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Abstract: RCC*-9 is a mereotopological qualitative spatial calculus for simple lines and regions.
RCC*-9 can be easily expressed in other existing models for topological relations and thus can be
viewed as a candidate for being a “bridge” model among various approaches. In this paper, we
present a revised and extended version of RCC*-9, which can handle non-simple geometric features,
such as multipolygons, multipolylines, and multipoints, and 3D features, such as polyhedrons and
lower-dimensional features embedded in R3. We also run experiments to compute RCC*-9 relations
among very large random datasets of spatial features to demonstrate the JEPD properties of the
calculus and also to compute the composition tables for spatial reasoning with the calculus.

Keywords: qualitative spatial reasoning; topological relations; spatial features; multiple geometry;
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1. Introduction

Research into the representation of topological relations in spatial databases and
Geographical Information Systems (GISs) has been an important focus of investigations for
around 30 years. Topological relations are a specific kind of relations in a wider panorama
of spatial relations; see [1] for a categorization of spatial relations in general. Topological
relations have had a prominent role in research on developing human–machine interfaces
for geo-spatial systems, query optimization, qualitative spatial reasoning, semantic spatial
modeling, and even recent studies in volunteered geographic information [2].

Three proposals for modeling topological relations have been particularly studied
theoretically and also formed the subject of practical investigations and applications: the
nine-intersection model (9IM) [3] with its dimension extension DE-9IM [4], Region Con-
nection Calculus (RCC-8) [5], and the Calculus-Based Method (CBM) [4]. RCC-8 can only
represent topological relations between regions of the same dimension, while the other
two formalisms can model topological relations between spatial features of arbitrary di-
mensionality. Since their adoption by the Open GeoSpatial Consortium (OGC) [6], all
spatial database systems now implement the CBM operators. The relations of Egenhofer’s
matrix-based methods [7] and those of the CBM are interdefinable, in the sense that every
DE-9IM matrix can be expressed by a CBM logical expression and, vice versa, every CBM
relation can be expressed by a set of DE-9IM matrices, as proved in [8].

The above list is not exhaustive. Many other models for topological relations appeared
in the literature, often from different communities, such as linguistics [9], philosophy [10],
and psychology [11]. In computer science, the interest in topological relations spans from
spatial databases [12,13] to spatial information theory [14–16], image databases [17–19], and
artificial intelligence [20]. Various authors considered extensions of models for topological
relations to complex features [21] and to 3D space [22,23].
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Composition tables play a key role in a variety of tasks such as spatial query optimiza-
tion [24]: applying the constraints of the tables, it is possible to discover contradictions in
the query expression before the real processing of the query starts. However, composition
tables for the CBM were never developed and were only created for regions (rather than
arbitrary combinations of data types) in the case of RCC-8 and the 9IM [25].

The RCC family of calculi [26] takes a logic-based approach in defining qualitative
topological relations. In general, a logical calculus leaves the possible interpretations
open and is based on primitive relations (axioms), while other relations are inferred from
primitives via logical expressions. In RCC calculi, a binary connection relation, C(x, y), is
axiomatized as the primitive topological relation between regions; other relations are then
defined from this primitive. RCC-8, the most well-known calculus of the family, consists of
eight jointly exhaustive and pairwise disjoint topological relations between pairs of regions
of the same dimension; in the case of 2D regions, there is a one-to-one correspondence with
the eight topological relations of the 9IM involving 2D simple regions.

Various approaches in the literature face the problem of representing topological
relations between non-simple geometric features of various dimensionalities. Using two
primitives (“part” (P) and “boundary” (B)), Galton [27] built an axiomatic system for
multidimensional mereotopology. The “INCH” calculus [28] is defined over closed sets of
points of different dimensionality. Galton [29] notes that there are few attempts to build
calculi able to represent topological relations between features whose dimensions are lower
than that of the embedding space, such as lines in R2, presumably because of the difficulties
that arise when dealing with such mixed-dimension situations [30,31]. Further analysis can
be found in [32–34].

Clementini and Cohn [35] proposed a unifying theory, thus connecting RCC and the
CBM; this was achieved through (a) an extension of RCC-8, called RCC*-9, capable of
modeling topological relations between simple regions and lines and (b) a modification of
the CBM, called the CBM*, which maps easily onto the RCC family of calculi and enables
a composition table to be constructed, thus enabling reasoning in the CBM*. It was also
demonstrated that the two new calculi, RCC*-9 and the CBM*, were equivalent in the sense
that they can both represent the same topological configurations.

This paper proposes a revised version of RCC*-9 [35], extending it to complex features
(multipolygons, multipolylines, and multipoints) and to 3D features (polyhedrons). Further,
we run experiments for demonstrating that the RCC*-9 relations are a jointly exhaustive
and pairwise disjoint (JEPD) set of relations, and we build the composition tables for
spatial reasoning, following an experimental approach as well. In Section 2, we review the
geometric formalism used in the subsequent sections. In Section 3, we present the revised
RCC*-9, which integrates complex and 3D features. In Section 4, we take an experimental
approach to check whether the RCC*-9 set of relations is JEPD. The experimental approach
was proposed in [36], where properties of a qualitative spatial calculus were assessed by
running experiments with random datasets of spatial features. In Section 5, we develop
the composition tables for the revised RCC*-9 by applying the same experimental method.
In Section 6, we describe in further detail the implementation of the experiments that
allowed us to obtain the previous theoretical results. Section 7 concludes the paper with a
final discussion.

2. Definition of Geometric Features

In this paper, we follow the terminology of the OGC, where point-sets of the plane
R2 are called features and a distinction is made between simple features and complex
features [6]. The OGC simple feature model definitions were originally defined in [37].
Below, we briefly restate the definitions of simple and complex features, extending them
to the 3D case as well. Features are categorized according to their dimension: bodies of
dimension 3, regions of dimension 2, lines of dimension 1, and points of dimension 0. For
the sake of clarity, we separate the already known definitions for features embedded in R2

from the new definitions holding in R3.
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2.1. Features in 2D Space

The definitions in this subsection are taken from [37]. Let x be a two-dimensional
point-set embedded in R2.

Definition 1. The interior x◦ of x is defined as the union of all open sets contained in x.

Definition 2. The closure x of x is defined as the intersection of all closed sets containing x.

Definition 3. The boundary ∂x of x is defined as the set difference between its closure and its
interior, i.e., x − x◦.

Definition 4. The exterior x− of x is defined as the set difference R2 − x.

Definition 5. x is regular closed if x = x◦.

Definition 6. A simple region is a regular closed non-empty two-dimensional point-set x with a
connected interior and connected exterior.

Definition 6 implies that a simple region is homeomorphic to the closed unit disk.
A simple region does not have holes and is connected. If the constraint of the connected
exterior from the definition is omitted, then regions with holes may exist [38]:

Definition 7. A region with holes is a regular closed non-empty two-dimensional point-set x with
a connected interior.

Holed regions are implemented with the polygon spatial data type in OGC simple
feature specifications. Omitting the constraint of a connected interior results in complex
regions, i.e., regions with holes and separations:

Definition 8. A complex region is a regular closed non-empty two-dimensional point-set x.

The multipolygon spatial data type is used in OGC feature models to implement
complex regions.

Definition 9. A simple line is a closed non-empty one-dimensional point-set x, defined as the image
of a continuous mapping f : [0, 1] → R2, such that ∀ti, tj ∈ [0, 1], ti ̸= tj, and f (ti) ̸= f (tj).

Thus, a simple line is the mapping of the unit interval in the plane with no self-
intersections. A simple line can be constructed by taking a pen and tracing a line on a
piece of paper, never passing twice through the same position and never removing the pen
until the line is finished. The initial and final points of a simple line, otherwise called the
endpoints of the line, are denoted as f (0) and f (1).

Topologically, a simple line embedded in R2, being a one-dimensional set, has an
empty interior. Following normal practice in both the GIS [7] and in OGC standards, the
boundary ∂x of a line x is defined to be the set of its two endpoints, whilst x − ∂x is the
interior of the line. In this paper, we will adopt these definitions of the boundary and
interior of a line feature. Simple lines are implemented with the polyline spatial data type
in the OGC feature model.

If the constraint of no self-intersections is removed from Definition 9, then lines with
self-intersections result, a particular case of which is the closed ring, where f (0) = f (1):

Definition 10. A line with self-intersections is a closed non-empty one-dimensional point-set x,
defined as the image of a continuous mapping f : [0, 1] → R2.
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A complex line is composed of several components that may be disjoint or not, i.e.,
the union of several mappings from the unit interval to the plane:

Definition 11. A complex line is a closed non-empty one-dimensional point-set x, defined as the
union of n images of continuous mappings fi : [0, 1] → R2, ∀i ∈ 1..n.

Complex lines are implemented with the multipolyline spatial data type in the OGC
feature model.

Definition 12. A simple point is a zero-dimensional element of R2.

Definition 13. A complex point is a finite set whose elements are simple points.

Following the OGC convention, we regard point features as having an empty boundary.
The point and multipoint spatial data types are used to implement simple and complex
point features in OGC standards, respectively.

2.2. Features in 3D Space

In this subsection, we develop new definitions for features in 3D space as a natural
extension of definitions of features in 2D space. We first define 3D bodies and then re-define
regions and lines embedded in 3D space. Let x be a three-dimensional point-set embedded
in R3. Definitions 1–3 are the same. Definition 4 should be replaced by the following:

Definition 14. The exterior x− of x is defined as the set difference R3 − x.

Definition 5 is the same, while Definition 6 has an equivalent in the following definition
for simple bodies:

Definition 15. A simple body is a regular closed three-dimensional point-set x with a connected
interior and genus 0.

Definition 15 implies that a simple body is homeomorphic to the closed unit sphere.
A simple body does not have holes and is connected. Now, in 3D we can distinguish
different kinds of what would be commonly described as a “hole” with different topological
definitions. Defining a simple body with “a connected exterior” as we did in R2 would
not exclude that the object is equivalent to a torus. In fact, a torus (a doughnut) has a
connected interior and connected exterior. The topological difference between a sphere and
a torus is captured by the notion of the genus. A sphere is a body of genus 0, a torus is a
body of genus 1, and other bodies with more “holes” of this nature have a correspondingly
bigger genus [39].

There is another meaning of “hole” in 3D that can be obtained when the exterior is
disconnected (likewise in 2D). In this case, we obtain a body with “voids” inside (like a
soccer ball or some cheeses). So, for the two kinds of holes in 3D, we decide to define as a
“hole” the kind of hole we find in a doughnut and to define as a “void” the kind of hole in
a soccer ball.

Definition 16. A body with holes is a regular closed three-dimensional point-set x with a connected
interior and genus greater than zero.

Definition 17. A body with voids is a regular closed three-dimensional point-set with a connected
interior and a disconnected exterior.

Definition 18. A complex body is a regular closed three-dimensional point-set with a possibly
disconnected interior and exterior.
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How is a region defined in R3? Previous definitions of simple regions and other 2D
features in R2 are not valid anymore if they are embedded in R3, since the interior of a 2D
feature in R3 is empty. Therefore, we need to change the definition, similarly to how we
defined 1D features embedded in R2. A simple region in R3 is the mapping of a simple
disk in R2 without self-intersections; that is, every point of the disk needs to be mapped
onto a distinct point of the region in R3. Let us call D the unit disk in R2.

Definition 19. A simple region embedded in R3 is a closed two-dimensional point-set x, defined as
the image of a continuous mapping f : D → R3, such that ∀pi, pj ∈ D, pi ̸= pj, f (pi) ̸= f (pj).

The boundary ∂x of a simple region x corresponds to the mapping of ∂D and the
interior x◦ corresponds to the mapping of D◦.

Analogously, regions with holes embedded in R3 can be defined as a mapping from a
region with a hole in R2. Complex regions can be defined as a mapping from a complex
region in R2.

One-dimensional features embedded in R3 have a similar definition to the ones in R2:

Definition 20. A simple line embedded in R3 is a closed one-dimensional point-set x, defined as the
image of a continuous mapping f : [0, 1] → R3, such that ∀ti, tj ∈ [0, 1], ti ̸= tj, f (ti) ̸= f (tj).

Thus, a simple line is the mapping of the unit interval in R3 with no self-intersections.
Lines with self-intersections, complex lines, simple points, and complex points have a
similar definition as well.

3. Definition of RCC*-9

The spatial primitive entities of RCC-8 and related family of logical calculi are re-
gions [5,26]. The introduction of RCC*-9 expands RCC-8 to include spatial features of
different dimensions, specifically simple 1D lines and 2D regions [35]. The differences in
the definition of relations between RCC-8 and RCC*-9 are in the overlap (O), partial overlap
(PO), non-tangential proper part (NTPP), tangential proper part (TPP), and externally connected
(EC) relations and their inverses and in the new cross relation (CR), while other relations
keep the same definitions. A hierarchy of RCC*-9 relations is given in Figure 1, where it is
also indicated when a relation keeps the same definition as in RCC-8. Further information
about the differences between RCC-8 and RCC*-9 definitions can be obtained from [35] and
by reading the rest of this section.

Figure 1. The subsumption hierarchy of RCC*-9 relations. A link between two relations represents an
implication from the lower one to the upper one. The shaded area includes the relations that have the
same syntactical definitions as in RCC-8.
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Hereafter, we redefine RCC*-9 by widening the range of spatial primitives to dimen-
sions from 0 to 3 (i.e., points, lines, regions, bodies) and by considering non-simple features
as well (i.e., features with separate components, self-intersections, holes, and voids). To
accommodate this extended universe of features, several changes need to be made to
RCC*-9 definitions: for the sake of clarity, we restate all RCC*-9 definitions even when they
do not change and we explicitly remark when the changes are needed. One change is in the
definition of the PO and O relations, which is needed to correct an error discovered by [40].
Some modifications are needed in the boundary primitive B since we need to impose that
the boundary of a feature must be of the immediately smaller dimension of the feature itself;
otherwise, the definition of the relation NTPP would not work. The latter aspect was not
taken into consideration in [35], since RCC*-9 was intended for regions and lines only, so it
was implicit that the dimension of a line was the immediate smaller dimension of a region.
Boundary definitions in the case of non-simple and 3D features produce a vast range of new
feature types that need to be taken into account. Hence, the fact of considering a broader
universe of features does not have many implications on the nine relations’ definitions,
but it has an impact on the kind of relations that apply to subcategories of features: for
example, the CR can be instantiated for simple features in the case of a line/region and a
line/line only and not in the case of a pair of regions, but it can exist in the case of two
complex regions (see later in this section). Thus, our intended universe of discourse now
consists of bodies (3D features), regions (2D features or boundaries of bodies), lines (1D
features or boundaries of regions), and points (0D features or boundaries of lines).

As noted in Section 2, a feature of a co-dimension bigger than zero (for example, a
line or a point in R2) has no interior. Thus, a line in R2 has no non-tangential proper parts
(cf Galton [29]). The standard RCC definitions function correctly when the universe of
discourse contains regions of dimension Rn, for any n > 0, but fail for points or whenever
the universe of discourse contains regions of differing dimensionalities. (The semantic
stance taken by different mereotopologies may vary depending on what kinds of spatial
entities are allowed. See [34] for a detailed analysis and comparison and the issues that
arise depending on the stance taken. Cohn and Varzi [34] also contains axiomatizations of
merotopologies, which include boundaries as spatial entities (though these axiomatizations
do not include the CR considered in RCC*-9).) We adopt the “usual” GIS definitions [7,37],
and thus non-tangential proper parts of lines embedded in R2 can be defined as a mapping
from one-dimensional intervals to the plane. The two endpoints of an interval constitute
its boundary. An interval that is inside another one and that does not connect with its
endpoints is a non-tangential proper part. This enables the definition of RCC*-9 relations
that apply to all kinds of spatial features.

Therefore, we must impose constraints on the dimensions of boundaries. Let us start
with the definition of the ≤dim relation. We use the ≤dim relation similarly to how it was
defined in [41]. The ≤dim relation between two features x and y indicates that the dimension
of x is less than or equal to the dimension of y. We also consider the corresponding strict
order relation <dim and the equality relation =dim. If we indicate with F the whole domain
of spatial features, the ≤dim relation obeys the total order axioms:

≤dim(x, x) ∀x ∈ F (1)

≤dim(x, y) ∧ ≤dim(y, x) → =dim(x, y) ∀x, y ∈ F (2)

≤dim(x, y) ∧ ≤dim(y, z) → ≤dim(x, z) ∀x, y, z ∈ F (3)

≤dim(x, y) ∨ ≤dim(y, x) ∀x, y ∈ F (4)

The ≤dim relation is also a finite order with a minimum of 0 and a maximum of 3. We
also define an immediately smaller dimension relation (≺dim) that applies to features of two
consecutive dimensions in the total order. The ≺dim relation obeys the following axiom:

≺dim(x, y) → ¬∃z(<dim(x, z) ∧ <dim(z, y)) (5)
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Analogously to RCC-8, the definitions of RCC*-9 start from a primitive relation con-
nected between two features C(x, y). The relation C is based on a general notion of con-
nectedness that is independent of the dimension of the features involved. We can affirm
that the relation is true if the two features share a common part of any dimension. The C
relation enjoys two axioms:

C(x, x) (6)

C(x, y) → C(y, x) (7)

In [34], a second primitive is also introduced, that of parthood, since it is noted that
connection and parthood are in general independent notions. Hereafter, we stick to the
RCC-8 approach where the part relation is defined in terms of the C relation. So, the part
relation P between x and y is defined by saying that the connection of x with any feature z
implies a connection between z and y:

Definition 21. P(x, y) =de f ∀z[C(z, x) → C(z, y)]

The relations P and C can be further axiomatized. The connection between two features
implies the existence of a part relation between a component of the two features and the
features themselves. Further, regarding dimension, the dimension of a component is always
of a lesser or equal dimension with respect to the feature:

C(x, y) → ∃z[P(z, x) ∧ P(z, y)] (8)

P(x, y) → ≤dim(x, y) (9)

Using the primitive C relation, other relations are constructed. The disconnected relation
DC is defined as follows:

Definition 22. DC(x, y) =de f ¬C(x, y)

The proper part relation PP eliminates the possibility of the two features being equal:

Definition 23. PP(x, y) =de f P(x, y) ∧ ¬P(y, x)

The equals relation is defined as follows:

Definition 24. EQ(x, y) =de f P(x, y) ∧ P(y, x)

For the EQ relation, it follows that x and y must be of the same dimension:

EQ(x, y) → =dim(x, y) (10)

In RCC-8, the previous definitions sufficed to define the remaining relations of the
calculus, such as the overlap relation O and the externally connected relation EC. Extending
the universe of discourse to features of various dimensions, RCC*-9 needs the introduction
of the notion of boundary as a particular kind of parthood. The boundary relation B(x, y)
is true when the boundary of feature y is feature x. The B(x, y) relation is a PP relation,
and the dimension of x is the immediate smaller dimension of y:

B(x, y) → PP(x, y) (11)

B(x, y) → ≺dim(x, y) (12)

The boundary relation B(x, y) links a feature y with its boundary x. Since B is a binary
predicate in RCC*-9 rather than a functor, if y is a closed ring and and thus has an empty
boundary, it means that there is no individual x for which B(x, y) holds. Similarly, B(x, y)
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can never hold when y is a point. For a line y, x is the set of its endpoints. If y is a simple
region, then the closed line x represents y’s boundary. If y is a simple body, its boundary
is a surface, that is, a 2D feature embedded in R3. If y is a complex body, its boundary is
a complex 2D feature made up of several components. If y is a complex region (holed or
multipiece), then x is a complex line. If y is a complex line, its boundary is a complex point.

Using the boundary relation, it is possible to define the non-tangential proper part
relation, where x is a proper part of y and does not touch y’s boundary. Figure 2 illustrates
the definition.

Definition 25. NTPP(x, y) =de f PP(x, y) ∧ ∀y1[B(y1, y) → DC(x, y1)]

(a) (b) (c) (d)
Figure 2. Illustrations of the NTPP definition: (a) two simple regions; (b) two simple lines; (c) a
simple line and a simple region; (d) two simple bodies.

Next, we give the revised definition for the tangential proper part relation. See Figure 3
for illustrations.

(a) (b) (c) (d)
Figure 3. Illustrations of the TPP definition: (a) two simple regions; (b) two simple lines; (c) a simple
line and a simple region; (d) two simple bodies.

Definition 26. TPP(x, y) =de f PP(x, y) ∧ ¬NTPP(x, y)

Since the parthood relations are asymmetric, they have inverses, which are defined
next:

Definition 27. Pi(x, y) =de f P(y, x)

Definition 28. PPi(x, y) =de f PP(y, x)

Definition 29. NTPPi(x, y) =de f NTPP(y, x)

Definition 30. TPPi(x, y) =de f TPP(y, x)

We now discuss the RCC*-9 overlap relation, which is more restrictive than the
corresponding RCC-8 definition. In [35], it was defined as O(x, y) = ∃z[NTPP(z, x) ∧
NTPP(z, y)] ∧ ∃t[TPP(t, x) ∧ TPP(t, y)]. This definition of overlap requires there to be both
a common non-tangential proper part belonging to the two features and also a common
tangential proper part. Unfortunately, the above definition contained an error discovered
by [40]. The error was that the definition did not hold for all specializations of O: in fact,
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for the relation NTPP, the definition was not true. Izadi et al. [40] proposed to use the
same definition for modeling the partial overlap relation PO instead. This correction would
produce another undesirable consequence that the basic set of relations of the calculus
RCC*-9 would not be JEPD: in fact, the PO relation would not be pairwise disjoint from the
TPP and TPPi relations. Therefore, we propose the following definition for the PO relation:

Definition 31. PO(x, y) =de f ∃z[NTPP(z, x) ∧ NTPP(z, y)] ∧ ∃t[TPP(t, x) ∧ TPP(t, y)] ∧
¬TPP(x, y) ∧ ¬TPP(y, x)

The second part of the definition is not necessary for regions, but is necessary for lines
(see Figure 4); otherwise, certain cases of cross (see later on) would be regarded as overlap.
Moreover, TPP relations must be excluded.

(a) (b) (c) (d)

Figure 4. Illustrations of the PO relation: (a) two simple regions; (b) a simple line and a simple region;
(c) two simple lines; (d) a simple region and a simple body.

Consequently, the O relation can be constructed as the subsumption of its specializa-
tions:

Definition 32. O(x, y) =de f PO(x, y) ∨ P(x, y) ∨ Pi(x, y)

Given that our domain of features contains not only regions but also entities of other
dimensions, the notion of connectedness, besides overlap, needs to cover both the externally
connected and cross relations. First, we define the externally connected relation EC (which
differs from the standard RCC definition):

Definition 33. EC(x, y) =de f C(x, y) ∧ ¬O(x, y) ∧ ∀z[[P(z, x) ∧ P(z, y)] → [TPP(z, x) ∨
TPP(z, y)]]

Figure 5 illustrates the EC definition for four different cases. The universal quantifi-
cation of z of all entities that are part of both x and y ensures that z is a TPP of either x or
y. In Figure 5b, when x is a line and y is a region, then the common part z is a TPP of y.
Similarly, in Figure 5c the common part z is a TPP of y.

(a) (b) (c) (d)

Figure 5. Illustrations of the EC relation: (a) two simple regions; (b) a simple line and a simple region;
(c) two simple lines; (d) a simple region and a simple body.

Finally, we define the cross relation CR, which is a kind of connectedness different from
O and EC (see Figure 6):



ISPRS Int. J. Geo-Inf. 2024, 13, 25 10 of 29

Definition 34. CR(x, y) =de f C(x, y) ∧ ¬O(x, y) ∧ ¬EC(x, y)

(a) (b) (c) (d)

Figure 6. Illustrations of the CR (a) a simple region and a simple line; (b) two simple lines; (c) two
complex regions with separations; (d) a simple region and a simple body.

In order to ensure that all the relations present in the original RCC calculi are also
defined in RCC*-9, we define a DR relation (discrete):

Definition 35. DR(x, y) =de f EC(x, y) ∨DC(x, y)

The nine relations DC, EC, PO, TPP, TPPi, NTPP, NTPPi, EQ, and CR are JEPD and
comprise RCC*-9’s set of base relations.

4. Demonstration That RCC*-9 Is JEPD

In this section, we take an experimental approach to check whether the set of relations
of RCC*-9 is a JEPD set of relations. The experimental approach was proposed in [36],
where properties of a qualitative spatial calculus were assessed by running experiments
with datasets of random spatial features. The approach does not constitute a formal proof,
but it has the advantage of explicitly giving instances of spatial configurations that fall in a
given relation by analyzing specific categories based on dimension, such as region/region,
region/line, and body/region relations, and based on simple or complex feature types, such
as simple and complex lines. These experiments show whether any spatial configuration
falls into more than one relation (a pairwise disjoint part) or outside the set of relations
(a jointly exhaustive part). Further, we can gain an appreciation of the percentages of
configurations falling into each of the nine relations. For instance, these statistics have
been used in the past for query optimization by using the information on whether a given
relation frequently happens or is quite rare [42].

4.1. The Case of Lines and Regions in 2D

To start with, we consider a random set of simple features embedded in R2 (lines and
regions only) to check the JEPD property. The random sets have been constructed to avoid
specific biases, e.g., by considering various orientations on line segments. More details on
how the random datasets have been constructed can be found in Section 6. In Figure 7a, we
show an example of a randomly generated set of 100 simple regions and 100 simple lines.

Experiment 1. We considered a set of 100 simple polygons that are obtained by translating and
zooming an original polygon (we took a trapezoid). Then, we considered a set of 100 simple lines
that are obtained similarly by translating and zooming an original polyline, made up of four
segments that are variously oriented: vertically, horizontally, and diagonally. Then, we calculated
the 100 × 100 relations between the polygons in the set, the 100 × 100 relations between the
lines, and the polygon–line and line–polygon relations for a total of 40,000 relations. We repeated
the random generation of features 25 times, totaling 1,000,000 relations. The experiment shows
that there were no calculated relations outside the base set (jointly exhaustive set) and that each
computation of a relation gave a different result (pairwise disjoint set). In Figure 7b, we show the
percentages of the obtained relations.
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(a) (b)

Figure 7. Experiment 1: (a) random generation of simple regions and lines; (b) percentages of
obtained RCC*-9 relations.

We can see from Experiment 1 that the way simple features were generated does
not produce a uniform distribution of relations. In fact, when randomly translating and
zooming shapes, it is very rare to obtain the relations that involve a connection on the
boundary (i.e., EC, TPP and TPPi). The relation EQ has a frequency of 0.50% because
relations of features with themselves are calculated. Also, containment relations (i.e., NTPP
and NTPPi) are not common in this dataset since generated features have a similar extent.
The majority of relations are either DC (56.11%), a CR (20.91%), or PO (21.37%).

To obtain more uniform distributions, in other experiments we added regions and
lines with a more regular pattern. Instead of randomly translating and zooming features in
the plane, we considered shapes that are translated by a fixed length and are zoomed by
an integer magnification factor: in this way, relations such as EC, TPP and TPPi are more
likely to be verified. We performed experiments by distinguishing specific categories of
non-simple features.

Experiment 2. Complex regions. We considered a combination of complex regions with holes and dis-
connected components with more regular shapes (squares) randomly distributed. With 200 regions, for
each random generation we calculated 200 × 200 relations. See Figure 8a for an example of random gen-
eration. We repeated the random generation of complex regions 25 times, totaling 1,000,000 relations.
Also, in this experiment the JEPD property of RCC*-9 was confirmed. In Figure 8b, we show the
percentages of obtained relations.

The obtained distribution of relations in Experiment 2 with respect to Experiment 1
shows an increase in the number of EC, NTPP, TPP, NTPPi, and TPPi relations. The case
of CR between regions is quite rare (0.61%) and corresponds to the configuration illustrated
in Figure 6c.

Regarding region/region and region/line relations for complex features, we performed
a third experiment by taking into consideration complex lines with self-intersections and
disconnected components.

Experiment 3. Complex lines and regions. In this experiment, we considered a random distribution
of 100 complex lines and 100 complex regions (see Figure 9a), calculating the 200 × 200 relations
among them. Again, in this case we repeated the random generation of scenarios 25 times, totaling
1,000,000 relations. In Figure 9b, we show the percentages of the obtained relations.



ISPRS Int. J. Geo-Inf. 2024, 13, 25 12 of 29

(a) (b)

Figure 8. Experiment 2: (a) random generation of complex regions; (b) percentages of obtained
RCC*-9 relations.

(a) (b)

Figure 9. Experiment 3: (a) random generation of complex features; (b) percentages of obtained
RCC*-9 relations.

Overall, from the three experiments, 1, 2 and 3, we can empirically affirm that the base
relations of RCC*-9 are a JEPD set for any combination of simple and non-simple features
in the plane.

4.2. The Case of Points in 2D

The case of points requires special attention since the boundary of a point is empty:
a point coincides with its interior. In Clementini and Cohn [35], the case of points was
not treated. For two simple points, the only possible relations between them are DC and
EQ. The case of multipoints is more interesting. The relation between two multipoints can
only be one of DC, NTPP, NTPPi, EQ, or CR. Informally, this can be explained by noticing
that any relation that “needs” a boundary for its realization cannot hold between two
multipoints. By applying the definition of RCC*-9 relations, it can be formally seen that
only these six relations are realizable.
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For cases of a multipoint/simple region or multipoint/complex region, any of the
relations in the set (DC, EC, NTPP, TPP, CR) can hold. The same applies to relations
between multipoints and simple lines or complex lines.

Experiment 4. Multipoints. We considered a random distribution of 100 multipoints versus a
random distribution of complex features made up of 100 complex regions, 100 complex lines, and
100 multipoints. Then, we calculated the 100 × 300 relations between each multipoint and each
complex feature. Repeating the random generation 30 times, we obtained the results in Figure 10.

Notice that in this experiment we considered relations where the first term can be a
multipoint only and the second term can be any feature. Therefore, some of the inverse
relations never appear. The NTPPi relation (0.17%) and EQ relation (0.33%) come from
cases of multipoint/multipoint relations. The TPPi relation does not appear, as it would
only come from the inverse of multipoint/region or multipoint/line cases, but these are
not included in the experiment as they are implied by the non-inverse case. In conclusion,
the only relation that can never appear in cases involving multipoints is the PO relation
since this requires the entities to have tangential proper parts, which multipoints do not.

Figure 10. Experiment 4: percentages of obtained RCC*-9 relations in the case of random multipoints
and complex features.

4.3. The Case of 3D Features

While the experiments with 2D features could be run by adopting a mapping from
RCC*-9 relations to the DE+9IM relations of the OGC standard (see Section 6), there is no
available implementation of DE+9IM relations for 3D features. Most 3D models represent
3D bodies as derived entities, based on the construction of the surfaces that limit the
volumes. There are few models that directly represent the interior of bodies in a topological
sense. We would need a topological model of 3D bodies to be able to run experiments to
check RCC*-9 relations. Hence, we restrict our attention to a set of simplified features. The
Geometry3D library ( https://pypi.org/project/Geometry3D/, accessed on 10 November
2023) defines a few classes in 3D space (e.g., convex polyhedron, convex polygon, segment,
and point) and some geometric operators, among which are the “intersection” operator,
which is able to find the intersection of any two features of the available classes, and the
“in” operator, which is able to assess if a feature of a lesser dimension is fully included
in a feature of a larger dimension. The fact that the available features are restricted to
convex shapes, such as convex polyhedrons, convex polygons, and segments, implies
that the result of intersection is again a feature of the same set of shapes. Therefore, the
computation is simplified. The use of such a library allows us to give a proof of concept
that RCC*-9 relations are valid in 3D space. See Figure 11 for a visualization of some 3D
RCC*-9 relations.

https://pypi.org/project/Geometry3D/
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(a) (b) (c)

Figure 11. Samples of 3D RCC*-9 relations: (a) an EC relation between two polyhedrons; (b) a PO
relation between a polygon and a polyhedron; (c) a CR between a segment and a polyhedron.

To be able to implement RCC*-9 relations in the above simplified 3D model, we need a
topological interpretation that reinterprets Section 3 definitions in terms of set intersection
(∩) and set containment (⊆). Therefore, we consider the following equivalences involving
RCC*-9 relations:

Equivalence 1. C(x, y) ⇐⇒ x ∩ y ̸= ∅

Proof. ( ⇐= ) If x ∩ y is non-empty, it means that there exists a common part. By definition,
C(x, y) follows. ( =⇒ ) By definition of C(x, y), there exists a common part between x and
y; therefore, x ∩ y ̸= ∅.

Equivalence 2. DC(x, y) ⇐⇒ ¬C(x, y)

Equivalence 3. P(x, y) ⇐⇒ x ⊆ y

Proof. ( ⇐= ) If x ⊆ y, ∀z[z ∩ x ̸= ∅ → z ∩ y ̸= ∅]. P(x, y) follows. ( =⇒ ) If P(x, y),
∀z[C(z, x) → C(z, y)]. This implies x ⊆ y.

Equivalence 4. EQ(x, y) ⇐⇒ x = y

Equivalence 5. PP(x, y) ⇐⇒ P(x, y) ∧ ¬EQ(x, y)

Equivalence 6. Pi(x, y) ⇐⇒ P(y, x)

Equivalence 7. PPi(x, y) ⇐⇒ PP(y, x)

Equivalence 8. NTPP(x, y) ⇐⇒ PP(x, y) ∧DC(x, ∂y)

Proof. ( ⇐= ) The existence of the boundary ∂y of a feature y implies the relation B(x, y).
Therefore, NTPP(x, y). ( =⇒ ) If NTPP(x, y), PP(x, y) ∧ ∀y1[B(y1, y) → DC(x, y1)]. The
relation B(y1, y) implies the existence of ∂y disconnected from x.

Equivalence 9. TPP(x, y) ⇐⇒ PP(x, y) ∧ ¬NTPP(x, y)

Equivalence 10. NTPPi(x, y) ⇐⇒ NTPP(y, x)

Equivalence 11. TPPi(x, y) ⇐⇒ TPP(y, x)

Equivalence 12. EC(x, y) ⇐⇒ C(x, y) ∧ ¬P(x, y) ∧ ¬Pi(x, y) ∧ (P(x ∩ y, ∂x) ∨ P(x ∩
y, ∂y))
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Proof. ( ⇐= ) If x ∩ y is part of ∂x, it means that x ∩ y ≤dim x. Since x ∩ y is the common
part of both x and y, it can be inferred that ∀z ∈ x ∩ y[P(z, x)∧P(z, y)]. Since x ∩ y is part of
∂x, we can infer TPP(z, x). Analogously, from P(x ∩ y, ∂y), we can infer TPP(z, y). Finally,
since x ∩ y ≤dim x and x ∩ y ≤dim y, we can exclude PO(x, y). Therefore, EC(x, y). ( =⇒ )
From Definition 33, C(x, y) ∧ ¬O(x, y) ∧ ∀z[[P(z, x) ∧ P(z, y)] → [TPP(z, x) ∨ TPP(z, y)]].
The part ¬O(x, y) is equivalent to ¬P(x, y) ∧ ¬Pi(x, y) ∧ ¬PO(x, y). The proposition
P(z, x) ∧ P(z, y) means that z is part of both x and y; hence, it must be z ⊆ (x ∩ y). Given
TPP(z, x) ∨ TPP(z, y) and ¬PO(x, y), it follows that x ∩ y must be part of the boundaries
of x and y; therefore, P(x ∩ y, ∂x) ∨ P(x ∩ y, ∂y). From that, the equivalence is proved.

Equivalence 13. CR(x, y) ⇐⇒ C(x, y) ∧ ¬P(x, y) ∧ ¬Pi(x, y) ∧ ¬EC(x, y) ∧ (NTPP(x ∩
y, x) ∨NTPP(x ∩ y, y))

Proof. ( ⇐= ) It is sufficient to show that NTPP(x ∩ y, x)∨NTPP(x ∩ y, y) =⇒ ¬PO(x, y).
By definition of PO(x, y), there must exist a set t such that TPP(t, x) ∧ TPP(t, y). If for the
intersection x ∩ y, NTPP(x ∩ y, x) ∨NTPP(x ∩ y, y) holds, it means that a set t cannot exist.
Therefore, CR(x, y). ( =⇒ ) From ¬PO(x, y), there do not exist a common non-tangential
proper part and a common tangential proper part of x and y. Therefore, it can be that the
intersection x ∩ y is either NTPP(x ∩ y, x) or NTPP(x ∩ y, y). From that, the equivalence is
proved.

Equivalence 14. O(x, y) ⇐⇒ C(x, y) ∧ ¬EC(x, y) ∧ ¬CR(x, y)

Equivalence 15. PO(x, y) ⇐⇒ O(x, y) ∧ ¬P(x, y) ∧ ¬Pi(x, y)

Unless the proofs are trivial, we have included proofs of the above equivalences.
Moreover, we double-checked this topological interpretation of RCC*-9 by re-running some
of the 2D experiments with these new definitions.

Experiment 5. Polyhedrons. We considered a random distribution of 30 simple polyhedrons
(actually, parallelepipeds—see Figure 12a) and we calculated the 30 × 30 relations between them.
Even with a smaller number of features in the experiment compared to the previous experiments,
the results of the experiments are encouraging and show evidence that the RCC*-9 relations for 3D
polyhedrons are JEPD. The percentages of the obtained relations are shown in Figure 12b.

However, even with this simple dataset, the computation time was long (several
minutes on an Intel Core i7-10875H CPU 2.30 GHz). Therefore, we could not repeat the
experiment with millions of relations as we did in the experiments with 2D features. The
long running time is due to the fact that the Geometry3D library is not optimized from the
efficiency point of view. In any case, the experiment can be an indication that the approach
can be adopted for 3D features as well. As expected, all the realized relations are indeed
of the RCC*-9 set. The CR was, however, never instantiated since it never holds between
simple features of the same dimension as the embedding space.

Experiment 6. Three-dimensional features. We considered a random distribution of 24 simple
polyhedrons, 8 convex polygons, and 8 segments (see Figure 13a), and we calculated the 40 × 40
relations between them. The percentages of obtained relations are shown in Figure 13b.

In this experiment, we combined simple polyhedrons with other features of smaller
dimensions (polygons and segments) embedded in 3D. The experiment indicates that all
RCC*-9 relations are realizable and they are JEPD, as there were no cases when none of the
nine relations held and there were no cases where more than one relation held.
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(a) (b)

Figure 12. Experiment 5: (a) random generation of polyhedrons; (b) percentages of obtained RCC*-9
relations.

(a) (b)

Figure 13. Experiment 6: (a) random generation of 3D features; (b) percentages of obtained RCC*-9
relations.

5. Spatial Reasoning

Composition tables are routinely used to perform qualitative spatial reasoning [32].
Given the relation r1(x, y) and the relation r2(y, z), the composition is the relation r3(x, z)
(which in general will be a disjunction of the base relations of the calculus). The composition
table gives all the possible results of composition for each combination of relations. In [35],
a composition table for RCC*-9 was proposed, which was created by adding the result of
configurations involving the CR between a line and a region and between two lines to the
existing composition table of RCC-8 [5]. Unfortunately, the resulting composition table was
incomplete, and some relations were missed, as we will see below.

In general, constructing composition tables and proving their correctness is difficult,
especially when the semantics of the calculus depends on higher-order constructs such as
sets [30,43]. While there are methods for creating these tables, the proofs supporting their
entries can be both laborious to carry out and challenging to obtain in certain instances.
Randell et al. [44] suggest addressing the problem through an automated theorem prover,
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capable of producing the entries for these transitivity tables. Proving the accuracy of a
composition table involves two key elements: (1) demonstrating the necessity of every
disjunct in each cell; (2) ensuring that no disjunctions are omitted. The former is typi-
cally accomplished by showing (for example, through a model or a diagram) that each
combination of r1, r2 and a disjunct from r3 is possible. Demonstrating the absence of
missing disjuncts within the framework of the calculus’s axiomatic theory can be realized
by proving a theorem that for each cell, r1 and r2 together imply r3. A proposal for an auto-
mated proof of the RCC-8 composition table, which encodes RCC-8 into an intuitionistic
propositional calculus, is presented in [45].

In this paper, we implement the heuristics described in [36], which involve populating
composition tables by conducting experiments on random datasets of spatial features. The
experiments are organized by randomly producing a dataset of n features and calculating
all the possible n2 RCC*-9 relations among them. Then, for each triple of possible relations
r1(i, j), r2(j, k), and r3(i, k), we add r3 to the composition table entry for r1, r2 if it is not
already present. The following Experiments 7–12 refer to 2D features, while Experiment 13
refers to 3D features.

Experiment 7 (Simple regions). We considered a dataset of 100 random simple polygons and
calculated the 10,000 relations holding among them. We repeated the random generation 10 times.
Therefore, the composition table was overall filled using 10,000,000 cases of composition. The
obtained composition table is the same as in Cui et al. [5]. This thus provides evidence that the new
definitions of RCC*-9 with respect to RCC-8 do not modify the nature of the relations in the case of
simple regions.

Experiment 8 (Complex regions). We considered a dataset of mixed regions (100 complex regions
with holes and disconnected components, 100 simple regions, and 100 complex regions made up of
two disconnected small squares, plus about 10 rare configurations) to maximize the probability of
finding all combinations of relations. The random generation of polygons was repeated 10 times for
a total of 297,910,000 compositions. As a result, we obtained the composition table in Table 1. In
the table, the symbol U represents the universal relation, that is, the disjunction of all nine base
relations of RCC*-9. This table corresponds to the composition table that appeared in [35] with the
exception of the cases TPP⊕ CR = TPP and CR⊕ TPPi = TPPi, which we did not find in this
experiment for complex regions. (Indeed, from the analyses of subsequent experiments, it can be
seen that these two cases of composition are never possible, and, therefore, they were erroneously
included in ([35]).)

Experiment 9 (Simple lines). We considered a random set of simple lines (100 were polylines
with 7 vertices, 100 horizontal segments, and 100 vertical segments). The number of calculated
compositions is similar to the previous experiment. The composition table (Table 2) reveals that
there are more composition cases that were not included in Clementini and Cohn [35]. These
additional cases are EC ⊕ EC = {NTPPi, NTPP}, EC ⊕ NTPP = EC, EC ⊕ NTPPi = EC,
NTPP ⊕ EC = EC, and NTPPi ⊕ EC = EC. From the composition table, we can also see that
there are cases that are not possible for simple lines but that were possible for complex regions:
TPP ⊕ TPPi = CR, TPP ⊕ NTPPi = CR, NTPP ⊕ TPPi = CR, NTPP ⊕ NTPPi = CR,
TPPi⊕ CR = {TPPi, NTPPi}, NTPPi⊕ CR = {TPPi, NTPPi}, CR⊕ TPP = {NTPP, TPP},
and CR⊕NTPP = {NTPP, TPP}.
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Table 1. Composition table for RCC*-9 (case of complex regions).

r1

r2 DC EC PO TPP NTPP TPPi NTPPi EQ CR

DC U
DC, EC,
PO, TPP,
NTPPCR

DC, EC,
PO, TPP,
NTPP, CR

DC, EC,
PO, TPP,
NTPP, CR

DC, EC, PO,
TPP, NTPP,
CR

DC DC DC
DC, EC,
PO, TPP,
NTPP, CR

EC

DC, EC,
PO, TPPi,
NTPPi,
CR

DC, EC, PO,
TPP, TPPi,
EQ, CR

DC, EC,
PO, TPP,
NTPP, CR

EC, PO,
TPP,
NTPP, CR

PO, TPP,
NTPP, CR DC, EC DC EC

DC, EC,
PO, TPP,
NTPP, CR

PO
DC, EC,
PO, TPPi,
NTPPiCR

DC, EC, PO,
TPPi, NTPPi,
CR

U PO, TPP,
NTPP, CR

PO, TPP,
NTPP, CR

DC, EC, PO,
TPPi, NTPPi,
CR

DC, EC,
PO, TPPi,
NTPPi,
CR

PO U\EQ

TPP DC DC, EC
DC, EC,
PO, TPP,
NTPP, CR

TPP,
NTPP NTPP

DC, EC, PO,
TPP, TPPi,
EQ, CR

DC, EC,
PO, TPPi,
NTPPi,
CR

TPP
DC, EC,
PO, NTPP,
CR

NTPP DC DC
DC, EC,
PO, TPP,
NTPP, CR

NTPP NTPP
DC, EC, PO,
TPP, NTPP,
CR

U NTPP
DC, EC,
PO, TPP,
NTPP, CR

TPPi

DC, EC,
PO, TPPi,
NTPPi,
CR

EC, PO,
TPPi, NTPPi,
CR

PO, TPPi,
NTPPi,
CR

PO, TPP,
TPPi, EQ

PO, TPP,
NTPP, CR TPPi, NTPPi NTPPi TPPi

PO, TPPi,
NTPPi,
CR

NTPPi

DC, EC,
PO, TPPi,
NTPPi,
CR

PO, TPPi,
NTPPi, CR

PO, TPPi,
NTPPi,
CR

PO, TPPi,
NTPPi,
CR

PO, TPP,
NTPP, TPPi,
NTPPi, EQ,
CR

NTPPi NTPPi NTPPi
PO, TPPi,
NTPPi,
CR

EQ DC EC PO TPP NTPP TPPi NTPPi EQ CR

CR

DC, EC,
PO, TPPi,
NTPPi,
CR

DC, EC, PO,
TPPi, NTPPi,
CR

U\EQ PO, TPP,
NTPP, CR

PO, TPP,
NTPP, CR

DC, EC, PO,
NTPPi, CR

DC, EC,
PO, TPPi,
NTPPi,
CR

CR U

Table 2. Composition table for RCC*-9 (case of simple and complex lines).

r1

r2 DC EC PO TPP NTPP TPPi NTPPi EQ CR

DC U
DC, EC,
PO, TPP,
NTPPCR

DC, EC,
PO, TPP,
NTPP, CR

DC, EC,
PO, TPP,
NTPP, CR

DC, EC, PO,
TPP, NTPP,
CR

DC DC DC
DC, EC,
PO, TPP,
NTPP, CR

EC

DC, EC,
PO, TPPi,
NTPPi,
CR

U
DC, EC,
PO, TPP,
NTPP, CR

EC, PO,
TPP,
NTPP, CR

EC, PO, TPP,
NTPP, CR DC, EC DC, EC EC

DC, EC,
PO, TPP,
NTPP, CR

PO
DC, EC,
PO, TPPi,
NTPPiCR

DC, EC, PO,
TPPi, NTPPi,
CR

U PO, TPP,
NTPP, CR

PO, TPP,
NTPP, CR

DC, EC, PO,
TPPi, NTPPi,
CR

DC, EC,
PO, TPPi,
NTPPi,
CR

PO U\EQ

TPP DC DC, EC
DC, EC,
PO, TPP,
NTPP, CR

TPP,
NTPP NTPP

DC, EC, PO,
TPP, TPPi,
EQ

DC, EC,
PO, TPPi,
NTPPi

TPP
DC, EC,
PO, NTPP,
CR

NTPP DC DC, EC
DC, EC,
PO, TPP,
NTPP, CR

NTPP NTPP DC, EC, PO,
TPP, NTPP U\CR NTPP

DC, EC,
PO, TPP,
NTPP, CR

TPPi

DC, EC,
PO, TPPi,
NTPPi,
CR

EC, PO,
TPPi, NTPPi,
CR

PO, TPPi,
NTPPi,
CR

PO, TPP,
TPPi, EQ

PO, TPP,
NTPP, CR TPPi, NTPPi NTPPi TPPi PO, CR

NTPPi

DC, EC,
PO, TPPi,
NTPPi,
CR

EC, PO,
TPPi, NTPPi,
CR

PO, TPPi,
NTPPi,
CR

PO, TPPi,
NTPPi,
CR

PO, TPP,
NTPP, TPPi,
NTPPi, EQ,
CR

NTPPi NTPPi NTPPi PO, CR

EQ DC EC PO TPP NTPP TPPi NTPPi EQ CR

CR

DC, EC,
PO, TPPi,
NTPPi,
CR

DC, EC, PO,
TPPi, NTPPi,
CR

U\EQ PO, CR PO, CR DC, EC, PO,
NTPPi, CR

DC, EC,
PO, TPPi,
NTPPi,
CR

CR U
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Experiment 10 (Complex lines). The experiment for complex lines was similar to the previous
experiment, adding 200 complex lines made up of self-intersections and disconnected components to
the previous set of simple lines for each random generation. No variations in the composition table
were discovered. Hence, the composition tables for simple lines and complex lines are the same.

Experiment 11 (Simple features). In this experiment, we include composition cases that can
be obtained from relations between simple regions, relations between simple lines, and relations
between regions and lines. With a random set of 330 simple lines and 200 simple polygons and
repeating the random generation 10 times, the composition table was filled with 1,488,770,000 cases
of composition, obtaining the result of Table 3. We discovered the following cases that are realizable
with compositions involving both lines and regions that were not included in previous experiments:
EC ⊕ PO = TPPi, EC ⊕ TPPi = {CR, NTPPi, TPPi, PO}, EC ⊕ NTPPi = TPPi, EC ⊕ CR =
TPPi, PO ⊕ EC = TPP, PO ⊕ TPP = EC, TPP ⊕ EC = {CR, NTPP, TPP, PO}, TPP ⊕
TPPi = {NTPPi, NTPP}, NTPP ⊕ EC = TPP, NTPP ⊕ TPP = TPP, TPPi ⊕ PO = EC,
TPPi⊕ TPP = EC, TPPi⊕NTPP = {EC, TPPi}, TPPi⊕NTPPi = TPPi, TPPi⊕ CR = EC,
NTPPi⊕ TPP = {EC, TPP}, CR⊕ EC = TPP, and CR⊕ TPP = EC.

Table 3. Composition table for RCC*-9 (case of simple and complex features).

r1

r2 DC EC PO TPP NTPP TPPi NTPPi EQ CR

DC U
DC, EC, PO,
TPP, NTPP,
CR

DC, EC, PO,
TPP, NTPP,
CR

DC, EC,
PO, TPP,
NTPP, CR

DC, EC, PO,
TPP, NTPP,
CR

DC DC DC
DC, EC, PO,
TPP, NTPP,
CR

EC

DC, EC,
PO, TPPi,
NTPPi,
CR

U
DC, EC, PO,
TPP, NTPP,
TPPi, CR

EC, PO,
TPP,
NTPP, CR

EC, PO, TPP,
NTPP, CR

DC, EC, PO,
TPPi, NTPPi,
CR

DC, EC,
TPPi EC

DC, EC, PO,
TPP, NTPP,
TPPi, CR

PO
DC, EC,
PO, TPPi,
NTPPiCR

DC, EC, PO,
TPP, TPPi,
NTPPi, CR

U
EC, PO,
TPP,
NTPP, CR

PO, TPP,
NTPP, CR

DC, EC, PO,
TPPi, NTPPi,
CR

DC, EC,
PO, TPPi,
NTPPi,
CR

PO U\EQ

TPP DC
DC, EC, PO,
TPP, NTPP,
CR

DC, EC, PO,
TPP, NTPP,
CR

TPP,
NTPP NTPP U

DC, EC,
PO, TPPi,
NTPPi,
CR

TPP DC, EC, PO,
NTPP, CR

NTPP DC DC, EC, TPP
DC, EC, PO,
TPP, NTPP,
CR

TPP,
NTPP NTPP

DC, EC, PO,
TPP, NTPP,
CR

U NTPP
DC, EC, PO,
TPP, NTPP,
CR

TPPi

DC, EC,
PO, TPPi,
NTPPi,
CR

EC, PO,
TPPi, NTPPi,
CR

EC, PO,
TPPi, NTPPi,
CR

EC, PO,
TPP,
TPPi, EQ

EC, PO, TPP,
NTPP, TPPi,
CR

TPPi, NTPPi TPPi,
NTPPi TPPi

EC, PO,
TPPi,
NTPPi,
CR

NTPPi

DC, EC,
PO, TPPi,
NTPPi,
CR

EC, PO,
TPPi, NTPPi,
CR

PO, TPPi,
NTPPi, CR

EC, PO,
TPP,
TPPi,
NTPPi,
CR

PO, TPP,
NTPP, TPPi,
NTPPi, EQ,
CR

NTPPi NTPPi NTPPi PO, TPPi,
NTPPi, CR

EQ DC EC PO TPP NTPP TPPi NTPPi EQ CR

CR

DC, EC,
PO, TPPi,
NTPPi,
CR

DC, EC, PO,
TPP, TPPi,
NTPPi, CR

U\EQ
EC, PO,
TPP,
NTPP, CR

PO, TPP,
NTPP, CR

DC, EC, PO,
NTPPi, CR

DC, EC,
PO, TPPi,
NTPPi,
CR

CR U

Experiment 12 (Complex features). In this experiment, we generated a scenario made up of a
mixing of about 600 previously considered features, simple and complex regions and lines, including
multipoints as well. We did not discover any changes from the previous experiment. Hence, the
composition table for complex features is the same as Table 3 for simple features.

Experiment 13 (Polyhedrons and 3D features). In this final experiment, we used the 3D scenarios
from Experiments 5 and 6. As we already discussed, the number of 3D features that we could
consider was limited due to the high computation time. We used a random distribution of 30 simple
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polyhedrons and then a random distribution of 24 simple polyhedrons, 8 convex polygons, and
8 segments. For simple polyhedrons, the resulting composition table is very similar to the composi-
tion table for simple regions in 2D space, while for mixed 3D simple features the composition table is
close to the composition table of simple features in 2D. Unfortunately, the small number of involved
relations was not sufficient to fill the composition table with all possible results. The result from this
experiment is partial: the composition tables for simple polyhedrons and simple 3D features are a
subset of the respective composition tables in 2D, but we did not discover evidence of all the entries.

6. Implementation of Experiments

In this section, we explain in more detail how the experiments were implemented.
Each experiment is organized with the random generation of geometric features and the
calculation of all possible relations among them. The topological relations were calculated
with the Relate function to be found in the OGC Simple Features Specification [6]. For the
Relate function, we used the implementation provided by the “Shapely” library in Python
(https://pypi.org/project/Shapely/, accessed on 10 November 2023). The function returns
a string that represents a set of nine values for the DE+9IM matrix introduced in [8]. The
string expresses the matrix by rows, where an “F” stands for an empty intersection and
values 0, 1, and 2 express the dimension of the intersection if the intersection is not empty.
DE+9IM relations can be transformed in the corresponding 9IM string (each character 0, 1,
or 2 is transformed to a “T”, expressing a non-empty intersection). The equivalent RCC*-9
relation can be found by applying the correspondence in Table 4. The symbol “*” in the
pattern indicates that both values “T” and “F” are possible. (This latter table also appeared
in [35], but it has been updated in this paper following the modified definitions of RCC*-9.)

Table 4. Calculating the RCC*-9 relation with the OGC Relate function.

RCC*-9 9IM

DC(x, y) Relate(x,y,"FF*FF****")

EC(x, y) Relate(x,y,"F*TT**T**") ∨
Relate(x,y,"FTT***T**") ∨
Relate(x,y,"F*T*T*T**")

NTPP(x, y) Relate(x,y,"*FF*FFT**")

TPP(x, y) Relate(x,y,"*TF**F***") ∨
Relate(x,y,"**F*TF***") ∧
¬ Relate(x,y,"TFFFTFFFT")

CR(x, y) Relate(x,y,"T*TFFTT**") ∨
Relate(x,y,"TFT*F*TT*") ∨
Relate(x,y,"TFTFFFTFT") ∨
Relate(x,y,"TTTFFFTTT") ∨
Relate(x,y,"TFTTFTTFT")

PO(x, y) Relate(x,y,"TTTT**T**") ∨
Relate(x,y,"T*T*T*T**")

NTPPi(x, y) Relate(x,y,"**TFF*FF*")

TPPi(x, y) Relate(x,y,"***T**FF*") ∨
Relate(x,y,"****T*FF*") ∧
¬ Relate(x,y,"TFFFTFFFT")

EQ(x, y) Relate(x,y,"TFFF*FFFT")

https://pypi.org/project/Shapely/
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6.1. Assessment of the JEPD Properties
Regarding the assessments of the JEPD properties of RCC*-9 relations, in the following

code, there is a loop that repeats the random generation for a number of times and all
features are added to a list of features (list_features). Depending on the types of features
that are required in the experiment, a different function for random generation is called
(e.g., multipolygons_random). A double loop inspects all topological relations between
pairs of features in list_features. The “list_pattern” contains all DE+9IM relations that
are discovered in the random set of features. Then, all relations in the list_pattern are
transformed to RCC*-9 relations by the call to “cod_RCC9”. If the result of cod_RCC9 is
empty, it means that the relation set is not jointly exhaustive; if the result matches more
than one DE+9I pattern, it means that the relation set is not pairwise disjoint:

l i s t _ p a t t e r n = [ ]
# l o o p i s r e p e a t e d a number o f t imes , e . g . , 10 t i m e s
for random_generation in number_of_random_generations :

# f o l l o w i n g c a l l s g e n e r a t e n random m u l t i p o l y g o n s , n random
# m u l t i p o l y l i n e s and n random m u l t i p o i n t s , e . g . , n =100.
# P a r a m e t e r s t r a n s x and t r a n s y s p e c i f y t h e maximum t r a n s l a t i o n
# on x a x i s and maximum t r a n s l a t i o n on y a x i s ; zoom_min t h e
# minimum a p p l i e d m a g n i f i c a t i o n and zoom_max t h e maximum a p p l i e d
# m a g n i f i c a t i o n
f e a t u r e s = multipolygons_random ( [ ] , n , transx , transy , \

zoom_min , zoom_max )
l i s t _ f e a t u r e s = l i s t _ f e a t u r e s + f e a t u r e s
f e a t u r e s = multipolylines_random ( [ ] , n , transx , transy , \

zoom_min , zoom_max )
l i s t _ f e a t u r e s = l i s t _ f e a t u r e s + f e a t u r e s
f e a t u r e s = multipoints_random ( [ ] , n , transx , transy , \

zoom_min , zoom_max )
l i s t _ f e a t u r e s = l i s t _ f e a t u r e s + f e a t u r e s
# f o l l o w i n g l o o p s c a l c u l a t e DE+9IM r e l a t i o n s be tween f e a t u r e s
for f e a t 1 in l i s t _ f e a t u r e s :

for f e a t 2 in l i s t _ f e a t u r e s :
pa t te rn=Rela te ( fea t1 , f e a t 2 )
l i s t _ p a t t e r n . append ( pat te rn )

k e y _ l i s t =[ ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’ TPPI ’ , ’NTPPI ’ , ’EQ ’ , ’CR ’ ]
# d i c t i o n a r y c o u n t s o c c u r r e n c e s o f RCC*−9 r e l a t i o n s
d i c t = d i c t . fromkeys ( k e y _ l i s t , 0 )
for i in range ( len ( l i s t _ p a t t e r n ) ) :

# t r a n f o r m s e a c h DE+9IM r e l a t i o n i n t o an RCC*−9 r e l a t i o n
r e l =cod_RCC9 ( l i s t _ p a t t e r n [ i ] )
# i f r e l matches more than one DE+9 I p a t t e r n :
# r e l a t i o n s e t i s not p a i r w i s e d i s j o i n t
# i f r e l i s empty :
# r e l a t i o n s e t i s not j o i n t l y e x h a u s t i v e
i f len ( r e l ) > 1 or r e l = = [ ] :

print ( i , r e l )
d i c t [ r e l [ 0 ] ] = d i c t [ r e l [ 0 ] ] + 1

The functions that generate random features have a structure similar to the following
code for the “multipolygons_random” function. The function generates a list of “n” features,
where the four parameters “transx”, “transy”, “zoom_min”, and “zoom_max” are used
to randomly assign the amount of translation and zooming to be applied to a pattern
multipolygon, which is created by the call to the function “create_mpoly”. Such a function
defines a standard OGC multipolygon with the help of the GDAL/OGR Python library
(https://gdal.org/python/, accessed on 10 November 2023).

https://gdal.org/python/
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def multipolygons_random ( l is t_mpoly , n , transx , transy , zoom_min , zoom_max ) :
for i in range ( n ) :

tx=random . randint ( − transx , t ransx )
ty=random . randint ( − transy , t ransy )
zx = zoom_min + random . randint ( 1 , zoom_max)
zy = zoom_min + random . randint ( 1 , zoom_max)
mpoly=create_mpoly ( tx , ty , zx , zy )
l i s t_mpoly . append ( mpoly )

return l i s t_mpoly

6.2. Finding Composition Tables

Regarding experiments to find composition tables, similarly to previous experiments,
we perform the random generation of several kinds of geometric features. In the following
code, all the features are stored in the list_features and we store in a square matrix “tablecod”
all the RCC*-9 relations in the list_features. The way the tablecod is calculated is analogous
to the previous experiments, i.e., by applying the correspondence in Table 4. Then, with a
triple cycle, we extract all possible triplets of relations r1(i, j), r2(j, k), and r3(i, k), and we
fill the composition table with r3 in the corresponding entry for r1 and r2. The built table is
compared to a pre-stored reference composition table T for checking differences.

k e y _ l i s t = [ ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’ TPPI ’ , ’NTPPI ’ , ’EQ ’ , ’CR ’ ]
# d e f i n i t i o n o f a d a t a s t r u c t u r e f o r c o m p o s i t i o n t a b l e comp :
# a d i c t i o n a r y o f d i c t i o n a r i e s , e a c h c o n t a i n i n g s e t s o f r e l a t i o n s
comp= d i c t . fromkeys ( k e y _ l i s t , { } )
for key in k e y _ l i s t :

comp[ key ]= d i c t . fromkeys ( k e y _ l i s t , s e t ( ) )
# l o o p i s r e p e a t e d a number o f t imes , e . g . , 10 t i m e s
for random_generation in number_of_random_generations :

# g e n e r a t i o n o f a l i s t o f f e a t u r e s l i s t _ f e a t u r e s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

# f o l l o w i n g c a l l t o b u i l d _ t a b l e c o d b u i l d s a t a b l e c o n t a i n i n g
# t h e RCC*−9 r e l a t i o n s f o r a l l t h e l i s t o f f e a t u r e s
n = len ( l i s t _ f e a t u r e s )
tablecod = bui ld_tab lecod ( l i s t _ f e a t u r e s , n )
# f o l l o w i n g t r i p l e c y c l e e x t r a c t s r e l a t i o n s r1 , r2 , r3
# from t a b l e c o d and f i l l s t h e c o m p o s i t i o n t a b l e comp
for i in range ( n ) :

for j in range ( n ) :
for k in range ( n ) :

r1 = tablecod [ i ] [ j ]
r2 = tablecod [ j ] [ k ]
r3 = tablecod [ i ] [ k ]
comp[ r1 ] [ r2 ] = comp[ r1 ] [ r2 ] . union ( { r3 } )

# f o l l o w i n g c a l l compares t h e b u i l t c o m p o s i t i o n t a b l e comp
# t o r e f e r e n c e c o m p o s i t i o n t a b l e T
conf = compare (comp , T )

Composition tables are stored in a Python dictionary with keys taken from RCC*-9
relations, where each entry contains in turn another dictionary whose values are sets of
relations. For example, the composition table for complex features (Table 3) is coded as follows:
U={ ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’ TPPI ’ , ’NTPPI ’ , ’EQ ’ , ’CR ’ }
T = { }
T [ ’DC’ ] = { ’DC’ : U,

’EC ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’PO ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’TPP ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’NTPP ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’ TPPI ’ : { ’DC’ } ,
’NTPPI ’ : { ’DC’ } ,
’EQ ’ : { ’DC’ } ,
’CR ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } }

T [ ’EC ’ ] = { ’DC’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EC ’ : U,
’PO ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’ TPPI ’ , ’NTPP ’ , ’CR ’ } ,
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’TPP ’ : { ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’NTPP ’ : { ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’ TPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’NTPPI ’ : { ’DC’ , ’EC ’ , ’ TPPI ’ } ,
’EQ ’ : { ’EC ’ } ,
’CR ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’ TPPI ’ , ’NTPP ’ , ’CR ’ } }

T [ ’PO ’ ] = { ’DC’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EC ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’PO ’ : U,
’TPP ’ : { ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’NTPP ’ : { ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’ TPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’NTPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EQ ’ : { ’PO ’ } ,
’CR ’ : U−{ ’EQ ’ } }

T [ ’TPP ’ ] = { ’DC’ : { ’DC’ } ,
’EC ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’PO ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’TPP ’ : { ’TPP ’ , ’NTPP ’ } ,
’NTPP ’ : { ’NTPP ’ } ,
’ TPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’ TPPI ’ , ’NTPP ’ , ’NTPPI ’ , ’EQ ’ , ’CR ’ } ,
’NTPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EQ ’ : { ’TPP ’ } ,
’CR ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’NTPP ’ , ’CR ’ } }

T [ ’NTPP ’ ] = { ’DC’ : { ’DC’ } ,
’EC ’ : { ’DC’ , ’EC ’ , ’TPP ’ } ,
’PO ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’TPP ’ : { ’TPP ’ , ’NTPP ’ } ,
’NTPP ’ : { ’NTPP ’ } ,
’ TPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’NTPPI ’ : U,
’EQ ’ : { ’NTPP ’ } ,
’CR ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } }

T [ ’ TPPI ’ ] = { ’DC’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EC ’ : { ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’PO ’ : { ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’TPP ’ : { ’EC ’ , ’PO ’ , ’TPP ’ , ’ TPPI ’ , ’EQ ’ } ,
’NTPP ’ : { ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’ TPPI ’ , ’CR ’ } ,
’ TPPI ’ : { ’ TPPI ’ , ’NTPPI ’ } ,
’NTPPI ’ : { ’ TPPI ’ , ’NTPPI ’ } ,
’EQ ’ : { ’ TPPI ’ } ,
’CR ’ : { ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } }

T [ ’NTPPI ’ ] = { ’DC’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EC ’ : { ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’PO ’ : { ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’TPP ’ : { ’EC ’ , ’PO ’ , ’TPP ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’NTPP ’ : { ’PO ’ , ’TPP ’ , ’NTPP ’ , ’ TPPI ’ , ’NTPPI ’ , ’EQ ’ , ’CR ’ } ,
’ TPPI ’ : { ’NTPPI ’ } ,
’NTPPI ’ : { ’NTPPI ’ } ,
’EQ ’ : { ’NTPPI ’ } ,
’CR ’ : { ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } }

T [ ’EQ ’ ] = { ’DC’ : { ’DC’ } ,
’EC ’ : { ’EC ’ } ,
’PO ’ : { ’PO ’ } ,
’TPP ’ : { ’TPP ’ } ,
’NTPP ’ : { ’NTPP ’ } ,
’ TPPI ’ : { ’ TPPI ’ } ,
’NTPPI ’ : { ’NTPPI ’ } ,
’EQ ’ : { ’EQ ’ } ,
’CR ’ : { ’CR ’ } }

T [ ’CR ’ ] = { ’DC’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EC ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’TPP ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’PO ’ : U−{ ’EQ ’ } ,
’TPP ’ : { ’EC ’ , ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’NTPP ’ : { ’PO ’ , ’TPP ’ , ’NTPP ’ , ’CR ’ } ,
’ TPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’NTPPI ’ , ’CR ’ } ,
’NTPPI ’ : { ’DC’ , ’EC ’ , ’PO ’ , ’ TPPI ’ , ’NTPPI ’ , ’CR ’ } ,
’EQ ’ : { ’CR ’ } ,
’CR ’ : U}

6.3. Implementation of 3D Experiments

The implementation of 3D experiments was conducted in a quite different environment
as standard libraries do not support the computation of topological relations in 3D. We
adopted the Geometry3D Python library (version 0.2.4) that gives basic support in defining
simple convex 3D features and spatial operators (notably, the “intersection” of features and
the “in” Boolean operator). The following code gives the definition of the RCC*-9 relations
in terms of these library primitives:
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# a v a i l a b l e o p e r a t o r s in Geometry3D a r e :
# i n t e r s e c t i o n
# in − i t works f o r l e s s e r d imens i on vs b i g g e r d imens i on
# ==
def dim ( x ) :

i f i s i n s t a n c e ( x , ConvexPolyhedron ) :
return 3

i f i s i n s t a n c e ( x , ConvexPolygon ) :
return 2

i f i s i n s t a n c e ( x , Segment ) :
return 1

i f i s i n s t a n c e ( x , Point ) :
return 0

i f x i s None :
return −1

def C( x , y ) :
return i n t e r s e c t i o n ( x , y ) i s not None

def DC( x , y ) :
return not C( x , y )

def P ( x , y ) :
i f dim ( x) >dim ( y ) :

return Fa lse
e l i f dim ( x)==3 and dim ( y )==3 :

i n t e r = i n t e r s e c t i o n ( x , y )
return x == i n t e r

e l i f dim ( x)==2 and dim ( y )==2 :
i n t e r = i n t e r s e c t i o n ( x , y )
return x == i n t e r

e l i f dim ( x ) == 0 and dim ( y ) == 0 :
i n t e r = i n t e r s e c t i o n ( x , y )
return x == i n t e r

e lse :
return x in y

def EQ( x , y ) :
i f dim ( x)==dim ( y ) :

return x==y
e lse :

return Fa lse
def PP ( x , y ) :

return P ( x , y ) and not EQ( x , y )
def PI ( x , y ) :

return P ( y , x )
def PPI ( x , y ) :

return PP ( y , x )
def boundary ( y ) : # r e t u r n s a l i s t o f o b j e c t s

i f i s i n s t a n c e ( y , ConvexPolyhedron ) : # r e t u r n s a l i s t o f p o l y g o n s
return y . convex_polygons

i f i s i n s t a n c e ( y , ConvexPolygon ) : # r e t u r n s a l i s t o f s egments
return y . segments ( )

i f i s i n s t a n c e ( y , Segment ) : # r e t u r n s a l i s t o f 2 p o i n t s
return [ y . s t a r t _ p o i n t , y . end_point ]

i f i s i n s t a n c e ( y , Point ) :
return None

def NTPP( x , y ) :
r e s u l t =PP ( x , y )
i f r e s u l t :

for y1 in boundary ( y ) :
i f not DC( x , y1 ) :
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r e s u l t =Fa l se
return r e s u l t

def TPP ( x , y ) :
return PP ( x , y ) and not NTPP( x , y )

def NTPPI ( x , y ) :
return NTPP( y , x )

def TPPI ( x , y ) :
return TPP ( y , x )

def in_boundary ( x , y ) : # c h e c k s i f x i s c o n t a i n e d in boundary o f y
# f o r convex o b j e c t s , i t s u f f i c e s t h a t x i s c o n t a i n e d in j u s t one p a r t
# o f t h e boundary
r e s u l t =Fa l se
for y1 in boundary ( y ) :

i f P ( x , y1 ) :
r e s u l t =True

return r e s u l t
def EC( x , y ) :

r e s u l t = C( x , y ) and not P ( x , y ) and not PI ( x , y )
i f r e s u l t :

#EC i s e v a l u a t e d with in_boundary
i n t e r s = i n t e r s e c t i o n ( x , y )
r e s u l t = in_boundary ( i n t e r s , x ) or in_boundary ( i n t e r s , y )

return r e s u l t
def CR( x , y ) :

r e s u l t = C( x , y ) and not P ( x , y ) and not PI ( x , y ) and not EC( x , y )
i f r e s u l t :

i n t e r s = i n t e r s e c t i o n ( x , y )
r e s u l t = NTPP( i n t e r s , x ) or NTPP( i n t e r s , y )

return r e s u l t
def O( x , y ) :

return C( x , y ) and not EC( x , y ) and not CR( x , y )
def PO( x , y ) :

return O( x , y ) and not P ( x , y ) and not PI ( x , y )
k e y _ l i s t =[ ’DC’ , ’EC ’ , ’NTPP ’ , ’TPP ’ , ’CR ’ , ’PO ’ , ’NTPPI ’ , ’ TPPI ’ , ’EQ ’ ]
r e l s e t = [DC, EC, NTPP, TPP , CR, PO, NTPPI , TPPI , EQ]
def RCC9( x , y ) :

r e s u l t = [ ]
for r in r e l s e t :

i f r ( x , y ) :
r e s u l t . append ( k e y _ l i s t [ r e l s e t . index ( r ) ] )

return r e s u l t

For instance, a series of random polyhedrons was produced with the following function:

def s e r i e s _ p o l ( npol , DX, OX) :
# npo l number o f random p o l y h e d r o n s t h a t a r e produced
#DX maximum d i m e n s i o n s o f p o l y h e d r o n s
#OX maximum d i s p l a c e m e n t o f t h e o r i g i n

l i s t _ p a r a l = [ ]
for i in range ( npol ) :

DX = DX
DY = DX
DZ = DX
dx = random . randint ( −DX, DX)
i f dx == 0 :

dx = 1
dy = random . randint ( −DY, DY)
i f dy == 0 :

dy = 1
dz = random . randint ( −DZ, DZ)
i f dz == 0 :
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dz = 1
OX = OX
OY = OX
OZ = OX
ox = random . randint ( −OX, OX)
oy = random . randint ( −OY, OY)
oz = random . randint ( −OZ, OZ)
para l = P a r a l l e l e p i p e d ( Point ( ox , oy , oz ) , Vector ( dx , 0 , 0 ) ,\

Vector ( 0 , dy , 0 ) , Vector ( 0 , 0 , dz ) )
l i s t _ p a r a l = l i s t _ p a r a l + [ para l ]

return l i s t _ p a r a l

7. Conclusions

It has been many years since an extension of existing qualitative spatial calculi to
allow multidimensional mereotopological relations has been advocated [29]. Building on
the initial proposal for RCC*-9 [35] that treated simple lines and regions, in this paper we
expanded RCC*-9 to range over complex features (made of separate parts and containing
holes) and 3D space, therefore considering features of dimensions 3, 2, 1, and 0. RCC*-9
modifies the definition of the basic relations of RCC-8 and adds two new relations, namely,
a new primitive B(x, y) to express that x is boundary of y and CR(x, y) for the defined cross
relation. The variables of RCC*-9 no longer range over just regions of the same dimension
but also over multidimensional features.

The formal properties of qualitative calculi and the spatial reasoning rules have usually
been either simply posited based on introspection or verified using logical proofs. The
drawbacks of the formal approach are that such proofs are tedious and prone to errors
if manually computed, and even when they are provided, they do not produce actual
visualizable examples of geometric configurations. In [36], the authors proposed an innova-
tive approach to fill in composition tables of a system of qualitative projective relations (a
composition table of 34 × 34 relations) that would have been very challenging to find using
formal methods. Their approach was based on running experiments with random datasets
of spatial features. Here, we adopted a similar experimental approach to demonstrate
the JEPD properties of RCC*-9 and to fill in the composition tables. The implementation
of the experiments is interesting in itself because it provides a way of visualizing spatial
configurations described by RCC*-9. Also, it provides a practical way of implementing
RCC*-9 relations in the OGC spatial data model, at least for the two-dimensional part
(multipolygons, multipolylines, and multipoints). For the three-dimensional features, a
programmatic implementation of the OGC data model is not available; therefore, we ran
the experiments with the Geometry3D Python library, which unfortunately is not optimized
for running on millions of relations between features.

The choice of spatial entities in the experiments influenced the results, and different
choices would have resulted in different percentages of relations. Priority was given to
maximizing the chance that all relations were represented. In real scenarios, e.g., with a
large environment size, the DC relation would be much more likely. If the features had a
similar size, the PO relation would be more common and the P relations would be rare. To
obtain EC relations, it was necessary to include features with regular patterns, e.g., with the
constraint that boundaries lie on a grid. Overall, the random feature generators produced
features bounded in a limited environment, with sets of larger features and smaller features
(up to one-tenth of the larger) and imposing a constraint that the feature coordinates were
a multiple of the given initial patterns. In future work, it would be interesting to evaluate
the percentage of relations between features in real environments. It will be necessary to
run more experimental work on faster processors, perhaps exploiting GPUs, especially for
the 3D cases.



ISPRS Int. J. Geo-Inf. 2024, 13, 25 27 of 29

Author Contributions: Conceptualization, Eliseo Clementini; methodology, Eliseo Clementini
and Anthony G. Cohn; formal analysis, Eliseo Clementini and Anthony G. Cohn; investigation,
Eliseo Clementini and Anthony G. Cohn; software, Eliseo Clementini; validation, Eliseo Clementini;
writing—original draft preparation, Eliseo Clementini; writing—review and editing, Eliseo Clementini
and Anthony G. Cohn. All authors have read and agreed to the published version of the manuscript.

Funding: A.G.C. was partially supported by the Economic and Social Research Council (ESRC) under
grant 26 ES/W003473/1 which is gratefully acknowledged.

Data Availability Statement: The data used in the experiments are code-generated. All the Python
programs for generating data and running the experiments can be found at the following link:
https://figshare.com/s/cb949bcd69c846874474, accessed on 10 November 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Clementini, E. A conceptual framework for modelling spatial relations. Inf. Technol. Control 2019, 48, 5–17. [CrossRef]
2. Clementini, E.; Lejdel, B.; Mazzagufo, S.; Laurini, R. Homological relations: A methodology for the certification of irregular

tessellations. Trans. GIS 2021, 25, 491–515. [CrossRef]
3. Egenhofer, M.J.; Franzosa, R.D. Point-Set Topological Spatial Relations. Int. J. Geogr. Inf. Syst. 1991, 5, 161–174. [CrossRef]
4. Clementini, E.; Di Felice, P.; van Oosterom, P. A Small Set of Formal Topological Relationships Suitable for End-User Interaction.

In Proceedings of the Advances in Spatial Databases—Third International Symposium, SSD ’93, Singapore, 23–25 June 1993; Abel,
D., Ooi, B.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume LNCS 692, pp. 277–295.

5. Cui, Z.; Cohn, A.G.; Randell, D.A. Qualitative and Topological Relationships in Spatial Databases. In Proceedings of the Advances
in Spatial Databases—Third International Symposium, SSD ’93, Singapore, 23–25 June 1993; Abel, D., Ooi, B.C., Eds.; Springer:
Berlin/Heidelberg, Germany, 1993; Volume LNCS 692, pp. 296–315.

6. OGC Open Geospatial Consortium Inc. OpenGIS Simple Features Implementation Specification for OLE/COM. Revision 1.1; OpenGIS
Project Document 99-050; 18 May 1999. Available online: https://portal.ogc.org/files/?artifact_id=830 (accessed on 10 November
2023).

7. Egenhofer, M.J.; Herring, J.R. Categorizing Binary Topological Relationships Between Regions, Lines, and Points in Geographic Databases;
Report Technical Report; University of Maine: Orono, ME, USA, 1990.

8. Clementini, E.; Di Felice, P. A Comparison of Methods for Representing Topological Relationships. Inf. Sci. 1995, 3, 149–178.
[CrossRef]

9. Lautenschütz, A.K.; Davies, C.; Raubal, M.; Schwering, A.; Pederson, E. The Influence of Scale, Context and Spatial Preposition
in Linguistic Topology. In Proceedings of the Spatial Cognition V: Reasoning, Action, Interaction, Bremen, Germany, 24–28
September 2006; Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp.
439–452.

10. Casati, R. Parts and Places: The Structures of Spatial Representations; MIT Press: Cambridge, MA, USA, 1999.
11. Ishikawa, T.; Montello, D.R. Spatial knowledge acquisition from direct experience in the environment: Individual differences in

the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 2006, 52, 93–129. [CrossRef]
12. Güting, R.H. Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems. In Proceedings of the

International Conference on Extending Database Technology, EDBT’88, Edinburgh, UK, 29 March–1 April 1988; Schmidt, J., Ceri,
S., Missikoff, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 506–527.

13. Güting, R.H. An Introduction to Spatial Database Systems. Vldb J. 1994, 3, 357–400. [CrossRef]
14. Egenhofer, M.J.; Mark, D.M. Naive Geography. In Proceedings of the Spatial Information Theory: A Theoretical Basis for

GIS—International Conference, COSIT’95, Vienna, Austria, 21–23 September 1995; Springer: Berlin/Heidelberg, Germany, 1995;
pp. 1–15.

15. Frank, A.U. MAPQUERY: Data Base Query Language for Retrieval of Geometric Data and their Graphical Representation. Acm
Comput. Graph. 1982, 16, 199–207. [CrossRef]

16. Herring, J. TIGRIS: A data model for an object-oriented geographic information system. Comput. Geosci. 1991, 18, 443–452.
[CrossRef]

17. Berretti, S.; Del Bimbo, A.; Vicario, E. Weighted walkthroughs between extended entities for retrieval by spatial arrangement.
IEEE Trans. Multimed. 2003, 5, 52–70. [CrossRef]

18. Bloch, I. Fuzzy relative position between objects in image processing: A morphological approach. IEEE Trans. Pattern Anal. Mach.
Intell. 1999, 21, 657–664. [CrossRef]

19. Cardenas, A.F. The Knowledge-Based Object-Oriented PICQUERY+ Language. IEEE Trans. Knowl. Data Eng. 1993, 5, 644–657.
[CrossRef]

20. Freksa, C. Temporal Reasoning Based on Semi-Intervals. Artif. Intell. 1992, 54, 199–227. [CrossRef]
21. Schneider, M. Topological Relationships Between Complex Spatial Objects. ACM Trans. Database Syst. 2006, 31, 39–81. [CrossRef]

https://figshare.com/s/cb949bcd69c846874474
http://doi.org/10.5755/j01.itc.48.1.22246
http://dx.doi.org/10.1111/tgis.12698
http://dx.doi.org/10.1080/02693799108927841
https://portal.ogc.org/files/?artifact_id=830
http://dx.doi.org/10.1016/1069-0115(94)00033-X
http://dx.doi.org/10.1016/j.cogpsych.2005.08.003
http://dx.doi.org/10.1007/BF01231602
http://dx.doi.org/10.1145/965145.801281
http://dx.doi.org/10.1016/0098-3004(92)90074-2
http://dx.doi.org/10.1109/TMM.2002.802833
http://dx.doi.org/10.1109/34.777378
http://dx.doi.org/10.1109/69.234776
http://dx.doi.org/10.1016/0004-3702(92)90090-K
http://dx.doi.org/10.1145/1132863.1132865


ISPRS Int. J. Geo-Inf. 2024, 13, 25 28 of 29

22. van Oosterom, P.; Vertegaal, W.; van Hekken, M.; Vijlbrief, T. Integrated 3D modelling within a GIS. In Proceedings of the
Avanced Geographic Data Modelling: Spatial Data Modelling and Query Languages for 2D and 3D Applications, Delft, The
Netherlands, 12–14 September 1994; Molenaar, M., de Hoop, S., Eds.; Netherlands Geodetic Commission: Apeldoorn, The
Netherlands, 1994; pp. 80–95.

23. Zlatanova, S. On 3D topological relationships. In Proceedings of the Database and Expert Systems Applications, 11th International
Conference, DEXA 2000, London, UK, 4–8 September 2000; Ibrahim, M., Küng, J., Revell, N., Eds.; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 913–919.

24. Aref, W.G.; Samet, H. Optimization Strategies for Spatial Query Processing. In Proceedings of the 17th International Conference
on Very Large Databases, Barcelona, Spain, 3–6 September 1991; Lohman, G.M., Serandas, A., Campas, R., Eds.; Morgan Kaufman:
Los Altos, CA, USA, 1991; pp. 81–90.

25. Egenhofer, M.J. Deriving the composition of binary topological relations. J. Vis. Lang. Comput. 1994, 5, 133–149. [CrossRef]
26. Cohn, A.G.; Bennett, B.; Gooday, J.; Gotts, N.M. Qualitative Spatial Representation and Reasoning with the Region Connection

Calculus. GeoInformatica 1997, 1, 275–316. [CrossRef]
27. Galton, A.P. Taking dimension seriously in qualitative spatial reasoning. In Proceedings of the Twelfth European Conference on

Artificial Intelligence (ECAI’96), Budapest, Hungary, 11–16 August 1996; Wahlster, W., Ed.; John Wiley & Sons, Inc.: New York,
NY, USA, 1996; pp. 501–505.

28. Gotts, N.M. Formalizing Commonsense Topology: The INCH Calculus. In Proceedings of the Fourth International Symposium
on Artificial Intelligence and Mathematics, Fort Lauderdale, FL, USA, 3–5 January 1996; pp. 72–75.

29. Galton, A.P. Multidimensional Mereotopology. In Proceedings of the Ninth International Conference on Principles of Knowledge
Representation and Reasoning (KR2004), Whistler, BC, Canada, 2–5 June 2004; Dubois, D., Welty, C., Williams, M.A., Eds.; AAAI
Press: Menlo Park, CA, USA, 2004; pp. 45–54.

30. Isli, A.; Museros Cabedo, L.; Barkowsky, T.; Moratz, R. A Topological Calculus for Cartographic Entities. In Proceedings
of the Spatial Cognition Conference, Spatial Cognition II: Integrating Abstract Theories, Empirical Studies, Formal Methods,
and Practical Applications, Rome, Italy, 14–16 December 2000; Freksa C., Habel C., Brauer W., Wender K.F., Eds; Springer:
Berlin/Heidelberg, Germany, 2000; Volume LNAI 1849, pp. 225–238.

31. Gabrielli, N. Investigation of the Tradeoff between Expressiveness and Complexity in Description Logics with Spatial Operators.
Ph.D. Thesis, Università degli Studi di Verona, Verona, Italy, 2009.

32. Cohn, A.G.; Renz, J. Qualitative Spatial Representation and Reasoning. In Handbook of Knowledge Representation, Volume 1;
Harmelen, F.V., Lifschitz, V., Porter, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 551–596.

33. Gerevini, A.; Renz, J. Combining topological and size information for spatial reasoning. Artif. Intell. 2002, 137, 1–42. [CrossRef]
34. Cohn, A.G.; Varzi, A.C. Mereotopological connection. J. Philos. Log. 2003, 32, 357–390. [CrossRef]
35. Clementini, E.; Cohn, A.G. RCC*-9 and CBM*. In Proceedings of the Geographic Information Science. 8th International

Conference, GIScience 2014, Vienna, Austria, 24–26 September 2014; Duckham, M., Pebesma, E., Stewart, K., Frank, A.U., Eds.;
Springer: Berlin, Germany, 2014; Volume LNCS 8728, pp. 349–365.

36. Clementini, E.; Skiadopoulos, S.; Billen, R.; Tarquini, F. A reasoning system of ternary projective relations. IEEE Trans. Knowl.
Data Eng. 2010, 22, 161–178. [CrossRef]

37. Clementini, E.; Di Felice, P. A Model for Representing Topological Relationships Between Complex Geometric Features in Spatial
Databases. Inf. Sci. 1996, 90, 121–136. [CrossRef]

38. Egenhofer, M.J.; Clementini, E.; Di Felice, P. Topological relations between regions with holes. Int. J. Geogr. Inf. Syst. 1994,
8, 129–142. [CrossRef]

39. Munkres, J.R. Topology: A First Course; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1975.
40. Izadi, A.; Hahmann, T.; Guesgen, H.W.; Stock, K. Towards the modification of RCC*-9. In Proceedings of the Adventures in

GeoComputation (Geocomputation 2019), Queenstown, New Zealand, 18–21 September 2019.
41. Hahmann, T.; Gruninger, M. A Naive Theory of Dimension for Qualitative Spatial Relations. In Proceedings of the Logical

Formalizations of Commonsense Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06, Stanford,
CA, USA, 21–23 March 2011; AAAI Press: Menlo Park, CA, USA, 2011.

42. Clementini, E.; Sharma, J.; Egenhofer, M.J. Modelling topological spatial relations: Strategies for query processing. Comput.
Graph. 1994, 18, 815–822. [CrossRef]

43. Wölfl, S.; Mossakowski, T.; Schröder, L. Qualitative constraint calculi: Heterogeneous verification of composition tables. In
Proceedings of the 20th International FLAIRS Conference (FLAIRS-20), Key West, FL, USA, 7–9 May 2007; Wilson, D., Sutcliffe,
G., Eds.; AAAI Press: Menlo Park, CA, USA, 2007; pp. 665–670.

http://dx.doi.org/10.1006/jvlc.1994.1007
http://dx.doi.org/10.1023/A:1009712514511
http://dx.doi.org/10.1016/S0004-3702(02)00193-5
http://dx.doi.org/10.1023/A:1024895012224
http://dx.doi.org/10.1109/TKDE.2009.79
http://dx.doi.org/10.1016/0020-0255(95)00289-8
http://dx.doi.org/10.1080/02693799408901990
http://dx.doi.org/10.1016/0097-8493(94)90007-8


ISPRS Int. J. Geo-Inf. 2024, 13, 25 29 of 29

44. Randell, D.A.; Cohn, A.G.; Cui, Z. Computing transitivity tables: A challenge for automated theorem provers. In Proceed-
ings of the Automated Deduction—CADE-11, , Queenstown, New Zealand, 18–21 September 2019; Kapur, D., Ed.; Springer:
Berlin/Heidelberg, Germany, 1992; pp. 786–790.

45. Bennett, B. Logical Representations for Automated Reasoning about Spatial Relationships; Ph.D. Thesis, University of Leeds, Leeds, UK,
1997.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Definition of Geometric Features
	Features in 2D Space
	Features in 3D Space

	Definition of RCC*-9
	Demonstration That RCC*-9 Is JEPD
	The Case of Lines and Regions in 2D
	The Case of Points in 2D
	The Case of 3D Features

	Spatial Reasoning
	Implementation of Experiments
	Assessment of the JEPD Properties
	Finding Composition Tables
	Implementation of 3D Experiments

	Conclusions
	References

