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Abstract: Reasonable semantic partition of indoor areas can improve space utilization, optimize
property management, and enhance safety and convenience. Existing algorithms for such partitions
have drawbacks, such as the inability to consider semantics, slow convergence, and sensitivity to
outliers. These limitations make it difficult to have partition schemes that can match the real-world
observations. To obtain proper partitions, this paper proposes an improved K-means clustering
algorithm (IK-means), which differs from traditional K-means in three respects, including the distance
measurement method, iterations, and stop conditions of iteration. The first aspect considers the
semantics of the spaces, thereby enhancing the rationality of the space partition. The last two increase
the convergence speed. The proposed algorithm is validated in a large-scale indoor scene, and the
results show that it has outperformance in both accuracy and efficiency. The proposed IK-means
algorithm offers a promising solution to overcome existing limitations and advance the effectiveness
of indoor space partitioning algorithms. This research has significant implications for the semantic
area partition of large-scale and complex indoor areas, such as shopping malls and hospitals.

Keywords: area semantic partition; improved K-means; large-scale indoor areas

1. Introduction

With the rapid urbanization and expansion of indoor environments in large-scale
settings [1,2], the partition of indoor areas has become a significant concern [3]. Reasonable
partitioning plays a crucial role in improving space utilization, optimizing management,
and enhancing safety and convenience. It has wide-ranging applications in various fields
such as indoor navigation [4,5], security monitoring [6], and resource management [7,8].
A semantic-based area partition is able to bring in numerous benefits to large-scale indoor
scenes (such as shopping malls and hospitals), including improved business operations,
enhanced customer service, and increased safety, leading to better experiences. For instance,
in shopping malls, a semantic-based area partition can assist new businesses in selecting
suitable shop locations based on attributes of their products. This allows the mall to effec-
tively manage the procurement, sales, and inventory of different product categories, thereby
enhancing overall operational efficiency. In particular, such a partition can assist shopping
malls in determining suitable locations for signage installation, which can effectively help
customers quickly locate the desired products and save shopping time. Analyzing rest
areas enables the placement of flammable and explosive items in safe zones away from
those areas, mitigating potential hazards and safety risks. In hospitals, dividing areas based
on different departments (semantic categories) improves the efficiency of patient diagnosis
and treatment. Patients can more accurately determine the areas they need to visit, like
inpatient wards and diagnostic sections, which helps in reducing wait times and confusion,
thereby improving the overall patient experience.

Indoor area partition can be seen as an application of regional clustering [9]. K-means
is a widely utilized machine learning algorithm among various partitioning methods [10].
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It is used to divide n observations into k clusters. In this algorithm, each observation is
allocated to the cluster whose mean is closest, with this mean acting as the prototype for the
cluster [11]. The K-means algorithm can effectively partition indoor areas by specifying the
desired number of clusters, but it encounters various challenges when applied to real-world
scenarios. These include its inability to incorporate semantic information about the indoor
space, slow convergence, susceptibility to initial clustering center selection, and sensitiv-
ity to outliers. To effectively partition large-scale indoor areas, it is crucial to develop
an algorithm that takes into account semantic information, achieves faster convergence,
and minimizes the impact of initial clustering center selection. The primary consideration
lies in the fact that K-means offers the benefits of simplicity and straightforward imple-
mentation. Moreover, it facilitates the direct determination of the number of partitions by
manipulating the K. This is very suitable for the indoor partitioning problem we need to
solve. This paper proposes an improved K-means clustering algorithm (IK-means), which
aims to partition large-scale indoor areas based on semantics to improve the accuracy and
efficiency of large-scale indoor space partitioning. The IK-means employs a blend of Value
Difference Metric (VDM) distance and Euclidean distance to compute the distance between
the mean vector and samples. In each iteration, the algorithm updates the mean vector to
expedite the convergence rate. In order to verify the accuracy and efficiency of IK-means,
we conducted a comparison test. Among them, traditional K-means and and density-based
spatial clustering of applications with noise (DBSCAN) algorithms [12] were chosen as
comparisons, and the two methods were implemented in a large-scale indoor scene.

The presented IK-means exhibits several advantages over the conventional algorithm.

1. Our algorithm, distinct from traditional K-means and DBSCAN algorithms, incorpo-
rates semantic information from known indoor room node attributes. This approach
leads to partitioning results that exhibit lower values in evaluation functions. Most
notably, it eliminates the need to grapple with a multitude of redundant and intricate
variables, enabling swift and automated generation of partitioning outcomes. This
not only leads to cost savings but also yields partition results that closely align with
manual partitioning results.

2. In comparison to K-means and DBSCAN algorithms, our algorithm exhibits faster
convergence rates. Experimental results demonstrate that our algorithm, IK-means,
achieves a remarkable 93.85% faster convergence than traditional K-means and an
impressive 83.29% faster convergence than DBSCAN.

3. The IK-means algorithm offers a more streamlined process for parameterization.
Traditionally, selecting the optimal value for K in K-means clustering has been a
significant challenge. In contrast, the IK-means approach predefines the parameter
K based on the semantic information of the rooms, thereby obviating the need to
assess the impact of K on the partition results. This method effectively addresses
and mitigates the issue of parameter dependence that is prevalent in the standard
K-means algorithm and its variants.

The remainder of this paper is organized as follows. The next section introduces and
compares seven algorithms commonly employed for regional clustering. Section 3 presents
the specific details of IK-means. In Section 4, we demonstrate the feasibility of IK-means
by a series of experiments in an indoor area. Lastly, Section 5 provides a comprehensive
summary of the entire text and discusses potential future research directions.

2. Related Work

Indoor area partition can be seen as an application of regional clustering [13]. The com-
monly used algorithms for clustering include K-means [14] and its variants, DBSCAN [12],
the hierarchical clustering algorithm [15], the spectral clustering algorithm [16], and other
cluster algorithms [17–19].

K-means is an algorithm often used for data clustering, which divides a dataset
into K different clusters based on the similarity of the data. The algorithm updates the
partitioning outcome by iteratively computing the distance between the nodes and cluster



ISPRS Int. J. Geo-Inf. 2024, 13, 41 3 of 18

centers. The primary advantage of K-means is its simplicity and ease of implementation.
Nonetheless, the algorithm necessitates a predetermined number of clusters K, and the
initial cluster centers have an impact on the final clustering results. Thus, several improved
versions of K-means were developed, including K-medoids [20], Kernel K-means [21],
and K-means++ [22].

The K-medoids [20] is a clustering algorithm that uses cluster centers, known as
medoids, to represent their respective clusters. Unlike the traditional K-means algorithm,
which calculates the distance between each data point and every cluster center in each
iteration, the K-medoids utilizes medoid selection based on the lowest average distance
to other nodes and assigns them as cluster centers. However, the selection of medoids
requires calculating the cost, which can be computationally intensive. Consequently, when
applied to large-scale datasets, K-medoids tends to exhibit a slower performance.

Kernel K-means [21] addresses the challenge of linearly indistinguishable clusters
in the original data space by mapping the data to a higher-dimensional space. It utilizes
polynomial kernel functions, Gaussian kernel functions, and other techniques to enhance
its clustering model. A notable strength of Kernel K-means lies in its ability to process
complex, particularly nonlinear, datasets effectively, without necessitating prior knowledge
of the cluster count K. Additionally, the algorithm offers better interpretability compared
to some other clustering methods. However, the computational efficiency of Kernel K-
means may be compromised due to the high computational complexity associated with
the kernel function. The performance of the Kernel K-means algorithm is also heavily
reliant on the choice of the kernel function and its parameters, highlighting the criticality
of selecting suitable kernel functions and parameter configurations to achieve meaningful
clustering results.

The K-means++ algorithm [22] solves the problem of local optima that can occur
when initial clustering centers are randomly selected by utilizing a specific probability
distribution for center selection. This algorithm ensures that the distances between different
clustering centers are relatively large, reducing the risk of the algorithm converging to local
optima and improving both the accuracy and stability of the clustering results. Therefore,
the K-means++ is mainly employed for selecting initial clustering centers to enhance the
stability and quality of the algorithm.

DBSCAN [23] is a prominent clustering algorithm that identifies clusters based on
high-density regions within a dataset, while treating low-density areas as noise or border
points. One major advantage of DBSCAN compared to traditional clustering algorithms
like K-means is its ability to automatically determine the number of clusters and identify
clusters with arbitrary shapes. However, to achieve optimal performance on different
datasets, this algorithm still requires manual parameter tuning, specifically for the radius
parameter (r) and the density threshold (‘MinPts’). Furthermore, when dealing with high-
dimensional data, DBSCAN may encounter the challenge of the “curse of dimensionality”,
which can lead to decreased clustering performance. Nonetheless, DBSCAN remains a
valuable tool for clustering tasks, particularly in scenarios where the number of clusters is
unknown and the data exhibit complex structures.

The hierarchical clustering algorithm [24] clusters datasets by iteratively merging data
points to form a hierarchical structure. One of the main advantages of this algorithm is its
ability to generate a clustering hierarchy, allowing for better visualization and analysis of the
results. The method is versatile and can be applied to various datasets and clustering tasks
as it does not require a predetermined number of clusters. However, the computational
complexity of hierarchical clustering is high, and it can be time-consuming, especially when
dealing with large datasets. Moreover, it is sensitive to the initial clustering configuration,
often requiring multiple experiments to achieve optimal clustering results. Despite these
challenges, it remains a valuable algorithm for exploring and understanding the inherent
structure of datasets.

The spectral clustering algorithm [25] is a graph-based method that treats data points
as nodes in a graph and constructs the graph by measuring pairwise similarity between
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nodes. It then transforms the problem of spectral decomposition of the graph into a feature
vector problem, and clustering is performed on these feature vectors. This algorithm shows
several advantages, including its ability to handle nonlinear clustering problems and its
applicability to large-scale datasets. Unlike traditional distance-based clustering methods,
spectral clustering does not require a predefined number of clusters, providing flexibility
in the clustering process. However, selecting an appropriate similarity measure when
constructing the similarity matrix is crucial for the success of spectral clustering. Moreover,
this method is more sensitive to noisy data and outliers compared to some other clustering
algorithms. Despite these considerations, it is a valuable algorithm for tackling complex
clustering tasks and has found applications in various domains.

However, the aforementioned algorithms are not well-suited for indoor area par-
titioning due to their limitations in considering semantic information, dependence on
parameter choices, and relatively slow convergence rates. Therefore, there is a need for a
novel algorithm that effectively addresses these shortcomings. The ideal algorithm should
be efficient, capable of incorporating semantic information about indoor spaces, able to
handle high-dimensional data, and robust against noisy data and outliers. After evaluating
the strengths and weaknesses of existing algorithms, this study has chosen to improve
the traditional K-means clustering algorithm. As a result, a novel algorithm called the
Improved K-means algorithm (IK-means) has been developed.

3. The Improved K-Means Clustering Algorithm for Semantic-Based Partition

In this section, we present the IK-means tailored for semantic-based partitioning. This
algorithm leverages the VDM to measure the distance between nominal attributes and sub-
sequently normalizes this distance following its amalgamation with the Euclidean distance.
The proposed distance calculation approach enables the comprehensive integration of
semantic information pertaining to indoor area attributes and physical distances of spatial
data, ultimately bringing in a more rational partitioning. The algorithm encompasses four
critical stages, including the determination of K, the clustering of common nodes, the fixing
of orphan nodes, and the reconstruction of clusters.

3.1. Concepts and Parameters

We used a node-relationship graph (NRG) model to model the indoor environment
map. NRG can abstract indoor regions as nodes and represent the connectivity between
regions through edges, and it provides an analytical basis for the subsequent determination
of the rationality of partitioning. Therefore, in this paper, we employ the NRG model to
establish an indoor map model. The theoretical underpinning for generating NRG from
indoor maps is Poincaré duality [26].

The indoor spaces comprise rooms, corridors, staircases, and doors. The first three
are geometrically represented as polygons, while doors are depicted as lines. To achieve
NRG, room and stair spaces are further reduced to nodes, specifically using the centroids
of their respective polygons. In the case of doors, the mid-points of the lines are employed
as their representative nodes. When two indoor spaces are interconnected by a door or
doors, two edges are established to link the mid-point of the door lines with the centroids
of the respective spaces. For corridor spaces, we utilize their mid-line to connect with the
mid-plumb of the door lines. In particular, the door nodes are projected onto the mid-line of
the corridor, and the resulting vertical point serves as the corridor node. Figure 1a depicts
an indoor map, while its corresponding NRG is presented in Figure 1b.

In the generated NRG model, we introduce three fundamental concepts to characterize
both the edges and nodes.
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(a) Indoor map (b) NRG

Figure 1. Example of a map of an indoor scenario and its corresponding NRG.

• Common nodes (Ci): These nodes have specific functional attributes, such as room,
elevator/stairs/escalator nodes. Common nodes are characterized by attributes, in-
cluding identification numbers, semantic information, geometric coordinates, and con-
nected edges. The semantics of common nodes come from the usage of the spaces that
they represent. For instance, in a hospital, these usages of spaces may include wards,
consultation rooms, and functional areas. During the process of IK-means, common
nodes serve as the sample set and participate in the entire process.

• Transition nodes (Ti): Unlike common nodes, these nodes are intermediate nodes
that serve to connect common nodes, representing locations without specific meaning.
Examples of transition nodes include door nodes and corridor nodes. Transition nodes
typically lack special attributes but possess attributes like identification numbers,
geometric coordinates, and connected edges.

• Edges: Edges typically represent the connections between room nodes, door nodes,
and corridor nodes. They are characterized by attributes such as identification num-
bers and information about the nodes they connect. The presence of edges is crucial
in determining the existence of any orphans or disconnections within the resulting
clusters after partitioning.

Other than that, the primary parameters governing the IK-means include the following:

• Number of clusters (K): This parameter signifies the desired number of clusters and
plays a pivotal role in determining the clustering quality, model complexity, and com-
putational cost [27]. The appropriate choice of K is crucial for the K-means [28], as it
directly impacts the results.

• Maximum number of iterations (m): This parameter sets the upper limit for the
number of iterations the algorithm will undergo. It is an important factor in controlling
convergence and algorithm termination.

• Control parameters (W): These parameters govern the influence of nominal attributes
and the physical distance metric. They allow the fine-tuning of attribute importance
within the clustering process.

• Number of nearest neighbor nodes (o): This parameter determines the number of
nearest neighbor nodes considered during cluster transition node grouping.

• Minimum number of nodes in a cluster (p): This parameter sets the minimum thresh-
old for the number of nodes within a cluster. Clusters with fewer than this number of
nodes are not retained during the cluster reconstruction phase.

3.2. Determination of K

The process of selecting initial clustering centers usually involves a certain level of ran-
domness. In traditional K-means, initial clustering centers are typically chosen at random
from the dataset, with K node samples serving as these starting nodes. The random selec-
tion method can significantly influence clustering outcomes, often resulting in substantial
variability in classification results and less than optimal partitioning effects [29].
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In the IK-means algorithm, a more systematic approach is adopted to determine the
number of partitions (K). In particular, it takes into account the semantic information of
clustering samples during the initialization of clustering centers. This means that, prior
to the clustering process, the number of partitions is determined based on the quantity of
distinct semantic features present in the data. Subsequently, the process involves randomly
selecting one node from the group of nodes that exhibit unique semantic features, to serve
as an initial clustering center. This procedure is repeated until K initial clustering centers
are established, with each center representing a unique semantic attribute.

This approach ensures that diverse semantic information is represented in each clus-
tering center. Consequently, the default semantic distances between the cluster centers are
relatively large when calculating feature distances, making it easier to classify nodes with
similar semantic information into the appropriate clusters.

The adoption of such a systematic approach is driven by the utilization of semantic
information to accomplish this. For instance, rooms in different environments, such as
shopping malls or hospitals, often exhibit distinct semantic characteristics. These semantic
attributes are used to pre-determine the number of semantic categories among all common
nodes, effectively establishing the value of K. For example, rooms in shopping malls may
possess semantic features like consumption areas, functional areas, and office areas [30],
while hospitals may display a range of semantic attributes such as inpatient departments,
outpatient departments, and functional areas [31]. This semantic-driven approach not only
ensures a suitable value for K but also minimizes variations in partition results arising from
different K. It is important to note that the configuration of the lower limit for nodes in the
transition node and reconstructed cluster, which is often influenced by the map size, does
not have a direct impact on the clustering outcome. The significance and influence of these
parameters will be further elaborated upon during the introduction of the algorithm.

Therefore, in the context of large-scale indoor environmental partitioning, this method
of selecting clustering centers enhances classification accuracy and mitigates disparities
in partitioning results caused by different choices of cluster centers. This addresses the
shortcomings of the traditional K-means algorithm.

3.3. Clustering of Common Nodes

After determining the K, we initiate the clustering of common nodes. These common
nodes that require classification comprise the node example set D. The formation of clusters
K is contingent upon the primary semantic features of these common nodes. These primary
semantic features represent the classifications of semantic information for these nodes and
serve as the basis for partitioning. Establishing the required number of partitions K based
on the semantic feature types of common nodes in the node example set D. Subsequently,
from the common nodes that exhibit K distinct types of semantic features, arbitrarily
selecting one node from each of the K feature types. These selected common nodes, totaling
K, serve as the initial clustering centers, denoted as µ1, µ2, · · · , µK.

Following this, we proceed to examine all common nodes in the node example set
D, calculating their distances to each cluster center. In this process, we employ two
distance metrics: DVDM and DEuclidean. These metrics are normalized using min-max
normalization and then weighted to compute the sum. Specifically, DVDM is used to
calculate the distance for nominal attributes (Equation (1)). The VDM distance cannot be
calculated if the attributes of the node differ from those of all evaluated nodes in the cluster,
resulting in an infinite VDM distance. For such cases, DVDM is directly normalized as 1.
Nominal attributes refer to those attributes that do not have a natural order or arrangement.
In this paper, this term specifically refers to the semantic information of nodes. The
number of nominal attributes is determined by different datasets, and these datasets
can calculate the semantic distance of multiple unordered attributes using Equation (1).
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Additionally, the coordinates are utilized as physical attributes to compute the physical
distance between nodes.

DVDM(xil , wil) =


1√

q
∑

c=1

∣∣∣Nl ,xil ,c
Nl ,xil

− Nl ,wil ,c
Nl ,wil

|
2

, l = 1, 2, · · · , mc,
(1)

where xil is the l-th attribute of instance xi. wil is the l-th attribute of instance wi. q is a
parameter that determines the influence of frequency differences on the distance calculation.
Nl , xil , c is the number of times cluster c appears with the attribute value xil . Nl , wil , c is the
number of times cluster c appears with the attribute value wil . N, xil is the total number of
instances where the attribute value is xil . N, wil is the total number of instances where the
attribute value is wil . mc is the total number of clusters in the dataset.

DEuclidean signifies the Euclidean distance (Equation (2)), which is employed to estab-
lish the physical distance between nodes.

DEuclidean(xi, xj) =

√
mn

∑
l=1

∣∣xiu − xju
∣∣2, (2)

where xiu and xju are the coordinates of xi and xj, and mn is the dimension of the coordinates.
The min-max normalization process scales the values of these two distances to a range

between 0 and 1, mitigating the unit effect of the two distance metrics (Equation (3)).

yi =
xi − min

max−min
. (3)

Additionally, we introduce an extra parameter, denoted as W ∈ [0, 1]. This parameter
is used to control the ratio between DVDM and DEuclidean, with W being relevant to both
the nominal attribute distance metric and the physical distance metric. The value of W
needs to be determined experimentally in different datasets, where the selection of W can
be determined based on the classification objectives and experimental findings.

Ultimately, we derive the heterogeneous value difference metric (HVDM) distance
(Equation (4)). With this metric, we can determine the cluster center that is closest to the
current node by calculating the distance between the current node and each cluster center.
The current node is then assigned to the respective cluster. We also compute the midpoint
between the current node and the cluster center using Equation (5), designating it as the
new cluster center.

DHVDM(xi, xj) =

√
W ∗

mn

∑
l=1

D2
Euclidean + (1 − W) ∗

mc

∑
l=1

D2
VDM (4)

µ′
i =

1
|ci| ∑x∈ci

x. (5)

During the whole process, certain stopping conditions are established to prevent the
algorithm from entering an infinite loop. In the case of clustering common nodes, two
stopping conditions are defined: (i) the maximum number of iterations is reached. That
is, the clustering process concludes when the number of iterations reaches m; (ii) none of
the clusters of nodes have changed after traversing all nodes in D. To meet these stopping
conditions, an upper limit threshold for iterations, denoted as m, is pre-set. The selection of
m is determined by the size of the dataset [3]. The outcome is the partition of the data into
clusters, represented as C = {C1, C2, · · · , Ck}. Algorithm 1 provides a detailed depiction of
the steps involved in IK-means clustering. Node example set D represents the collection of
nodes involved in clustering, and xi denotes each individual cluster sample, specifically
referring to nodes participating in the clustering process, and m represents the total number
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of samples participating in clustering. Using the example shown in Figure 1 to verify the
running effect of Algorithm 1, the result of common nodes clustering is shown in Figure 2.

Algorithm 1 IK-means clustering

Input: node example set D = {x1, x2, x3, · · · , xm}, number of clusters K, threshold m
Output: Cluster partition C = C1, C2, · · · , Ck
sample is randomly selected as the initial clustering centers {µ1, µ2, · · · , µk} from each
of the corresponding attribute categories
Let Ci = Φ(1 ≤ i ≤ k)
repeat

for j = 1, 2, · · · , m do
Calculate the distance between xj and each clustering center µi(1 ≤ i ≤ k): Dist =
DHVDM(xj, µi)
Determine the cluster labeling of xj based on the nearest clustering center: Λj =
argmin{dji i∈1,2,··· ,k};
assigning the sample xj to the corresponding cluster: Cλj = Cλj

⋃{xj};
Compute the new clustering center for the clusters added to the sample: µ

′
i =

1
|Ci | ∑x∈Ci

x

if µ
′
i ̸= µi then

Update µi to µ
′
i

else
Keep µi

end if
end for

until meet the stopping conditions
return C = {C1, C2, · · · , Ck}

Figure 2. Clustering of common nodes.

3.4. Fixing of Orphan Nodes

By observing the results of common node clustering, we found that clustering cannot
fully meet our requirements, because there are some unreasonable nodes in the clusters.
Here, we name the unreasonable nodes orphan nodes. An orphan node is a node that
belongs to a different cluster rather than its nearest geometrically associated neighbor-
ing nodes, although it is geometrically distant from the nodes in its cluster. This can
be explained by the fact that, during clustering, the semantic distance between nodes
and the cluster center is considered with priority, and then the physical distance. Moreover,
the connectivity among all nodes within the same cluster in the NRG is not taken into
account, which frequently leads to the emergence of orphan nodes during the clustering
process. However, in real-world observations, when nodes belonging to different semantic
categories exist within the same area, the general approach is to include such nodes in the
respective partition. Figure 3 shows an example of orphan nodes, in which A, B, and C are
three clusters. Nodes in clusters A, B, and C are shown in red, blue, and green, respectively.
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This shows that A and C only can be connected indirectly via B. Yet, node a and node b are
obviously closer to the nodes in cluster B and the node of B separates it from its slave of the
cluster, so a and b are orphan nodes. In the clustering of Figure 2, orphan nodes are also
generated. C9 is a node in cluster A, but its closest nodes in the physical sense are C4 and
C5, so C9 is determined to be an orphan node in cluster A. The orphan nodes are circled in
blue in Figure 4.

Figure 3. Illustration of orphan nodes.

Figure 4. Illustration of an orphan node in an NRG.

The presence of orphan nodes may result in numerous transition nodes being erro-
neously classified into the same cluster as the orphan node. Hence, it is essential to rectify
the cluster to which the orphan node belongs. In particular, we calculate the Euclidean
distance of each common node from the other common nodes in the sample set D and
determine the clustering of the n nearest neighbor nodes (where the n is determined as ap-
propriate). If the number of neighboring nodes belonging to different clusters surpasses the
number of clusters to which the node belongs, then the node’s cluster is updated to match
the cluster hosting the maximum number of neighbor nodes. If the quantity of neighboring
nodes in different clusters equals the number in its own cluster, the original cluster remains
unchanged. This method effectively resolves the orphan node issue, with orphan nodes
from different clusters now reclassified to the cluster that aligns with their surrounding
neighbor nodes. Figure 5 shows that, after the correction, the orphan node C9 (in Figure 4)
has been changed to cluster B.

Figure 5. Error correction of orphaned nodes.
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3.5. Clustering Transition Nodes and Reconstructing of Clusters

After repairing orphan nodes, transition nodes will be integrated into clusters. Each
common node has already been assigned to a cluster through clustering, and transition
nodes will be allocated to clusters based on the cluster attributes of these common nodes.
To determine the appropriate cluster for each transition node, the physical distance between
the transition node and all common nodes is first computed. Since transition nodes lack
semantic information, they are assigned to clusters solely based on physical distance. This
is done by calculating and comparing distances using Equation (2), and recording the
‘o’ nearest common nodes. Subsequently, within the range of the ‘o’ nearest neighboring
common nodes of the transition node, the cluster that includes the majority of these common
nodes is identified (where ‘o’ is defined by the dimensions of the NRG). The transition
node is then assigned to the cluster with the most common nodes among these ‘o’ nodes.
If multiple clusters have an equal and maximal number of common nodes among the ‘o’
neighboring nodes, the transition node is randomly assigned to one of these clusters. This
process continues until all transition nodes have been added to the clusters.

After clustering the transition nodes into appropriate clusters, node connectivity
within each cluster is evaluated using the NRG. This is essential because, during the
clustering of common nodes and the addition of transition nodes, connectivity within
the map is not considered, which can result in nodes within the same cluster not being
directly connected on the map. Therefore, we assess node connectivity within each cluster
using the NRG, as all nodes within a cluster should be inter-connected to ensure mutual
reachability. In our predefined NRG, edge connectivity represents the linkage between
two spaces. If any clusters contain subsets of disconnected nodes, we first check if the
number of nodes in these subsets exceeds a predefined threshold parameter P. If it does,
these subsets are reorganized into new clusters based on their node counts. If the node
count in these new clusters falls below the threshold of p, the nodes are then merged into
another cluster with which they have connectivity. Figure 6 illustrates the disconnected
nodes within a cluster. The line signifies the connectivity between clusters. In cluster B,
there are two isolated regions. This requires rectification in a subsequent step by splitting
and restructuring them into new clusters, or integrating them into existing clusters.

Figure 6. Disconnected nodes within a cluster.

Figure 7a illustrates the scenario following the assimilation of transition nodes into
the clusters. However, within the blue circle, C8, T5, T6, and T8 in cluster B are isolated
by node T10, resulting in intra-cluster disconnection. If p is set to 3, C8, T5, T6, and T8 are
reconstructed into a new cluster C (Figure 7b). The other cluster B nodes remain unchanged
by their own clustering. The light blue nodes represent the reconstruction of the new cluster
C. It can be seen that each node has its own cluster information. However, within the
blue circle, nodes C8, T5, T6, and T8 are isolated by node T10, resulting in intra-cluster
disconnection. The issue of disconnected nodes within a cluster refers to the absence of
connectivity between nodes within the same classified cluster.
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(a) Add transition nodes into clusters.

(b) Reconstruct cluster

Figure 7. Clustering transition nodes and reconstruction of clusters.

4. Implementation and Case Study
4.1. Case Description and Data Preparation

We modeled an indoor scenario for testing IK-means. The dataset integrates the
semantic information of each node and defines the semantically similar regions as the
same attribute, that is, the space utilization type, which takes into account the inherent
semantic characteristics of each node and facilitates the calculation of its semantic distance.
It includes rooms, corridors, elevators, stairs, escalators, atrium, and doors, in which doors
are modeled as line segments while all the other elements as polygons (Figure 8a). On the
basis of Poincaré duality theory, the scenario is further modeled as an NRG with 496 nodes
(Figure 8b). The room’s nodes (in purple) are used as common nodes for IK-means, while
the corridor’s nodes, door nodes, elevator and staircase nodes, and entrance/exit nodes
are transition nodes, which are colored in purple, orange, light green, and dark green,
respectively. Each node has three attributes: {ID, Type, Attribute}. “ID” records the id of
each nodes, “type” keeps the type of nodes and determines whether the node participates
in IK-means (e.g., “Common nodes”, “Transition nodes”), “attributes” records the specific
semantic representations of the nodes (e.g., “conference rooms”, “stuff offices”, “door
nodes”, “corridor nodes”).

The dataset for the indoor environment consists of a large number of nodes and
complex node relationship graphs, making it suitable for our algorithm’s research objectives.
For larger graphs, the multi-layer structure is typically expanded to address 3D clustering
problems. Conversely, smaller graphs lack diversity and are too compact to fully adapt to
semantic environments. In such cases, manual partitioning may be more appropriate for
dataset selection, ensuring targeted and distinctive characteristics.
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(a) The indoor scenario (b) NRG

Figure 8. The indoor scenario and its NRG for experiments. The colors of nodes indicator their types,
in which the purple, yellow, light green, and dark green are room nodes, corridor nodes, door center
nodes, and stair nodes, respectively. Here the room nodes are common nodes. Numbers are IDs
of nodes.

In the original dataset, we refer to the real-world observations and employ artificial
partitioning to partition the common nodes into K regions, maintaining a fixed number of
nodes in each region. By quantifying the disparity between the clustering algorithm and
real-world observations, we can assess the magnitude of the loss function, thus enabling
judgment on the merits and demerits of the partitioning results. The specific loss function
is denoted by Equation (6).

F =

k
∑

i=1
( |Nc−Ni |

Ni
∗ 100%)

k
, (6)

where F denotes the similarity between the partitioning result and the real-world observa-
tions, Nc denotes the count of common nodes within each cluster formed by the clustering
algorithm, Ni is the count of common nodes within each cluster defined by semantic
information, and k represents the total number of clusters.

Equation (6) computes the discrepancy in the number of common nodes between the K
clusters generated by the clustering algorithm and the K clusters from manual partitioning,
subsequently dividing this difference by the count of nodes in the manually partitioned
cluster. These criteria can assess the deviation between the partitioning results of the
clustering algorithm and the manual partitioning. They can accumulate and normalize the
results obtained from each partition to more accurately represent the performance.

There are five parameters for IK-means, including K, m, W, o, and p. The K is set as 3,
because there are three types of common nodes in this scenario, including conference rooms,
student rooms, and staff offices. The upper limit of iteration m is set to 1000. The number
of immediate neighboring nodes o is set to 5. The lower limit of the number of nodes in the
reconstructed cluster p is set to 5.
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Regarding the setting of the W, in order to explore the impact of W on the partitioning
results, we conducted an experiment to determine the most suitable value for W. While
keeping other parameters constant, we varied W from 0.8 to 0.45, in increments of 0.05,
forming eight sets of experiments. Each set was conducted 30 times to calculate an average
value. The results are presented in Table 1 and show that, when W is set to 0.65, the F
becomes optimal. Therefore, for this experiment and this specific dataset, W is set at 0.65.
Figure 9 shows the tendency of F when changing W by using curve fitting. The plot
displays the W in blue and the fitted curve in red. It can be observed that the choice of W
follows a quadratic function relationship, with the optimal value ranging between 0.60 and
0.65. The difference is not significant; thus, we choose 0.65 for this dataset.

Figure 9. The tendency of F when changing W.

Table 1. Evaluation metrics of F.

1 2 3 4 5 6 7 8

W 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45
(1 − W) 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

F (Equation (6)) 0.171 0.108 0.076 0.056 0.071 0.102 0.122 0.155

4.2. Area Partition Based on IK-Means

To show what the real-world partitioning results are, we collected the actual pho-
tographs of the exits and entrances of office areas in the indoor scenario (Figure 10a),
in which different shapes and colors of dots represent different clusters. Having the NRG
(Figure 8b) as the input of IK-means, common nodes are initially clustered into three distinct
clusters. After fixing the orphan nodes, the remaining transition nodes are further incor-
porated into these clusters. This process leads to the reconstruction of the three clusters,
ultimately yielding the results depicted in Figure 10b. By comparing the two figures in
Figure 10, we can conclude that the partitioning results of IK-means closely align with the
actual partitioning in the real world.
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(a) (b)

Figure 10. Partition result of IK-means and that of the real-world. (a) Partitions based on real-world
observations. (b) Partitions of IK-means.

4.3. Results Analysis

In addition to IK-means, we take the traditional K-means (Figure 11b) and DBSCAN
(Figure 11c) for comparison. IK-means is an adaptation of traditional K-means, incor-
porating semantic information to increase the rationality and credibility of partitioning.
Improved algorithms like K-means++ do not introduce semantic information and exhibit
a similar performance to that of traditional K-means in experimental testing. Moreover,
DBSCAN is a density-based clustering algorithm, which has a fundamentally different
clustering principle, making its comparison both logical and necessary. The partitioning
results are shown in Figure 11, in which different colors in the figure represent different
partitions. Figure 11a shows the partitioning result of the real world based on real-world
observations. For traditional K-means, the K is set to 3. As for DBSCAN, considering the
considerable distances between nodes in the experiment, a reasonable radius value was
necessary, hence the choice of 15,000; the eps is set o 15,000, and the minsamples to 5.

The K-means and DBSCAN algorithms follow physical distances for partitioning,
which is reasonable to a certain degree, but deviates significantly from real-world observa-
tions. Additionally, both K-means and DBSCAN algorithms resulted in orphan nodes and
disconnected clusters (as circled in the figures). In contrast, IK-means performs similarly
to real-world observations, in which nodes within the IK-means partition are all inter-
connected by NRG. Such results indicate that the IK-means algorithm, by incorporating
semantic information, achieves better partitioning effects suitable for semantically-enriched
areas, compared to traditional K-means and DBSCAN algorithms.

Table 2 provides a summary of the convergence times for the three methods in eight
experiments. The results show the superiority of IK-means in terms of convergence speed.
Specifically, IK-means achieves the fastest processing time (only 214.015 ms), surpassing that
of both K-means (average is 3480 ms), and DBSCAN (average is 1260.57 ms). The efficiency
of IK-means is substantial, showcasing a noteworthy 93.85% improvement compared to
K-means and an impressive 83.29% enhancement over DBSCAN. Therefore, we consider
that the IK-means algorithm has a rapid convergence and the ability to yield stable results.
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(a) (b)

(c) (d)

Figure 11. Partitioning results of real-world observations and the three algorithms. (a) Partitions
based on real-world observations. (b) Traditional K-means. (c) DBSCAN. (d) IK-means. The black
circle in (b) marks out the disconnected clusters, while that in (c) are the orphan nodes.

Table 2. Convergence time (ms).

1 2 3 4 5 6 7 8 Average

K-means 4040.29 3169.19 3203.23 4151.75 3506.62 3182.59 3329.38 3262.34 3480.67
DBSCAN 1084.18 1269.31 1280.51 1220.46 1288.78 1311.52 1364.64 1265.18 1260.57
IK-means 242.77 236.35 220.61 224.88 191.49 198.47 188.11 209.44 214.01

On the basis of the above results, we make an overall analysis of the partition results
and efficiency of the three methods (Figure 12). It shows that, compared to K-means and
DBSCAN algortihms, IK-means over-performs in terms of both partition and efficiency.
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(a) Partition performance (b) Efficiency of the three methods

Figure 12. Comparison of the partition results and efficiency of the three methods.

4.4. Discussion

The proposed IK-means algorithm marks a significant advancement over the tradi-
tional K-means algorithm by integrating a distance measure that accounts for the semantic
information of nominal attributes. This novel feature allows the algorithm to consider
semantic information during partitioning, leading to enhanced node clustering evaluation
and more effective partitioning outcomes. The normalization of both Euclidean and VDM
distances is a key contribution because it ensures that the impact of physical and semantic
information in clustering is balanced.

The parameter W governs the equilibrium between Euclidean and VDM distances,
allowing the algorithm to finely tune the influence of both physical and semantic dis-
tances within a specified range. This control facilitates the accurate determination of node
distances. Furthermore, empirical observations suggest that the impact of W selection
conforms to a quadratic function distribution, showcasing optimal partitioning outcomes
when W is chosen from the mid-range. While preliminary experiments can be conducted
for datasets of varying sizes to identify a suitable W, it is noteworthy that datasets of similar
sizes generally exhibit a similar W.

The dynamic updating of clustering centers as nodes join a cluster is a critical aspect
of the IK-means algorithm. This updating significantly influences the Euclidean and
VDM distances when a node joins a cluster, mitigating the impact of these distances on
the clustering process. By adapting to changes in the clustering structure in real time,
the computation of VDM distances remains accurate, enhancing the overall partitioning
effectiveness. The iteration process will be terminated when no further changes in cluster
categories occur, which not only streamlines the algorithm but also improves convergence
speed by reducing iterations.

The IK-means algorithm utilizes semantic information to determine an expected
number of categories, effectively addressing the challenge of K selection. In contrast, the
traditional K-means algorithm often encounters difficulties in selecting an appropriate
number of clusters (K). In IK-means, the initial clustering centers are informed by the
semantic attributes of nodes, further reducing the influence of starting points on outcomes.
However, the presence of orphan nodes and disconnected nodes in the clustering still needs
to be considered further, and a better approach can be found.

The partition results of IK-means are aligned to those based on real-world observations.
Traditional K-means and DBSCAN algorithms, however, fall short in addressing issues like
orphan nodes and incomplete intra-cluster connectivity. The evaluation metrics presented
in Table 3 show that the IK-means algorithm has a superior performance over traditional
K-means and DBSCAN algorithms in terms of effectively grouping nodes with similar
geometric and semantic characteristics.
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Table 3. F of K-means, DBSCAN, and IK-means algorithms.

1 2 3 4 5 6 7 8 Average

K-means 0.208 0.304 0.217 0.225 0.473 0.284 0.209 0.203 0.265
DBSCAN 0.576 0.674 0.478 0.488 0.525 0.538 0.592 0.618 0.561
IK-means 0.044 0.056 0.072 0.124 0.032 0.054 0.073 0.092 0.068

5. Conclusions and Future Work

This paper presents a semantic-based clustering algorithm tailored for the partitioning
of extensive indoor spaces, named IK-means. As the name implies, the presented approach
is an improved version of the K-means algorithm. By incorporating both VDM and
Euclidean distances to calculate the separation between the mean vector and samples,
IK-means continually updates the mean vector in each iteration, enhancing convergence
speed. The empirical results from using an indoor scenario dataset demonstrate that our
proposed method surpasses traditional K-means and other clustering algorithms in terms
of partition effectiveness and convergence speed.

The IK-means algorithm can subdivide indoor areas based on semantics, yielding
notable advantages, including rapid convergence and robust partitioning. Nevertheless,
several aspects remain worthy of further consideration: (i) during the data preparation,
it is imperative to pre-define the attributes of nodes used as inputs; (ii) the parameter
W in IK-means is ascertained based on a series of experiments, necessitating fine-tuning
of the threshold (m) during iterations; (iii) parameters (n, o, and f ) should be adjusted
during the re-correction process based on real data to achieve the overall performance;
(iv) furthermore, the experiments were exclusively conducted on a single floor, which
overlooks the intricate nature of indoor, three-dimensional, multi-floor environments.

Our future research will focus on adapting the IK-means algorithm for dynamic envi-
ronments and implementing intelligent optimization methods to dynamically determine
the hyper-parameter W. Ongoing efforts aim to enhance the adaptability of IK-means in
3D indoor spaces and multiple floors. Additionally, we plan to integrate IK-means with
other localization and navigation techniques for increased versatility.
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