topographic elevation, and absolute height, which reflects the actual
height of the city model. Urban terrain elevation can be provided by an open-source
DEM [31]. Thus, obtaining the footprints and heights of buildings from single-view satellite
remote sensing images is the focus of this study. As shown in Figure 2, the steps of the
method used in this study are as follows:

To extract building shadows, remote sensing images are pretreated with radiation
correction, geometric correction, and image fusion to eliminate color differences and image
distortions caused by atmospheric scattering, sensor attitude, and earth curvature. Semantic
segmentation models are used to extract buildings and their shadows and utilize the
topological relationship between the two to eliminate erroneous results.

The heights of the buildings are measured using the shadow method. The traditional
building height measurement model is improved by removing complex and less influential
parameters to enable more automated building height measurements. In addition, the use
of building outline data to improve the measurement of shadow length not only improves
the accuracy of shadow measurement but also addresses the measurement problem in the
case of incomplete shadows and allows for more accurate information regarding the height
of the building.
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Figure 2. Flowchart of proposed method.

The initial building outline contains the walls, top and side edges of the roof, and
the bottom outline of the building. A building top-edge outline offset correction model is
constructed, and a building outline correction algorithm is designed to convert the building
outline to the actual building footprint.

Combined with the theory of high-precision single-image positioning, the accuracy,
performance, and applicability of the proposed method for different data sources, scenarios,
and task scales are analyzed and validated.

Sections 3.4 and 3.5 describe details of building height calculations and footprint
acquisition.

3.3. Extraction of Buildings and Shadows

Semantic segmentation models, such as UNet, SegNet, and DeepLab are typically
employed to extract buildings and shadows. In this study, UNet is selected as the detection
model. This is because UNet is a simple and effective convolutional neural network
architecture that has been widely validated and applied to building and shadow extraction
tasks in various scenarios [32]. Its encoder–decoder architecture and cross-layer connection
mechanisms allow UNet to capture the details and contextual information of buildings and
their shadows accurately [33].

A total of 1950 images (512 × 512 pixels) are labeled from high-resolution satellite
images captured from different sensors to train the U-Net model for boundary extraction.
Figure 3a,b shows the images corresponding to the two samples. Figure 3c,d displays the
labeled buildings and shadow boundaries, respectively. A data augmentation method is
used to enlarge the training samples before network training. The images are then randomly
divided into training, testing, and validation sets at a ratio of 7:2:1. The U-Net model for
boundary extraction is constructed for 150 rounds on the training set with an initial learning
rate of 0.001 and a batch size of 16. Buildings and shadows exhibit significant differences
in feature representation. The two types of targets are trained separately to better model
their respective features and attributes and avoid model performance degradation owing
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to excessive or unbalanced differences. To address challenges arising from similar spectral
characteristics among water bodies, non-building shadows, and building shadows, and the
limitation of the shadow method in obtaining height information for buildings without or
with minimal shadows, a necessity emerges to implement a filtering process based on the
topological relationship between buildings and shadows.
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3.4. Measurement of Building Height
3.4.1. Calculation of Shadow Length

Shadow length calculations directly impact the estimation of building heights. Shadow
length measurements in remote-sensing images face many difficulties and challenges and
are complicated by changes in illumination conditions, the complexity of terrain and
features, image resolution limitations, shadow lengths, and pattern changes in different
periods, seasons, or weather conditions. In addition, shielding and obfuscation are puzzling;
other features or buildings may partially or entirely block shadows, making it difficult to
measure shadow lengths accurately. To address these challenges, we utilize the complex
shadow measurement algorithm proposed in a previous study to solve the problem [12].
This algorithm is designed to accommodate the measurement requirements for various
types of shadows. The shadow measurement process is shown in Algorithm 1.

3.4.2. Measurement of Building Height

Shadow-based building height estimation models are usually categorized into two
types based on the geometric relationship between the sun and the sensor. Figure 4a
illustrates the case where the sun is located on the same side as the sensor, and part of the
shadow is blocked by the building. Figure 4b illustrates the case where the sun is located
on the opposite side of the sensor, and the sensor captures the complete shadow of the
building. The building height H is related only to the shadow length and solar elevation
angle, as shown in Equation (1). The building height is related to the solar azimuth, satellite
elevation angle, and satellite azimuth, in addition to the shadow length and solar elevation
angle [13,19]. See Equation (2).

Algorithm 1: Building shadow measurement

Input: B = Building contours, S = Shadow mask
Output: L = Shadow length
Lines← Distribution point measurement (S)
For i in B:

Areas← Shadow partition (i,S)
Ls = [· · · ]
For Area in Areas:

Line_A← Partition statistics (Area, Lines)
Line_A← Gross error elimination (Line_A)
L_A← Compute optimal value (Line_A)
Ls append L_A

Endfor
L← Optimal value evaluation(Ls)

Endfor
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H = L · tan β = L · k1 (1)

H =
L2 · tan β · tan α · sin(ξ − γ)

tan α · sin(ξ − γ)− tan β · sin(ξ − ε)
= L2 · k2 (2)

where ξ denotes the azimuth angle of the building and k1 and k2 are scale factors.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 22 
 

 

building. The building height H is related only to the shadow length and solar elevation 
angle, as shown in Equation (1). The building height is related to the solar azimuth, satel-
lite elevation angle, and satellite azimuth, in addition to the shadow length and solar ele-
vation angle [13,19]. See Equation (2). 

Algorithm 1: Building shadow measurement 
Input: B = Building contours, S = Shadow mask 
Output: L = Shadow length 
Lines ← Distribution point measurement (S) 
For i in B: 

Areas← Shadow partition (i,S) 
Ls = [   ] 
For Area in Areas: 

Line_A ← Partition statistics (Area, Lines) 
Line_A ← Gross error elimination (Line_A) 
L_A ← Compute optimal value (Line_A) 
Ls append L_A 

Endfor 
L ← Optimal value evaluation(Ls) 

Endfor 

 

  

Figure 4. Schematic view of the geometric relationship between buildings and shadows. (a) Sensor 
on same side as sun. (b) Sensor on opposite side of sun. 

1tanH L L kβ= ⋅ = ⋅   (1)

2
2 2

tan tan sin( )
tan sin( ) tan sin( )

LH L kβ α ξ γ
α ξ γ β ξ ε

⋅ ⋅ ⋅ −= = ⋅
⋅ − − ⋅ −

 (2)

where ξ  denotes the azimuth angle of the building and k1 and k2 are scale factors. 
In Figure 4, β is the solar elevation angle, γ is the solar azimuth angle, α is the sensor 

elevation angle, and ε is the sensor azimuth angle. L is the actual length of the building 
shadow, L2 is the length of the building shadow observed in remote sensing images, and 
d is the length of the building shadow occluded by the building body. 

The purpose of this study is to fulfill the needs of the task by using only the infor-
mation provided by a single image. In this case, the elevation and azimuth angles of the 
sun and the satellite can be obtained from the image metadata. Building azimuth calcula-
tions are complex and have little effect on the estimated building height results. Therefore, 
adjust Equation (2) to remove the building orientation parameter, and the result is shown 

Figure 4. Schematic view of the geometric relationship between buildings and shadows. (a) Sensor
on same side as sun. (b) Sensor on opposite side of sun.

In Figure 4, β is the solar elevation angle, γ is the solar azimuth angle, α is the sensor
elevation angle, and ε is the sensor azimuth angle. L is the actual length of the building
shadow, L2 is the length of the building shadow observed in remote sensing images, and d
is the length of the building shadow occluded by the building body.

The purpose of this study is to fulfill the needs of the task by using only the information
provided by a single image. In this case, the elevation and azimuth angles of the sun and
the satellite can be obtained from the image metadata. Building azimuth calculations are
complex and have little effect on the estimated building height results. Therefore, adjust
Equation (2) to remove the building orientation parameter, and the result is shown in
Equation (3). At the same time, the reference direction for all azimuths is set to the east for
ease of calculation and programming.

H =
L2 · tan β · tan α · sin γ

tan α · sin γ− tan β · sin ε
(3)

3.5. Adjustment of Building Outline
3.5.1. Model of Building Outline Offsets

Typically, remote sensing building images are not orthorectified. Owing to the building
height and influence of the sensor, there is a certain amount of offset between the roof
and footing of the building when the image is captured, as shown in Figure 5, where the
black line segments are the offsets of the building. To correct the building roof offset more
conveniently and quickly, this study establishes a simple offset calculation model based on
the relationship between the building height and satellite altitude angle while considering
only the building roof and bottom offsets.
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Figure 5. (a) Building imaging model. (b) View of building vertex offset.

In Figure 5, A is the actual building roof point, A0 is the actual building bottom point,
and A* is the building roof point at the time of imaging. For the building roof point A, a
certain amount of offset occurs during imaging because of the influence of the building
height and elevation angle; the actual imaging position of vertex A is not on A0 but on
A*. This offset is a constant value independent of the solar attitude for parallel projection.
This is only related to the building height and satellite attitude at the instant of the shot, as
shown in Equation (4). The components of the building offset in the E and N directions are
shown in Figure 5b. {

∆X = H · sinε/tanα
∆Y = H · cosε/tanα

(4)

The offset of a building can be obtained from its height H, satellite elevation angle, and
azimuth angle, and the precision of the measurement of the building height determines the
precision of the offset solution.

3.5.2. Correction of Building Outline

The initial outline obtained from semantic segmentation contains the building’s roof,
side, and bottom information. In this study, based on the above model of building-outline
offsets, a correction algorithm is designed to adjust the building outline to the real building
footprint based on the offsets obtained from the building height, as shown in Figure 6. The
steps are as follows:
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The boundary points are extracted. The building outline is represented as a closed
curve of discrete points, denoted C. To reduce the computational cost, the vector method
is utilized to filter the relatively smooth points in C. The points in C are assumed to be
ordered, and the ith point is denoted by Pi, where i = 1, 2, . . ., n. The vector of each edge
is calculated using Equations (5) and (6). The angle of each boundary point is calculated
using Equation (7), and an angle threshold θ is set. All the points that satisfied θi > θ are
retained, and these are considered the endpoints of the building outline, denoted as the set
E. The other points are considered relatively smooth and are discarded.

v1i = Pi − Pi−1 (5)

v2i = Pi − Pi+1 (6)

cos θi = (v1i · v2i)/(|v1i| · |v2i|) (7)

The building main direction B_v is calculated using principal component analysis. E is
constructed as a 2 ×m matrix M

M =

[
x1 x2 . . . xm
y1 y2 . . . ym

]
(8)

The mean x, y of the set E are calculated. The x and y are subtracted from the matrix
M, and the homogenized matrix M is yielded.

M =

[
x1 − x x2 − x . . . xm − x
y1 − y y2 − y . . . ym − y

]
(9)

The covariance C is calculated using the matrix M:

C =
1
m

M ·MT (10)

All eigenvalues and eigenvectors of the covariance matrix C are calculated. Because M
is a two-dimensional square matrix, two eigenvalues and their corresponding eigenvectors
c1 and c2 are obtained. Thus, B_v is max (c1, c2).

Classifying and correcting boundary points: The points in set E are classified as the
roof and bottom points based on the cross-product method. A straight line is determined
using the geometric center of the building as the origin and B_v as the slope. A and B are
assumed to be two points on the line, and P is the point to be judged and substituted into
Equation (11). The outline endpoints are classified by judging the relative position of point
P on line AB according to the properties of the cross product, both positive and negative.

S(A, B, P) = (Ax− Bx) · (Py− By)− (Ay− By) · (Px− Bx) (11)

where S(A, B, P) is the cross-product result, points with S greater than zero are categorized
as roof points, and points with S less than zero are categorized as bottom points.

The offsets obtained using Equation (4) correct the roof points, forming a new building
outline with bottom ends. At the intersection of the fixed outlines, the endpoints are sharp
and are further filtered using the angular information.

We simplify the building outline and consider its minimum bounding rectangle to be
the building footprint. Large-scale city studies require appropriate simplification of the
models. Utilizing the minimum bounding rectangle can simplify shape representation,
reduce complexity, and preserve the basic boundary information of the building. This
simplified building representation is useful for urban planning, GIS analysis, and other
large-scale city data processing applications.
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3.6. 3D Reconstruction of Buildings

An urban 3D probabilistic model is obtained by combining vector data with building
height and terrain data. We overlay a digital orthophoto map (DOM) as texture on the
model and visualize it with the help of geographic information platforms such as ArcGIS
and QGIS. The cost of producing an urban 3D probabilistic model is significantly lower than
that of producing an oblique photogrammetric model. Although oblique photogrammetry
is becoming less expensive, achieving full-area coverage is challenging. The model is
well-suited as a flat replacement for the oblique photogrammetric model to fill in areas not
covered by oblique photogrammetry and requires less precision.

3.7. Evaluation Index

In this study, the proposed method is evaluated in terms of both the horizontal posi-
tioning and vertical precision of a building. Horizontal precision is studied in conjunction
with the theory of high-precision single-image positioning. High-precision single-image
positioning utilizes a single image to achieve precise localization. First, the SIFT feature-
matching technique is used to match the image to be measured with the reference image.
Next, we calculate the geometric centers of mass between the building footprints extracted
using this method and the reference footprint. Finally, the accuracy of the horizontal
localization is evaluated by calculating the deviation between the centers of mass, as shown
in Equation (12). The absolute error, mean absolute error (MAE), and root-mean-square
error (RMSE) are selected as evaluation indices for building height accuracy. The specific
calculation formula is as follows:

∆b =

√
(x− x0)

2 + (y− y0)
2 (12)

MAE =
1
m

m

∑
i=1
|Hi − H0i| (13)

RMSE =

√
1
m

m

∑
i=1

(Hi − H0i)
2 (14)

where ∆b is the geometric center-of-mass deviation of the building, x and y are the horizon-
tal coordinates of the building footprint, and x0 and y0 are the horizontal coordinates of the
reference building footprint. Hi is the value of the building height proposed by the method
and H0i is the value of the reference building height.

4. Experiments and Analysis
4.1. Building and Results of Shadow Extraction

GF7 is a civil stereo mapping satellite with the highest spatial resolution in China, and
this study first researches the 3D models of buildings produced by GF7 single-view images.
Figure 7 shows the building and shadow measurements of the study area (a). Figure 7a
shows the building boundaries extracted from the building extraction model, and Figure 7b
shows the shadow boundaries extracted from the shadow extraction model, with areas
marked by red boxes to further demonstrate the extraction. Figure 7c shows the GF7 image,
and Figure 7d,e shows the extracted building and shadow boundaries. Both buildings
and shadows are well extracted, and water bodies and non-building shadows are well
suppressed, which can be further used for building height measurements.
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Figure 7. (a) Building boundary extraction results. (b) Shadow extraction; and (c) GF7 image of
the magnified region (red box). (d) Building boundaries extraction results corresponding to (c).
(e) Shadow extraction results corresponding to (c).

To quantitatively assess the building and shadow boundaries, metrics such as overall
accuracy (OA), precision (P), intersection of union (IOU), F1 value (F), and recall (R) are
used [20]. Table 2 presents the statistical results for the test set. In general, the overall
precisions of the buildings and shadows extracted using this method are 92.37% and 96.87%,
respectively. Moreover, the OA, P, IOU, F, and R values of shadows are higher than those
of buildings because the spectral features of shadows are simpler and more accessible for
training than those of buildings. It is worth noting that the building boundary extraction
model can have such high performance, on the one hand, because it only labels buildings
with shadows. By discarding buildings without shadows, such as factories and bungalows,
the training difficulty of the model is reduced, and the detection precision of the model is
improved. Meanwhile, on the other hand, overly strict labeling may lead to the overfitting
of the model, which is a potential reason for the outstanding model performance. The
extraction of buildings and shadows is the basis for building height measurements and is
not the focus of this study. Therefore, the details of the model are not thoroughly explored.

Table 2. Accuracies of building boundaries and shadow extraction.

Task OA (%) P (%) IOU (%) F (%) R (%)

Building boundaries 92.37 90.59 80.77 86.36 83.14
Building shadow 96.87 95.81 90.32 94.01 92.26

4.2. Qualitative Analysis of Urban 3D Probabilistic Model

To enhance the precision of the shadow length measurement, this study uses parti-
tioned measurement, and Figure 8 demonstrates the measurement process of this method
in the study area (a). It is clear from the figure that each shadow is divided into four
partitions, and each section corresponds to one measurement value. For occluded building
shadows, the ratio of the measured values of the complete shadow length to the entire
set of measured values is low. The percentage of correct measurements can be increased
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significantly by partitioning the measurements, thereby effectively reducing the algorithm’s
requirement for shadow completeness.
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Figure 8. Results of shadow length measurement visualization. (a–d) Local detail maps correspond-
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Figure 9g shows the results of this method for the 3D reconstruction of buildings in
the study area (a), which is visualized with the help of Arcscene. Figure 9a–c shows the
reconstruction results of the proposed method for localized details, and Figure 9d–f shows
the reconstruction results of multi-view dense matching on the same localized information.
By comparing the visualization results of dense matching, it can be observed that the model
reconstructed using this method has the advantages of better visualization and no obvious
coarseness, which is more in line with the actual situation, and the integrity of the building
reconstruction is higher.
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Figure 9. Results of the 3D visualization of the building. (a,d) Local detail maps corresponding to
the red rectangular box of No. 1. (b,e) Local detail maps corresponding to the red rectangular box of
No. 1. (c,f) Local detail maps corresponding to the No. 1 red rectangular box. (g) 3D reconstruction
results of buildings in study area a.
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4.3. Quantitative Analysis of Urban 3D Probabilistic Models
4.3.1. Accuracy of Building Height

In this study, a digital surface model (DSM) of the study area (a) using MASI, a
commercial 3D reconstruction software, is combined with GF7 and ZY3 data. A normalized
DSM (nDSM) is generated using the method proposed by Wu et al. (2022) [34], and the
maximum value of nDSM pixels within the building boundary is counted as the building
reference height. Each is checked to ensure the accuracy of the reference building heights.
Figure 10 illustrates the precision of the building height estimation for the study area (a).
Figure 10a shows the frequency histogram of the residuals of the building height estimation,
which is the result of excluding statistics other than 3σ from the original residuals. As
shown in Figure 10a, the residuals satisfy a normal distribution, with most (75%) of the
residuals falling between −5 and 5 m, and there is a slight overall overestimation. From the
residual line graph in Figure 10b, it can be seen that there is an overestimation of building
heights below 30 m, an underestimation above 70 m, and good performance between
30 and 70 m. This phenomenon occurs because the shadows of the lower buildings are
blended with the shadows of vegetation, resulting in longer shadow lengths, whereas the
shadows of the higher buildings are overlaid on other features, resulting in shorter shadow
lengths. Figure 10c shows the residual distribution of the building heights.
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Shadow-based algorithms are implemented to evaluate the performance of the method
in this study [9,19]. The main difference between existing shadow-based algorithms is the
counting of the shadow measurements. Liasis and Stavrou [9] used the median of the set of
shadow measurements as the shadow length, while Xie et al. [19] excluded measurements
other than 3σ and took the average of the remaining measurements as the shadow length
of the building. Figure 11 illustrates the scatter plot between the estimated and reference
building heights in the study area (a) for the different methods. It can be seen that the
method in this paper has a better fitting effect, with the highest R2 and relatively low MAE
and RMSE for the estimated building heights, with an MAE of 3.852 m and an RMSE of
4.825 m. This benefits from the shadow partitioning measurement algorithm used in this
study, which reduces the algorithm’s requirement for shadow integrity and improves the
accuracy of the shadow length measurement.
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4.3.2. Precision of Building Horizontal Positioning

Building outlines obtained from high-resolution satellite images differ from those ob-
tained from building footprints. The GF1, GF2, and ZY3 down-view images are essentially
vertical, with small offsets of building vertices. The GF7 rearview image has a dip angle of
approximately 5◦, which leads to a severe building offset in the image. Therefore, this study
focuses on correcting the building outline obtained from GF7. The real building footprints
are not visible in the remote sensing images; thus, the building roof boundaries in the study
area (b) are labeled as a reference. The building outline is changed to a roof outline, and
the geometric center-of-mass deviation is counted from the reference boundary, as shown
in Figure 12. For study area (c), the real building footprints are outlined directly from the
digital orthophoto map produced by the 3D real-scene model. Then, registering GF7 of
study (c) to the digital orthophoto map removes the systematic errors between the images.
Figure 13 illustrates the building outline correction results for the study area (c).
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As shown by the local detail effects illustrated in Figures 12c and 13c, the building
outline obtained fits the reference outline well. This further demonstrates that the building
outline adjustment algorithm proposed in this paper can improve the projection difference
of high-rise buildings and obtain an accurate building footprint. The improvement in the
precision of the building outline is closely related to the boundary precision of the initial
outline and the measurement precision of the building height, which indirectly proves
that the building height measurement precision in this study is relatively high. To further
evaluate the precision of the building-outline-adjustment algorithm, the geometric center-
of-mass deviation between the building outline and real building footprint before and
after the algorithm processing is shown in Figures 12d and 13d. This method significantly
improves the geometric center-of-mass deviations of buildings. Some results with large
deviations are obtained, mainly because the building shadows are completely obscured. In
this case, the height measurement error of the building increases significantly, resulting in a
large deviation in the building outline correction process. Moreover, by adjusting only one
side of the building boundary, it can be roughly estimated using Equations (4) and (6). The
geometric center-of-mass deviation is improved by approximately 1 m, and the boundary
precision is improved by approximately 5 m.

4.4. Analysis of Performance

The spatial resolution of the image also affects the precision of the extraction. The
higher the resolution, the more precise the extraction of the shadow area of the building,
and the higher the precision of the acquired shadow feature line length. In addition, the
imaging time also affects the quality of the shadows. Therefore, this study further validates
the performance of the method on different spatial resolution images and imaging times by
selecting high-rise buildings for the experiments. Two sets of experiments are developed:
the first is for the same area, same sensor, and different times, as shown in Figure 14a–e;
the second is for the same area and different sensors, as shown in Figure 14f–i.
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Figure 15 and Table 3 present the error statistics for the two sets of experiments.
According to existing studies, it is a widely recognized fact that the length of shadows
changes over time. Shadows are shortest during the summer months and longest during
the winter months. The length of the shadows is positively correlated with the likelihood
of being obscured; that is, the longer the shadow, the greater the likelihood. For the
images of five different moments in the first set of experiments, it can be observed that in
Figure 14a,e, the shadows are heavily obscured, and the error curves fluctuated with low
precision, whereas the error curves of the remaining three moments are relatively stable.
Theoretically, the higher the image resolution, the higher the precision in the second set
of experiments. By combining the results in Figure 15b and Table 3, it can be observed
that the error curve of GF2 fluctuated more and had the most prominent error. The error
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curve of ZY3 exhibits less fluctuation and a relatively small error, which is inconsistent with
expectations. After thoroughly analyzing this phenomenon, it is found that in addition to
the image resolution, there exists another critical factor, the proportionality coefficient k,
between the building height H and the shadow length L, and k has an inverse relationship
with L, which is relative to Equation (1). According to error propagation theory, the height
error of a building is the product of the shadow measurement error and the scale factor.
When k increases, the height error of the building increases accordingly, which includes
errors in the solar parameters and shadow measurements. The scale factors corresponding
to Figure 14f–i are calculated as 1.501, 3.232, 1.362, and 1.599, respectively. GF2 has a larger
scale factor and shorter shadows, resulting in a larger error in the building height.
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Table 3. Performance analysis.

Test Data Time MAE RMSE

1

GF1 12 January 2021 22.316 23.063
GF1 14 March 2023 6.235 4.706
GF1 8 April 2021 6.648 4.988
GF1 25 June 2020 4.636 3.420
GF1 30 October 2021 15.381 15.918

2

GF1 11 September 2020 5.180 3.827
GF2 7 June 2020 7.288 4.468
GF7 20 September 2020 4.681 3.382
ZY3 4 September 2020 4.940 3.766

In practical applications, the precision and operational efficiency of the algorithm must
be addressed. To better evaluate the algorithm proposed in this paper, we compare the
time with the traditional dense matching algorithm [35] in three study areas and obtain the
time statistics, as shown in Table 4. It can be observed that the new algorithm has a shorter
running time than the dense-matching algorithm, further proving its advantage in terms
of running efficiency. Although the method proposed in this study is less accurate than
the results of dense matching, it can quickly and accurately obtain 3D city data at a low
cost to meet the needs of urban spatial planning, urban environmental assessment, and
other applications.

Table 4. Time cost.

Study Area Number of Buildings
Time (min)

Method in This Paper Dense Matching

a 1511 7.69 81.23
b 800 2.08 6.04
c 55 0.78 1.79
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5. Discussion

This study utilizes shadow information to realize the building height measurement
of a single remote sensing image, converting the shadow noise in the image into valuable
information. Based on previous research, improving shadow extraction and shadow
measurement and, at the same time, reducing the requirement for shadow integrity, the
method proposed in this paper can maintain good versatility and practicability when
the boundary is not smooth, the shadow is partially obscured, or the shadow is sticky.
Although the method used in this study improves the precision and practicability of
building height measurement using the shadow method, the influence of shadow formation
conditions and other environmental factors on the shadow integrity of buildings remains
a significant obstacle to measurement precision. Therefore, it is necessary to discuss the
limitations of using shadow information to assess building height measurements from a
single optical image.

(1) Limitations of solar elevation angle and building height: The solar elevation angle
ranges from 0◦ to 90◦ and occurs at 90◦ between the Tropic of Capricorn and the
Tropic of Cancer. In most areas of China, however, the sun does not appear in the
zenith direction. The solar elevation angle directly affects the length and direction of
shadows. The longer the shadow length, the better the detection effect, and the richer
and more complete the information about the building contained, whereas a shorter
shadow length will easily lead to a lack of information, which is not conducive to
the detection of the building. The impact on the building height measurements is
explored by quantifying the change in k at noon throughout the year, as shown in
Figure 16a. The k-value also represents the building height error due to the shadow
length error of one pixel, which is statistically analyzed to yield a measurement
error of approximately three pixels for the shadow. Under the condition of the same
measurement error, the variation in the k value also reflects the uncertainty of the
building height measurement, and a larger k value implies that the shadow length
error has a larger effect on the building height estimation. From Figure 16a, it can be
seen that building height measurements using images captured in summer have high
uncertainty, and cloudy summer images are not of high quality.
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However, the shadow method is not applicable to all building types. The shadow
method is suitable for both high-rise and regular buildings. However, for super-high-
rise buildings such as TV stations and skyscrapers as well as short-rise buildings such as
bungalows, villas, and factories, the shadow method is less precise and may even fail. The
numbers of floors in the typical residential designs are 6, 11, 18, 26, and 33. It is converted
to a building height of 3 m per floor to investigate the changes in shadow length over
a year. To further explore the range of applicability of the shadow method, the limit of
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the complete projection of shadows is set to 50 m, and the initial condition for shadow
detection is the length of shadows corresponding to 10 image pixels. Figure 16b shows
the variation in shadow lengths for different heights over a year. It uses three red lines to
indicate three constraints: the 50-m scale, the ZY3 initial condition scale, and the GF7 initial
condition scale. According to the results, GF7 has a wider range of applications than ZY3
and is only valid for high-rise buildings. Considering the effect of the k value on building
height estimation, with the likelihood of image shadows being obscured, it is believed
that images captured around April and September are more suitable for building height
measurement using the shadow method.

(2) Because of restrictions on the building area, urban buildings tend to be denser to
achieve optimal land utilization. This densification results in shorter spacing between
neighboring buildings, leading to shadows sticking to each other and being unable
to be projected fully onto the ground. The method in this study is based on building
outline data for the zonal measurement of shadows, which reduces the requirement
of shadow integrity but still does not solve the case of complete occlusion at the top
of the shadow. In addition, the shadow areas of taller buildings may mask the lower
ones, leading to difficulties in boundary extraction and shadow length measurement
of the latter. The shadows of two buildings may be mixed, leading to an increase
in the shadow measurement error of the taller building. The method used in this
paper cannot recognize this situation, which is beyond the capability of semantic
segmentation and shadow length measurement, and therefore cannot be solved.

(3) Dramatic Terrain Undulations. Terrain undulations can affect the variation in shadow
lengths, and the shadow method generally makes idealized assumptions regarding
the terrain in building height calculations. However, in areas with high topographic
relief (e.g., Chongqing), using images for shadow length measurements can lead to
systematic deviations in the measured lengths from the actual lengths. This bias is a
limitation of the shadow method in building height calculations and stems mainly
from data limitations.

(4) Complex Buildings. The shadow method has obvious advantages in measuring
buildings with simple geometries; however, for buildings with complex structures
and irregular areas, the accuracy of estimating the building height using the shadow
method alone is low. Moreover, the shadow method requires that the top of the
building be as flat as possible and aligned with the bottom. Height information and
geometric boundaries are less applicable to the reconstruction of complex buildings.
Therefore, it is necessary to combine other measurement techniques or use multiple
data sources to improve the accuracy and reliability of the height estimation.

6. Conclusions

“Monolithic stereo” provides a new research idea for 3D modeling research. This
study utilizes shadow information to complete the measurement of building height. By
improving and refining the extraction and measurement algorithms in the shadow method,
the precision and effectiveness of building height measurement in the shadow method
are improved. Combined with deep learning building extraction technology, automated
3D reconstruction of urban high-rise buildings based on a single optical satellite image
is realized. The experimental results show that the proposed method can reconstruct
buildings in an image more quickly, automatically, and intelligently while maintaining
geometric precision. The large-scale building entity visualization achieved using simplified
and abstracted building models is more in line with people’s impressions of the city and
can also help users browse urban 3D environments and obtain urban spatial information
accurately and quickly.

Given the limited information provided by single-view images, the estimation of
building heights often suffers from error accumulation, leading to high uncertainty in the
overall height estimation. With the continuous development of computer vision and deep
learning, it can be combined with more proven techniques to improve the accuracy and
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reliability of building height estimation, such as monocular depth estimation and nerve
and building sideline measurements.
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