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Abstract: OpenStreetMap (OSM) road networks provide public digital maps underlying many spatial
applications such as routing engines and navigation services. However, turning relationships and
time restrictions at OSM intersections are lacking in these maps, posing a threat to the accuracy and
reliability of the services. In this paper, a new turn information detection method for OSM intersec-
tions using the dynamic connection information from crowdsourced trajectory data is proposed to
address this problem. In this solution, the OSM intersection structure is extracted and simplified
and crowdsourced trajectories are projected onto OSM road segments using an improved Hidden
Markov Model (HMM) map matching method that explicitly traces the turning connections in road
networks. Optimal path analysis increases the turning support related to short road segments. On
this basis, this study transforms complex turning identification scenarios into the simple analyses
of traffic connectivity. Furthermore, a voting strategy is used to identify and calculate turning time
restrictions. The experimental results, using trajectory data from three cities in China, show that the
turning relationships can be detected at a precision of 90.71% with a recall of 96.55% and an F1-value
of 93.54% in Shanghai. For Wuhan, the precision is 95.33% and the recall is 95.00%, with an F1-value
of 95.16%. The precision and recall when identifying turning time restrictions both reach 90% in
Xiamen. These results demonstrate the effectiveness of the proposed turning detection method.

Keywords: turning relationships; map matching; turning time restrictions; OSM road networks;
crowdsourced trajectories

1. Introduction

OpenStreetMap (OSM) is a volunteer geographic information (VGI) project founded
by British engineer Steve Scott in 2004 [1]. This project has been growing rapidly, with
more than 8.3 million registered users, thus realizing a global, widely, and freely used road
network dataset [2]. Specifically, OSM road networks can be used in spatial analysis such
as constructing building databases and the evaluation of economic development [3,4] and
road obstruction [5]. In addition, these road networks support spatial applications such as
identifying traffic congestion [6,7] and intelligent traffic management [8].

Among these applications, route planning and vehicle navigation services are the key
areas [9], which means that the turning rule constraints must be respected in OSM road net-
works. Although OSM contains labels describing turning relationships at intersections [10],
turn information (i.e., turning relationships and time restrictions) is significantly lacking,
relative to the size of the OSM road network [11], severely threatening the accuracy and
reliability of route planning and real-time traffic navigation services based on the OSM
road network. More specifically, interconnected road sections found in the digital road map
may actually not be connected in real traffic due to restricted turns, posing a complex and
prominent problem for applications. Therefore, supplementing turn information in OSM
road networks is of great practical significance.

Researchers have conducted extensive research on detecting turn information using
various spatial datasets, including visual data from street scenes or mobile phone cam-
eras [12-14], as well as crowdsourced trajectory data [13,15]. In practice, traffic signs in
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images are often difficult to discern due to various factors such as inclement weather or
obstructed views caused by trees or leaves. Ubiquitous crowdsourced trajectories collected
by mobile devices providing location-based services, however, contain a considerable
amount of dynamic traffic information. In contrast to high-quality trajectory data, crowd-
sourced trajectories have distinct advantages in terms of cost-effectiveness, availability,
and coverage on a road network. Therefore, detecting traffic turn information from crowd-
sourced trajectories is a low-cost, effective, and promising approach for improved spatial
applications such as routing engines and navigation services.

Detecting turn information for OSM intersections based on crowdsourced trajectories
remains challenging. The number and shape of turning relationships vary at intersections
due to the fact that OSM intersections consist of diverse and complex structures, making
turning detection intractable. Existing studies mainly focus on clustering turning trajecto-
ries with respect to the similarity of turn-related directions or shapes [16-18]. However,
the accuracy of the result depends on clustering parameters, which makes it arduous to
select the appropriate parameters for the complete OSM road network. Therefore, some
researchers have turned to the map matching method to assign the dynamic traffic connec-
tions of trajectories to road segments. This method uses a known road network structure
to identify traffic accessibility through turning rules and therefore demonstrates greater
adaptability than the clustering method [11]. However, this also raises some new issues.
First, sorting out every turning connection of the target intersections from connections
between any two segments still requires intensive human involvement because of the
complex structures of OSM intersections, which is essential before turning rule detection;
second, the anomalous semantic behaviors of trajectories caused by point drifting defies
the calculation rules in map matching methods and leads to matching errors, e.g., reverse
driving on a one-way segment; third, the spatial discontinuity of the matched segments
corresponding to the continuous points due to low-frequency sampling interrupts turn-
ing connections, leaving certain roads, especially short segments, with insufficient turn
information detection. The complicated and various structures of OSM intersections and
low-quality crowdsourced trajectories increase the difficulty of turning detection, which
cannot be easily resolved; furthermore, many methods concentrate on detecting the turning
relationships but ignore the turning time restrictions that are also important in real-time
traffic applications.

In this study, we aim to address the lack of turn information in OSM road networks.
We present an intersection turning detection method that takes into account dynamic con-
nection information of crowdsourced trajectory data based on the map matching method.
Crowdsourced trajectories and OSM road networks are raw input data, and paired turn-
ing rules and turning time restrictions per hour are the output. The contributions of our
research are as follows:

1.  An intersection turning detection method is presented to endow road networks
with turning relationships, which includes a crucial approach that simplifies OSM
intersection structures. Our method transforms the complex turning identification
scenarios into the uniform and simple analysis of traffic connectivity, exhibiting fine
adaptability to various intersections.

2. The improved HMM map matching method is adopted to identify reverse driving
sequences in terms of the valid drifting distance, which projects low-quality crowd-
sourced trajectories onto OSM road segments.

3. Optimum route analysis is introduced to explore the hidden turn information between
the adjacent trajectory points, using travel time similarity to ensure the credibility
of the found optimum route. This approach facilitates turning detection on short
road segments.

4. The voting strategy is designed to extract turning time restriction information us-
ing the time series of the direct and detour turning support, which provides the
quantitative detection of turning time restrictions in OSM road networks.
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The rest of the study is organized as follows. Section 2 describes the previous research
related to our work. Section 3 describes our method in detail. Section 4 presents the experi-
mental results of our method. Section 5 shows the result interpretation and performance
comparison of our method. Finally, Section 6 gives the conclusions and directions for
future work.

2. Related Works

With the popularity of location-sensing devices, such as smart phones and vehicle-
mounted GPS, crowdsourced trajectories representing the continuous spatio-temporal
movements of urban residents have become a mainstay in traffic information extraction [11].
Researchers have extensively used crowdsourced trajectory-based methods to identify
turn information from road intersections; these generally rely on clustering and map
matching techniques.

The clustering method classifies turning trajectories according to their directional or
shape similarity, and each group represents a specific turning rule at an intersection. Jing
Wang et al. [19], Rong Hu et al. [16], Xiang Shuang Tan et al. [17] detected road intersections
and then clustered the turning trajectories approaching the intersection coverage in terms
of turning headings. Considering that turning rules with similar directions can hardly be
distinguished as the result of the clustering features used, which are only related to direction,
Min Deng et al. proposed a hierarchical trajectory clustering algorithm to identify turning
modes [20], wherein the shape and direction features were used to measure trajectory
similarity, and the Davies-Bouldin Index [21] was introduced to evaluate the selected
clustering number. However, the clustering results are severely sensitive to the clustering
parameters, and identifying turning relationships for specific intersections with different
structures and sizes requires various clustering parameters. Therefore, it is difficult to
determine and unify the common parameters to suit turning detection for all scenarios.

A handful of research projects the dynamic traffic connections of trajectories onto a
road network based on the map matching method, which introduces the given intersection
structures to identify the traffic accessibility of turning rules thereof. Based on the Fréchet
distance curve matching method [22] and the ST matching method [23], Efentakis et al.
identified the prohibited turn [11], of which the turning frequency ratio to the total number
driving away the same road segment is less than the threshold. Using the map matching
method considering confidence points [24], Min Huang et al. divided turning categories in
advance and used the support vector machine (SVM) to perform turning classification [19].
However, these methods did not give a solution for identifying intersections and picking
out the specific turning connections thereof from connections between any two segments
before turning rule detection, which still requires intensive human efforts. Meanwhile, the
map matching methods used pay more attention to the execution efficiency or matching
accuracy facing the normal trajectories, but ignore the behavior semantic anomalies in
the trajectory caused by point drifting, leading to map matching errors. Moreover, low-
frequency trajectories passing through certain segments may leave no sampling points,
resulting in discontinuous matched segments of continuous points, which are unavailable
for turning detection. Existing methods generally filter out low-frequency subtrajectories,
causing insufficient turn information detection, especially related to short segments.

In addition, the aforementioned research generally neglects turning time restrictions.
The limited research with respect to time restrictions consists of one study [15], which
remains a cursory analysis by displaying turning support per hour, and was inefficient
when diagnosing multiple turning relationships.

3. Methodology

A workflow of the proposed method for identifying turning relationships and time
restrictions of OSM intersections is shown in Figure 1, where three essential steps are
illustrated. In phase 1, trajectory quality is improved by denoising and cleaning, and
OSM intersection structures are simplified to facilitate turning edge detection. In phase 2,
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crowdsourced trajectories are projected onto OSM road segments based on the improved
HMM map matching algorithm, thereby explicitly displaying their turning processes
in road networks. Considering the low-frequency sampling and uneven distribution of
crowdsourced trajectories, optimum route analysis is introduced to increase support for the
extraction of turning relationships on short road segments from trajectories. The turning
relationships can now be identified. In phase 3, after confirming the potential time-restricted
turns, the voting strategy calculates the banned traffic time of the turns. These phases will
be detailed in the following subsections.

Input
Original trajectory OSM road net\vc;rk
P  Zaiaieluisieieieieinieieieleh v
! Phase 1 Trajectory quality Intersection structure i
E Preprocessing improvement simplification !
N e ] R S S
{ Map matching method x ':
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i Identifying turning Optimum route analysis Turning edges E
E relationships for hlddfn route at intersection |
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i Identifying turning relationship by '
' trajectory support S
[ — - N
! Phase 3: Potential tlme-resFrlcted turn :
1 - . . confirmation !
i Identifying turning time 1 '
i restrictions Restricted time E
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Turning rules at intersection
Figure 1. Workflow of the proposed method.

3.1. Preprocessing
3.1.1. Trajectory Quality Improvement

Definition 1 (trajectory). A trajectory refers to a sequence of points recorded during a period,
which is denoted as T = {Py,...,P;,..., Py}, (0 <i <n), where P; = {x; ,y;, t;,vi,a;}, Xi , i
are the longitude and latitude of P; in the geographic coordinate system, respectively, and v;, a; are
the instantaneous speed and azimuth of P; sampled at timestamp t;, respectively. The sampling
spatial distance and time interval of two consecutive points are defined as Ad and At, respectively.

Equipment failures and signal interruptions add noise and errors such as abnormal
sampling and position drifting to sampling points. Meanwhile, when vehicles are stationary
or moving slowly due to traffic jams, sampling points accumulate within a confined area.
Trajectories collected by users in different traffic modes may also be produced when driving
a nonmotor vehicle, so it is possible that trajectories could be on the reverse side of the road.
These trajectory fragments are not conducive to turning relationship identification. To filter
out these trajectory fragments, four preprocessing steps are introduced as follows:

1. Redundant data elimination: There are timestamp-repeated or position-repeated
sampling points in the trajectory. The first points of the repeated sets are retained and
the redundant data are deleted.
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2. Trajectory segmentation: Due to equipment failures or signal interruptions, there is
a large spatial or temporal interval between two consecutive points of trajectories.
Consequently, the trajectories appear discontinuous. However, in the proposed ap-
proach, turning processes are extracted from continuous drive trajectories. Therefore,
the thresholds ¢ and d are used to cut off the trajectories (3At > t or Ad > d).

3. Stop detection: The kernel density analysis in the literature [25] detects stop segments
in a trajectory. Stop segments are simplified and represented by their geometric
center point.

4. Non-motor-vehicle trajectory recognition: According to “Safety Technical Specifica-
tion for Electric Bicycle (GB17761-2018)” in China [26], the maximum speed limit for
driving electric bicycles is 25 km/h, which is far slower than the free-flow speed of mo-
tor vehicles. Hence, this study checks the maximum speed of trajectories throughout
their lifecycle and retains the trajectory whose speed is higher than the threshold.

3.1.2. Road Intersection Simplification

The intersections in the OSM road network are extracted and turning connections
are defined as the pairs of road segments connecting to the target intersection, thereby
detecting the turn information from the historic paths of trajectories, using definition 2:

Definition 2 (road network). The OSM road network is represented as a directed graph G(E, V'),
where E is the edges of the graph and V is the vertexes of the edges, and the shared vertex of three or
more edges on the ground is referred to as the cross point (CP).

Considering that the OSM road network is drawn by different volunteers, and further,
intersections have complex and diverse structures, there are various ways to express OSM
intersections. Consequently, detecting OSM intersections and ascertaining the correspond-
ing turning connections take much work. On the other hand, this study is only interested
in the traffic rules between turning road segments instead of the internal structures of
intersections. To this end, this study extracts and simplifies OSM intersection structures to
facilitate turn information identification, as shown in Figure 2:

N
‘*‘-—.,___‘_-_
—
"—_\
e |
of [T,
(a) (b) (c) (d)
— Road segments © CPs ® CPs belong to one intersection — Road direction

Figure 2. The process of intersection simplification: (a) the existing CPs; (b) all CPs detected after road
interruption; (c) the CPs belong to one intersection; (d) the intersection is simplified as a connection
point, and the road direction is derived from OSM road attributes [27].

Figure 2 illustrates the process of the method. Firstly, considering that the intersected
road segments may lack the CP (see Figure 2a), the road segments on the ground are
uniformly interrupted at the intersected position to detect all CPs in the road network. In
OSM road networks, an intersection formed by three or more road segments either meeting
or crossing could generate multiple CPs (as shown in Figure 2b, the crossroad). This study
aims to discover the CPs of each intersection and integrate them into a connection point to
approximately represent the intersection’s position.
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Subsequently, a top—down quadtree-based cell division method hierarchically splits
the road network region into the smallest cells [28]. The CPs of spatial 4-neighborhood
cells are grouped together (Figure 2c) and are considered to belong to one intersection.
To distinguish the CPs of the adjacent intersections, referring to the minimum interval
distance between intersections [29], the division is stopped when the length of the cell side
is less than 50 m. Subsequently, the connection point is obtained by calculating the average
coordinate of eight CPs (as shown in Figure 2d).

After simplifying the OSM intersections, the turning roads are directly connected to
each other through a common connection point to intuitively show the turning connections
(as listed in Table 1), facilitating turn information detection and map matching computation.

Table 1. The related turning connections of the intersection.

Intersection Entering Roads Leaving Roads Examined Turning Connections

IS e1,€3, es, ey €64, €g, €8 ISeiey,ISe1ey, 1Seqeq, 1Seqeg etc.

3.2. Identifying Turning Relationships
3.2.1. Map Matching Method Improvement

Definition 3 (matching sequence). Tm = {Cy,...,C;,...,C,}, i € [1,n], C; = {X;, Y, e},
where the matched point of P; on the road segment e; is denoted as C;, and X; , Y; are the longitude
and latitude of C; in the geographic coordinate system, respectively.

The turn processes of the trajectories reaching intersections can be detected from their
historic routes. A map matching method was introduced to combine the deviating trajectory
points with the road network to recover their routes of spatial travel. The Hidden Markov
Model (HMM) is a probabilistic statistical model determined by initial probability, emission
probability, and transition probability distribution [30,31], and effectively integrates point
positioning error, driving context distance, and driving direction in the path inference.
The HMM map matching method fully considers the correlation among trajectories and
road sections, thereby effectively improving the matching accuracy of low-frequency and
high-noise crowdsourced trajectory data. Therefore, the HMM map matching method was
adopted to restore the driving routes of trajectories.

HMM defines a system’s behavior as a sequence of states (Cy, ..., Cy), which are the
hidden states of a trajectory sequence of observed states (Py, ..., Pn). The probability of the
position C,, corresponding to a position measurement Py, is as follows:

-

P(Cy) = ) TP(Ci|Ci1)-EP(Ci|P}), i € [2,n] @

=2

where P(C,) is the probability of the last position candidate C;;. The emission probability of
position candidate C; is EP(C;|P;) and transition probability from position C;_; to position
C;is TP(C;|C;_1). By employing the Viterbi algorithm, a sequence of the most likely driving
positions (C, ..., C,) can be deduced when P(Cj,) is the maximum value [31].

A trajectory collected by taking a car and then riding a bike may drive reversely on the
road segment and can hardly be distinguished through data preprocessing. The influence
of tall buildings and overpass coverings can lead to multipath interference [32], causing a
point to drift to the rear of the previous point, an example of pseudo-reverse driving. This
phenomenon causes matching errors; therefore, reverse driving was detected based on the
constraint of the directional consistency between trajectories and roads.

To build the structure of the directed road network in map matching, two one-way
roads in opposite directions were taken to signify a two-way road, considered as generally
low-grade in OSM road networks. Excluding U-turns, either the driving distance of the
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former of two adjacent points matched to the same one-way road is less than the latter, or
the latter is driving in reverse, as shown in Figure 3.

o 51
H e, H — Road segment
A Pe — Pao _p - —| I #— Road direction -
4 I Trajectory point h e y
P Ps Matched point = ""1-"" “
i+1 . .
® S "% Intersection —8—8 8 —8 89—
pl Fallacious route
i+1
4,
(a) (b)

Figure 3. Identifying reverse driving with the improved map matching method: (a) the route from P,
to P; calculated by the traditional matching algorithm concludes two U-turns (from e; to e; and then
back to e;). Conversely, the reverse-driving matched point P; is projected on the position of matched
point of P, with the improved method, which makes the route more reasonable; (b) the matched
result of a reverse driving trajectory with our method, where the number corresponds to the point
index in the trajectory.

As shown in Figure 3a, P; ;1 of Tj is reverse driving because A;1<A; (thatis d; 1 < 0).
Moreover, this study assumes that point P; 1 could be deduced as pseudo-driving if the
reverse drifting distance is within a threshold dv (that is d; ;1 < dv); then, the transition
probability of pseudo-reverse driving TP(C;1|C;), of candidate C;yq is added in the
transition probability calculation from P; to P;;1. To ensure the reasonable matching
process for normal trajectories on two-way or parallel roads, we used a penalty factor pf in
TP(Ci41 |C;), calculation, which is defined as follows:

dix1 = Aiy1 — Ay, (i € [1,n]) 2
TP(Ci41/Ci) ~ vexp{ v(|Pis1 — Pil| — ({Ciy1 — Ci)]) } ®)
TP(Ci41/Ci), = pf * TP(Ci41|Ci) pf € (0,1) (4)

where A; is the driving distance of P; on the matched road e;. In Equation (3), the normal
transition probability of P;,; from P; is denoted as TP(C;1|C;), and the obtained path is
denoted as (C;y1 — C;) and has length |(C;11 — C;)|. 7 is the specific parameter for the
best sampling according to the literature [30]. In Equation (3), [(Ci11 — C;)| is equal to d;
in reverse driving, and a small penalty factor value incurs a large penalty force.

3.2.2. Optimum Route Analysis for Hidden Routes

A course of turns in trajectories can be detected by identifying a pair of continuous
turning roads in the corresponding matched sequence. However, a “leaping match” prob-
lem arises due to the low-frequency sampling of trajectories. In other words, the trajectories
pass through certain road segments but leave no sampling point (as shown in Figure 4a,
from C; to Cy), whereby the adjacent matched segments are discontinuous and the turning
process is unknown. The discontinuities are invalid and excluded, leading to the insuffi-
cient detection of turn information, especially on the short segments with relatively sparse
trajectory data. Therefore, optimum route analysis was adopted to complement the hidden
routes for the adjacent “leaping match” points.

The shortest driving distance is the key reference factor in optimum route analysis [33],
but regarding the shortest route as the optimum is still suspicious because the authenticity
of the turning relationships contained remains pending, as depicted in Figure 4.
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Figure 4. The driving routes and the time gaps of the adjacent matched points: (a) two candidate
routes from Cj to Cy, and (b) the real travel time of the subtrajectory on the candidate route equals
At(CirCi+3) — tieape — tenter-

where

As shown in Figure 4a, there are two available paths from C; to Cp, where the shortest
route path, seems to be a priority; contrarily, the detour path, would be a practical selection
if the right turn in path, is restriction. Therefore, referring to Bozhao Li [33], travel time
is introduced to control the valid driving range of the optimum path to exclude detours.
Specifically, candidate routes are calculated using the Dijkstra algorithm, part of which is
discarded if the length exceeds the maximum distance allowed by travel time, assuming
that the maximum limit speed in a city is 120 km/h. Nevertheless, selecting the optimum
among the rest is still a difficult issue. To this end, travel time similarity is used to identify
the final and reliable optimum route.

Specifically, we compared the estimated travel time (ETT) of the adjacent points with
the reference travel time (RTT) of each candidate route. The route with the highest similarity
degree was considered to be the reliable and optimum route. The specific travel time
calculation requires further explanation. The subtrajectories that explicitly pass through
a candidate path were found by observing their consecutive matched points (as shown
in Figure 4b) and the real travel time thereof was obtained through the candidate route.
On this basis, the RTT of the route candidate was calculated by the real travel time of
subtrajectories, defined as follows:

U At
RTTk — 21 » ture (5)

where RTT}. denotes the RTT of the kth candidate route. At],, is the real travel time of the gth
subtrajectory on the candidate route, and n denotes the number of the subtrajectories obtained.

In calculating Aty it was found that the first entering intersection and the last
leaving intersection of all candidate routes of two adjacent points are fixed (as shown
in Figure 4a). As a result, the candidate routes were further replaced with the paths
between the two intersections. The replaced candidate routes are immune to entering
intersection and leaving intersection positions of subtrajectories (as shown in Figure 4b),
thereby facilitating RTT calculation using a fixed distance. In particular, this study selected
the subtrajectories that were not during peak time considering that Aty would grow
large because of congestion. Moreover, it was assumed that there was an even positive
correlation between the driving distance and time of two adjacent points. As shown in
Figure 4b, the detail At calculation is defined as follows:

Attrue = At(cz‘/ Ci+3) — teque — tenter (6)
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Dist(C;, Interenter)
N AHC,, C; 7
leave DiSt(Cl’, Ci+1> (Cz/ Cl+1) ( )
Dist(Interpgpe, C;
Fontor = ( leave z+3) 'At(ci+2/ Cz’+3) (8)

Dist(Cit2,Cyy3)

where At(Cj, Ci3) denotes the sampling interval time between C; and Cj, 3; Dist(C;, C; ;)
is the driving distance between C; and C; .

Correspondingly, ETT for different candidate paths of the adjacent points (e.g., C; and
C, in Figure 4a) is as follows:

DiSf(Iﬂt@renter/ Interleave)
Dist(Cq, Cp)

ETTy = At(Cp, Ca) )

where ETT) denotes the ETT of the kth candidate route that adjacent points (Cy,Cy)
go through.

Finally, we subtracted ETT and RTT and compared their similarity for each candidate
path to find the optimum route. This method introduced the real travel time for each
candidate path to improve the reliability and ensures reasonable connectivity of the found
optimum route.

3.2.3. Identifying Turning Relationships from Trajectory Support

After detecting turn information from the completed driving route of the matched
sequence, we counted the trajectory support (TS) to identify the turn relationships of inter-
sections. In this instance, trajectory support refers to the number of turns in trajectories
crossing a target intersection. If drivers do not respect the rules of the road, then a small set
of TSs are not sufficient for accurately identifying the permitted turn relationships. There-
fore, referring to “consensus knowledge” and using massive crowdsourced trajectory data,
an arbitrary empirical value (SUP) set at an arbitrary value to judge if a turn relationship at
an intersection is permitted or forbidden. Therefore, multiple experiments were conducted
to determine the optimal SUP considering the sparseness and noisiness of the trajectories.
Identifying turning relationships is defined as follows:

(er,e1) = {gﬁiﬁ ; ggllz r,t €(0,8) (10)

where Num is the TS number of turning relationship (e;, ;). (e, ;) is permitted if Num > SUP.

Now, we can transform the complex turning identification scenarios into the
uniform and simple analysis of traffic connectivity, exhibiting fine adaptability to
various intersections.

3.3. Identifying Turning Time Restrictions

During peak periods, turning time restrictions are commonly implemented at intersec-
tions in urban center areas to regulate traffic order and reduce congestion. To identify these
restrictions, we first analyzed the TS time series of potential time-restricted turns and then
adopted a voting strategy to calculate the banned traffic time.

3.3.1. Potential Time-Restricted Turn Confirmation

Definition 4 (TS time series). TS;;{i € (1,n),j € (1,24)}, where TS;; is the hourly TS time
series of a turning relationship, and each day is regarded as a period, so the TS at the jth time node
in the ith day is denoted as TS;;.

Since most drivers are assumed to be aware of turning time restrictions but only
drive illegally by accident, the TS of the banned traffic time is normally weak instead of
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none. In addition, there is low throughput in the segments affected by traffic accidents
or traffic jams. Therefore, it is hard to determine the threshold for time-restricted turns.
However, the TS of banned traffic time is generally small and stable for certain periods.
The seasonality component from time series decomposition can describe the long-term
cyclical characteristics of a time series, and Dynamic Time Warping (DTW) takes the
misalignment of time axis steps into account when measuring the similarity of two time
series. So, DTW can efficiently measure the fluctuation of two time series of any two
days. Thus, the seasonality component and DTW similarity calculations effectively reveal
time-restricted turns.

Time restrictions often occur during human active times (from 6:00 a.m. to 24:00
p-m.). During this period, TS is paradoxically smaller than the rest of the times (from
0:00 am. to 6:00 a.m.) in the day. We identify the possible time-restricted turn if the
long-term minimum of TS;; is located within active times. Since the TS of the banned traffic
time is periodic, small, and stable, the potential banned time is initially confirmed if the
normalized seasonality component and the normalized average fluctuation thereof are both
negative values.

n G
j= argmin(zz_;”y € (1,n),je(1,24) (11)

where 7 is the number of the test periods, and the turning relationship is regarded as the
possible time-restricted turn if j is located within active times.

3.3.2. Restricted Time Calculation

Considering the weak TS of the banned traffic time, there is a significant difference in
the TS value between the adjacent banned traffic time node and normal time node, resulting
in two distinct change points of at the boundary of each banned period. Drivers tend to
take detours as the alternative during banned traffic time to complete their journeys, with
the detour gaining more support as compared to the direct route. Therefore, a voting
strategy was adopted to calculate the banned period exactly by considering the distinct
change points and the detour TSs.

The voting flow of the banned traffic period is shown in Figure 5. We calculated the detour
time series D;; and the banned traffic period block(j, j + x); of the target turning relationship.

v Y Vi >n/2
=1 |l / Banning Time j

Figure 5. The voting flow of banned traffic time.

Specifically, a turning relationship could be completed by a detour consisting of
multiple roads. The beginning and the ending of these roads are the real turning edges,
while the remainder links to the target intersection. For example, a left turn at intersections
could be completed by going straight, having a U-turn, and finally turning right (as shown
in Figure 6).
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Detour

The road
Turn left

Figure 6. A detour corresponding to a direct left turn: a turning relationship could be completed by a

detour consisting of multiple roads, and the red arrows are the paths of the two turns.

In addition, each banned block is determined by a pair of distinct change points, and
a detailed definition is given below. Next, during the potential banned time, two voting
items are further applied. The first V1;; = 1 if the D;; is greater than TS;; and the second
V2;; = 1if j in the banned block. Then, the banned traffic time of the ith day is marked as
Vij = 1 if at least one voting item equals 1. Finally, the banned traffic time j is confirmed
if the Vj; of more than half of the test periods equals 1. The banned block is calculated
as follows:

TSigen =TS
— W2 in (TS, TSyi41)) > 0,
mm(TSi]',TS,v(jH)) ( g l(]+1)) ] S [1, 23]
K max (TS, TSi(j.) ) min(TS;j, TS 1)) =0, (12)
T TS 11—TSii .
ij Bl (o2 )} e/ S min(TS;;, Ts(i+1)0) >0,
mm(TSi]',TS(iH)l) ] =24

max(TSi]-, TS(i+1)1)min(TSij, TS(i-‘rl)O) =0,

block; = [index (min(Kyj )), index(max(Kj; ))] (13)

where the TS change rate at the jth time node of the ith day is denoted as Kj;. Kj; is negative
when the TS shows a downward trend, or Kj; is positive.

The voting strategy uses the distinct change points, and the comparison between the
direct and detour turning support to extract turning time restriction information, which
provides a quantitative detection for turning time restrictions in OSM road networks.

4. Experiment

In this section, the experiments used three city datasets, Shanghai, Wuhan, and Xi-
amen, to validate the proposed method. Specifically, we compared our proposed turn
information detection method to Efentakis’ method, and made a comprehensive evaluation
of identifying turning relationship results for Shanghai and Wuhan. The Xiamen dataset
was used to assess the turning time restriction calculations. We also explored the optimal
value of SUP and evaluated the effectiveness of the improved map matching method and
optimum route analysis.

4.1. Datasets and Assessment Method

Multiple experiments were conducted to excavate turn information for the OSM road
network. Crowdsourced trajectories were collected from mobile phones in Shanghai and
Wuhan, covering the period from 1 August 2019 to 30 August 2019, and used to detect
turning relationships. After undergoing anonymization and preprocessing, the trajectories
were regarded as a motor vehicle data source as shown in Figure 7; the figures on the left
show the OSM road network, in which the red points are the intersections selected for
evaluation, and the figures on the right show the trajectory datasets.
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()

Figure 7. Test areas and trajectory datasets (the red points in the test area are the checked intersections):
(a) Shanghai; (b) Wuhan; (c) Xiamen.

These three figures illustrate the test data used in our experiments. The first two,
Figures a and b, show the Shanghai (Figure 7a) and Wuhan (Figure 7b) road networks.
Given that the time restriction analysis based on hour granularity was sensitive to the
disturbance of the few remaining non-motor-vehicle trajectories from mobile phones, we
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additionally adopted crowdsourced trajectories from taxis in Xiamen (Figure 7c) to calculate
turning time restriction. Each trajectory was stored in the format of record ID, timestamp,
latitude, longitude, speed, and azimuth. A description of the datasets after preprocessing
is shown in Table 2.

Table 2. Description of the trajectory datasets after preprocessing and the true value of turning relationships.

Cities Test Area Trajectories Trajectory All Driving Time Sampling Tested In- Positive Negative Total
(km?) ) Points Lengths (km) Frequency tersections Turns Turns Turns
. 1 August 2019 to :
Shanghai 10.0 x 10.0 713,748 8,163,604 943,726 30 August 2019 1sto2 min 448 4521 652 5173
1 August 2019 to .
Wuhan 35x25 17,894 215,932 23,094 30 August 2019 1sto2 min 100 580 48 628
Xiamen 125x9.0 637908 6,428,043 598,300 21 June2020to 4 ¢ 45 min 24 21 410 131
25 June 2020

The values for the tested turning relationships of the three test cities are presented
in Table 2. There were 448 and 100 intersections that contained a total of 5173 pairs and
628 pairs of turning relationships in Shanghai and Wuhan, respectively. The true values
of the accessible and prohibited turning relationships were confirmed based on actual
traffic accessibility and labeled as positive and negative samples, respectively (as shown in
Table 2). Moreover, this study examined 24 intersections in Xiamen, including 431 pairs
of turning relationships. Among these, 21 pairs under time-restricted management were
considered positive samples according to map street views.

Precision (Ppositive), recall (Rpositive), and Fl-value (F1psitive) are generally used to
evaluate experimental results in classification problems. Specifically, Pyysitive in Formula
(14) denotes the proportion of examples classified as positive that are actually positive,
which measures the ability to correctly identify positive samples; R positive IN Formula (15)
is the proportion of all positive samples that are identified as positive, which measures
the ability to identify positive samples; and F1sitive is @ comprehensive evaluation index
that balances Ppsitive and Rpositive- Moreover, Flyeiqps in Formula (20) weighted by the
ratio of positive Fl-value F1,ssive and negative Fl-value F1;pg4tive is further introduced to
evaluate turning relationship identification since the positive number is much larger than
the negative. To conclude, a higher F1,,¢,; value indicates better experimental results. The
assessment indicators are defined as follows:

Ppositive = TP/ (TP + FP) (14)

Rpositive = TP/ (TP + FN) (15)

Flpositive = 2 * Ppositive * Rpositive/ (Ppositive + Rpositive) (16)
Paegative = TN/ (FN + TN) (17)

Ryegative = TN/(FP+TN) (18)

Flyegative = 2 * Puegative * Ruegative/ (Pnegative + Ruegative) (19)
Flyeignt = & * Flpositive + B * Flyegative (20)

« = (TP + EN)/(TP + FP + FN + TN) 1)

B = (TN + FP)/(TP + FP + FN + TN) (22)
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where TP and FN are the number of positive samples identified as positive and negative
samples, respectively, and FP and TN are the number of negative samples identified
as positive and negative samples, respectively. Pyeeatives Ruegatives and Flyegative are the
precision, recall, and F1-value of the negative samples, respectively.

4.2. Experimental Results
4.2.1. Turn information Identification

In the step of improving trajectory quality, according to the experience from previous
studies [25,34], the maximum sampling frequency and sampling distance were set as 120 s
and 1.5 km, respectively; the spatial radius and time duration of stop detection were set
as 30 m and 60 s, respectively; and since the speed of nonmotor vehicles is usually less
than 25 km/h, which is far less than the speed of the free flow of motor vehicles, the
speed threshold of reserving motor vehicles was set as 25 km/h. Subsequently, to project
the crowdsourced trajectories onto the road segments, we used the improved HMM map
matching based on the framework provided by Yang [31] and set dv as 25 m, pf as 0.1,
and 7 as 0.8. To further verify the effectiveness of our method, Efentakis” method [11] was
chosen as the baseline method to compare with the proposed method. The threshold in
Efentakis’ method was an empirical value of 5%, meaning that the TS of the permitted turn
to the total number of TSs exiting from the same road segment should be higher than 5%.
By contrast, the SUP in our method was initially 10. A comparison is shown in Table 3.

Table 3. Comparison of the experimental results of different methods (%).

Methods Test Areas Ppositive Rpositive Plpositive Flnegative Flweight
Efentaki Shanghai 89.86 74.10 81.22 26.13 74.28
entakis Wuhan 97.04 79.14 87.18 33.50 83.08
o hod Shanghai 90.71 96.55 93.54 4047 86.85
ur metho Wuhan 97.90 80.52 88.36 38.20 84.53

Table 3 illustrates that the Ppyysitive, Rpositives and Flyyeigns of our method in Shanghai and
Wuhan increased in difference degree compared with Efentakis’ method. In addition, our
experiment in Xiamen identified time-restricted turning relationships with both precision
and recall reaching 90%. It shows that our method could comprehensively and efficiently
detect turning relationships and time restrictions for OSM intersections. In the following
section, we explore the best SUP for these two cities.

4.2.2. The Optimal SUP Value

To determine the best SUP value to obtain the optimal result for the turning relation-
ship identification of OSM road networks, this study conducted a series of experiments
with SUP =[2/4,6,8,10,12,14,16,18,20]. Table 4 illustrates the assessment indicators of the
different experiments.

These results suggest that F1;,,;¢,; reached 86.85% when SUP = 10 in Shanghai and
reached 91.16% when SUP = 4 in Wuhan, achieving the optimal result. We made two
improvements in the methodology; then, we verified the effectiveness of the improved map
matching method and optimum route analysis.
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Table 4. Comparison of the experiments with different SUP values (%).

Trajectory Support Values (SUPs)

Test Areas Evaluation (%)
4 6 8 10 12 14 16 18 20
Ppositive 89.46 89.79 90.10  90.36 90.71 9093 91.23 91.41 91.73  91.88
Ryositive 99.51 98.85 98.08  97.28 96.55 95.36 94.14 92.70 91.53  90.38
Shanghai Flpositive 9422 941 9392 9369 9354  93.09 9266 9205  91.63 9112
Flyegative 3065 3397 3651 3821 4047 4096 4189 4161 4247 4223
Flyeight 8621 8652 8668 8669 8685 8652 8626 8569 8543 8496
Ppositive 9359 9533 9670 9744 9790 9825 9843 9835  98.77 9923
R positive 98.10 9500  90.86 8534 8052 7759 7552 7207  69.14 6638
Wuhan Flpositive 95.79 95.16 93.69 90.99 88.36 86.71 85.47 83.18 81.34 79.55
Flyegative 2647 4286 458 4167 3820 3670 3549 3267 3185 31.25
Flyeight 90.49 91.16 90.03  87.22 84.53 82.89  81.65 79.32 7756  75.86

4.2.3. Reverse Driving Identification

A sample of 2500 pseudo-reverse driving trajectories were identified to verify the
effectiveness of the improved map matching method, wherein the reverse point is denoted
as P;. Compared with the previous point, the directional change in P; and P, is angle,
and angle,, respectively; the directional change in the relative displacement between P;_;
to P; and P; to P is angle;. The directional change distribution of these points is shown
in Figure 8.
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Figure 8. Distributions of angle;, angle,, and angles: angle; and angle, are concentrated in the area
of nearly 0°, while angle, is mainly distributed in the area with large values.

As shown in Figure 8, angle, and angle, are mostly concentrated around 0°, indicating
a consistency in the direction of most reverse points with their preceding and subsequent
points. This alignment suggests that these three points approximately lie on a straight line.
However, angle; shows a contradiction, being mainly distributed in the area with large
values. This distribution suggests that most points often follow a winding path between
their front and back points. The aforementioned phenomenon verified a contradiction
between the original direction and the movement direction of P;. Therefore, the improved
map matching algorithm can effectively detect pseudo-reverse driving in trajectories. These
three directional changes are defined as follows:

1
angle, = arc cos(a; — a;_q1) * %i €[0,N) (23)
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angle, = arc cos(a;1 — a;) * %i €[0,N) (24)
180

angles = arc cos (P,-_1>P,-' Pial) s [0,N) (25)

where 7 is the number of sampling points in the trajectory, the three points (P;_1, P;, Pi11)
lie on approximately one line if angle, and angle, are close to 0°, and P; has a turnaround
movement between its front and rear points if angle; approaches 180°.

4.2.4. Route Supplement Results

We compared the experimental results between using a route supplement and no

route supplement in Shanghai when SUP = 10 and in Wuhan when SUP = 4. The details
are as shown in Table 5.

Table 5. Comparison of the experiments of different cities with different approaches (%).

Test Areas Approaches Ppositive Rypositive Flpositive F1,egative Flyeight
Shanghai No Route Supplement 93.76 69.74 79.99 35.91 74.43
(SUP =10) Route Supplement 90.71 96.55 93.54 40.47 86.85
Wuhan No Route Supplement 96.56 82.24 88.83 34.06 84.64
(SUP =4) Route Supplement 95.33 95.00 95.16 42.86 91.16

After conducting optimum route analysis for the hidden turn information, a note-
worthy enhancement in Rpsitive Was obtained while maintaining high Ppositive Values.
Specifically, Rypositive increased by 26.81% in Shanghai and 12.76% in Wuhan, respectively.
Moreover, as shown in Figure 9, Flositive, Fluegatives a0d Flyseignt also increased to different
extents in both cities, which indicates that conducting a route supplement can identify
turning relationships more completely.
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