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Abstract: Determining the optimal planning scale for urban life circles and analyzing the associated
built environment factors are crucial for comprehending and regulating residential differentiation.
This study aims to bridge the current research void concerning the nonlinear hierarchical relationships
between the built environment and residential differentiation under the multiscale effect. Specifically,
six indicators were derived from urban crowdsourcing data: diversity of built environment function
(DBEF1), density of built environment function (DBEF2), blue–green environment (BGE), traffic
accessibility (TA), population vitality (PV), and shopping vitality (SV). Then, a gradient boosting
decision tree (GBDT) was applied to derive the analysis of these indicators. Finally, the interpretability
of machine learning was leveraged to quantify the relative importance and nonlinear relationships
between built environment indicators and housing prices. The results indicate a hierarchical structure
and inflection point effect of the built environment on residential premiums. Notably, the impact
trend of the built environment on housing prices within a 15 min life circle remains stable. The effect
of crowd behavior, as depicted by PV and SV, on housing prices emerges as the most significant
factor. Furthermore, this study also categorizes housing into common and high-end residences,
thereby unveiling that distinct residential neighborhoods exhibit varying degrees of dependence on
the built environment. The built environment exerts a scale effect on the formation of residential
differentiation, with housing prices exhibiting increased sensitivity to the built environment at a
smaller life circle scale. Conversely, the effect of the built environment on housing prices is amplified
at a larger life circle scale. Under the dual influence of the scale and hierarchical effect, this framework
can dynamically adapt to the uncertainty of changes in life circle planning policies and residential
markets. This provides strong theoretical support for exploring the optimal life circle scale, alleviating
residential differentiation, and promoting group fairness.

Keywords: multiscale life circle; nonlinear relationship; built environment; residential spatial
differentiation; crowdsourcing data; metropolitan area

1. Introduction

To address the imbalance in urban and rural development resulting from rapid urban-
ization, countries, such as Japan, South Korea, and China, have successively proposed the
planning perspective known as the life circle. It aims to optimize the allocation of public
serves and refine the structure of spatial functions, with the goal of achieving decentraliza-
tion [1–3]. The degree of development within the daily life circle, centered on residences,
significantly impacts residents’ quality of life [2,3], and residents’ perception of the built
environment is reflected in land rent or housing prices [3–5]. Therefore, through an analysis
of the relationships between the built environment and housing prices at the scale of the
life circle, we can optimize the allocation of public service facilities based on the humanism
concept, enhance residents’ quality of life, and improve human welfare [1,2,6].
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From the perspective of the life circle, in the “Community Life Circle Planning Techni-
cal Guide (TD/T 1062-2021)” issued by the Ministry of Natural Resources of China [7], the
function of the 15 min life circle is defined as guaranteeing basic living needs. From the
macro-scale of the city, the 15 min life circle can cover the service needs of residents [8,9].
However, when the scale is reduced to individual residential units, due to the influence
of technological advancements in the communication and transportation fields [10,11],
significant differences exist in their behavioral preferences [12], facility accessibility [8],
and opportunity costs [13]. Guided by behavioral geography [14], and influenced by the
built environment, travel modes, and income differences, the 15 min life circle faces the
challenge of elastic adaptability across different regions [15]. Moreover, due to the scale
effect, the scale of the built environment and the level of facility services vary with the
coverage of the life circle [16]. Hence, when considering a sole life circle perspective, it
becomes challenging to accurately depict the impact of the built environment on residential
neighborhoods and fails to support the attainment of equitable resource outcomes. Con-
versely, adopting the multiscale life circle approach allows for the dynamic identification of
the scale effect of the built environment while promoting the diversification of residential
neighborhood planning.

From the perspective of the urban built environment, with the massive generation of
urban crowdsourcing data, research based on the built environment within the life circle
has gradually become enriched. Its content has expanded from traditional planning data
such as land use type [17,18] to the functional properties represented by points of interest
(POI) [19,20], traffic network data [21,22], pedestrian vitality data based on location-based
services (LBSs) [23,24], blue–green space areas [25], etc. With the increased popularity of
various social media application, “checking in” at scenic spots and places of consumption
has become a trend among young people, which has yielded a new type of open source data
with a strong tendency toward consumption behavior, such as from Weibo, Xiaohongshu,
Meituan, etc. [26]. The resulting internet celebrity effect has significant positive guidance
on the regional consumption market and street vitality [27,28], so this study defines these
data as “shopping vitality” and includes them in the built environment indicators.

From the perspective of group attributes, individuals of differing social strata and
income brackets tend to congregate within distinct spatial realms, thereby engendering
autonomous differentiations in societal structure and spatial arrangements and even cul-
minating in residential segregation [29–31]. These differentiations in residential spatial
arrangements are frequently emblematic of the comprehensive manifestation of uneven
geographical dispersion in resource allocation. High-value residential space usually lays
claim to a more favorable built environment and societal resources [31,32]. Therefore,
housing price is not only an important indicator to measure the level of living space but
also an important identifier of class polarization and residential differentiation [31,33]. The
scale and speed of urban renewal cannot easily offset the degree of social differentiation,
especially under the urban–suburban–rural residential space in metropolitan areas, where
the differentiated landscape and class self-stratification phenomenon presented by the com-
plex evolution of the urban housing system are becoming more and more serious [33,34].
Therefore, exploration of the differentiation and formation mechanisms of residential space
morphology across different levels, focusing on residential differentiation and considering
multiple scales, has emerged as a prominent topic in the realms of urban spatial governance,
urban system renewal, and rural geography [33,35].

In fact, there is no shortage of research on the correlation between housing prices
and the urban built environment, both domestically and internationally. In terms of the
spatial scale, most of the settings for the impact range of housing prices rely on buffer
distance [36,37] and grid size execution [38,39]. However, this kind of spatial range de-
lineation based on regular shapes easily blurs the accurate expression of crowd travel
behavior and the real path associated with pedestrian streets. In terms of analysis meth-
ods, the traditional spatial Durbin model can be applied to the study of housing price
impacts at a larger city scale [40,41], but it only fits well with panel data. Relative to
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the built environment composed of complex urban crowdsourcing data, classical linear
relationships have difficulty in fitting spatial scales [42]. In this context, the hedonic price
model (HPM), primarily rooted in the ordinary least squares (OLS) framework, stands as
the most extensively employed paradigm. It elucidates the commoditized attributes of
dwellings from the vantage of housing economics [43]. However, this theory posits uniform
influences of factors across an entire region [44], thereby overlooking considerations of
spatial heterogeneity and spatial autocorrelation in the discourse of housing heterogene-
ity [45]. While there have been endeavors to circumvent these endogenous relationships
through the application of nonlinear hedonic models as measurement tools [46,47], the mul-
tifaceted market dynamics and the constrained public resources engender diverse-mode
housing conditions, thereby rendering the estimation of price functions within the model
arduous [48]. Furthermore, the HPM amalgamates the inherent architectural attributes of
residences with locational attributes within the same framework, inadvertently overlooking
the discernment of the impact of constructed environments on property valuations at a
realm as granular as the life circle. Quantifying this influence necessitates the exclusion
of the structural attributes of the dwelling itself. With the rise in exploratory spatial data
analysis (ESDA), methods, such as geographically weighted regression (GWR) [36,42] and
geographical detectors (GDs) [33,49], have been applied to the study of housing price im-
pact mechanisms. Although their parameter optimization and fitting degree are better than
those of previous multiple linear regression models, they still cannot escape the category
of linear relationships, and they are inadequate in explaining the original variables and
clarifying the impact mechanism.

The rapid development of artificial intelligence (AI) has led to the application of neural
networks (NNs) in the field of spatial information mining, which has led to a new method
suitable for analyzing, mining, and extracting crowdsourcing data, i.e., machine learning
(ML). Machine learning has matured in geoscience research, and the gradient boosting de-
cision tree (GBDT) algorithm has shown excellent applicability for the information mining
of urban crowdsourcing data and nonlinear relationships in the living environment [18,50].
On the one hand, its parameter variability can overcome the difficulty in fitting the hedonic
model under multimodality [22,51]. Simultaneously, it also serves to markedly attenuate
the spatial autocorrelation inherent in housing prices, thereby redressing the predicament
of multicollinearity among variables. This, in turn, circumvents the constraints associated
with variable selection owing to collinearity [45,52,53]; on the other hand, the hierarchical
effect of GBDT can overcome the non-observability of exploratory spatial analysis [50,54].
In addition, when the spatial scale changes, GBDT is better able to capture the impact effect
under a dynamic perspective than classical correlation models [22].

In light of this setting, our study is based on multiscale life circles, exploring the
nonlinear and hierarchical effect of the built environment on housing prices. Specifically,
taking the Chengdu metropolitan area as an example, we obtain housing prices from
online housing sales platforms. The built environment is considered from six dimensions:
functional mix, quantity of life service facilities, living environment, traffic accessibility,
consumption vitality, and crowd vitality. We integrate the actual housing sales situation in
Chengdu, following the principle of minimizing within-group variance and maximizing
between-group variance, and the balance of the built environment in living spaces under
price differences is further verified by binning the housing price data. This study attempts
to answer the following research issues: (1) What kind of relationship exists between built
environment factors and housing prices? (2) How do disparities in built environment
indicators influence residential differentiation? (3) How do built environment indicators,
in the event of alterations in the scale of the life circle, substantively influence both housing
prices and residential differentiation? This research provides strong theoretical support for
life circle planning and improvements in public welfare.
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2. Materials and Methods
2.1. Research Design

To explore the nonlinear relationship between residential housing prices and the
built environment, this study proposes a nonlinear model based on machine learning and
examines the contributions and hierarchical effects of various built environment indicators
from the perspectives of multiscale life circles and residential differentiation (Figure 1).
With the support of urban crowdsourcing data, we unify the scale and dimension of similar
multisource data and integrate them into six categories of indicators: diversity of built
environment functions (DBEF1), density of built environment functions (DBEF2), blue–
green environment (BGE), traffic accessibility (TA), population vitality (PV), and shopping
vitality (SV) (Figure 1c). In terms of scale, with changes in walking time and distance, there
will be significant differences in people’s perception and experience of the surrounding
environment [22,55]. Elias Willberg et al. [8] verified that the 10 min access experience
is most affected by differences in age and season sensitivity, while the 20 min difference
is the smallest; Li Linbo et al. [56] confirmed this view in a study of public transport
station accessibility. Therefore, this study uses the geometric center of the residential
neighborhoods to design 10 min, 15 min, and 20 min multiscale life circle catchment areas
(the actual travel distances are approximately 660 m, 990 m, and 1320 m, respectively), and
according to the cumulative percentage of housing prices and data differences (Figure 1b),
the results are divided into common residences and high-end residences. Finally, using
the machine learning method of GBDT, we explore the effects of the built environment on
housing prices under different life circles and different types of residences (Figure 1c).
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Figure 1. Research framework and technical route of this paper. (a) calculate the average price of
residential units and display it in the residential center. (b) construct multiscale life circle and classify
residential neighborhoods. (c) establishes the composition of the built environment indicators and
the nonlinear relationship driven by GBDT. In which, figures 1–3 are conceptual diagrams depicting
the nonlinear relationship between built environment indicators and housing prices for high-end
residences under different scale of life circle, while figures 4–6 represent common residences. The
same color lines represent the same scale of life circle.)
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2.2. Overview of the Study Area

Chengdu, a national central city in Western China, has a permanent population of
21.268 million and a built-up area of 1331.1 km2, with an average residential building
area of 36.57 m2 per person. As of 2022, the sales area of commercial housing reached
27.73 million m2. The annular spatial configuration of Chengdu city offers significant utility
in the establishment of a habitable life circle within rapidly expanding urban landscapes
across China. Utilizing Chengdu as a case study, insights garnered therein stand poised
to furnish a point of reference for the development of an optimal neighborhood-centric
life circle in central hub cities, such as Zhengzhou, Xi’an, Beijing, Shanghai, and others.
According to statistics from the Beike housing sales website (https://cd.ke.com/(accessed
on 18 November 2022)), the transaction volume of second-hand houses in 2022 was
151,300 units, 8380 units higher than that of new houses in the same period, indicating a
high level of activity in the second-hand housing market. Considering that the income
gap between the metropolitan and suburban area of Chengdu has significant impacts on
housing prices, and that the vast majority of transaction records are concentrated in the
metropolitan area, the metropolitan area of Chengdu serves as the study area (Figure 2).
This area includes 11 administrative districts, Jinjiang, Qingyang, Jinniu, Wuhou, Chenghua,
Xindu, Pidu, Wenjiang, Shuangliu, Longquanyi, and Qingbaijiang, and 2 functional districts,
High-tech Zone and Tianfu New Area. Additionally, the varying construction timelines of
second-hand houses and new houses introduce inaccuracies to the research findings. There-
fore, we opt to focus our research on second-hand houses with higher transaction volumes.
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2.3. Data Sources and Processing
2.3.1. Housing Price Data Collection and Processing

The housing price data were sourced from Beike (https://cd.ke.com/ (accessed on
18 November 2022)), China’s largest second-hand housing trading platform, using Python
to call the API. Data entries without price attributes were removed, leaving a total of
8083 housing price data entries. Since the transaction prices are recorded on a per-property
basis, there are cases where a residential neighborhood has multiple units, but they all
belong to the same neighborhood, i.e., the built environment of the living space should
be consistent. However, due to differences in construction time, layout, and other factors,
price variations can arise. To eliminate this impact, the prices of these residential units
were averaged and assigned to the geometric center point of the neighborhoods as the
final price (Figure 1a). After processing, there were a total of 5290 residential communities

https://cd.ke.com/(accessed
https://cd.ke.com/
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with price attributes (Figure 2). Figure 3 encapsulates the coefficient of variation (CV) of
housing prices during the process of data amalgamation for these residential complexes.
The mean CV registers at 0.05, with”mere’y 1% of the samples manifesting a CV exceeding
0.5 and 5% of the samples exhibiting a CV surpassing 0.25. This collective profile serves
to ensure a notable degree of stability in the property prices across various residential
communities, thereby efficaciously mitigating the potential impact stemming from inherent
idiosyncrasies of individual developments on pricing dynamics.
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2.3.2. Multiscale Life Circle Construction

The construction of a life circle first requires the acquisition of AOI data of the
residential area. These data were sourced from Amap (https://www.amap.com/ (ac-
cessed on 16 October 2022)), and the geometric center point was extracted using ArcGIS
10.6. QGIS 3.0 software can directly call the isochrone API in the open route service
(https://openrouteservice.org/ (accessed on 24 May 2023)). This study used this informa-
tion to create 10 min, 15 min, and 20 min walking life circles for residential communities
with housing price attributes.

2.3.3. Classification of Residential Neighborhoods

The spillover effect brought about by a prosperous real estate market is crucial to the
differentiation of residential spaces [57]. On the one hand, real estate market behavior is
strongly influenced by the decision preferences of developers [58], especially the location
choices of the built environment [59]. On the other hand, the regulation of housing prices
is not entirely controlled by the supply volume of developers but depends on the demand
volume of users [60]. Under the dual drive of the market and demand, the housing
preferences of different social strata show differentiation, thereby exacerbating the spillover
of housing prices [61]. Existing research has decomposed the housing market level from
the perspective of data quantile grading [62]. This study comprehensively considers the
actual housing market in the Chengdu metropolitan area and finds that when the ratio
of houses for sale is close to 85%, the number of houses tends to saturate with increasing
housing prices. At this time, the price is approximately RMD 26,000 (Figure 4). Therefore,
the dataset is divided into common residences (≤26,000) and high-end residences (>26,000)
based on this threshold. Before binning, the overall variance was approximately 7160; after
binning, the variance within common residences was approximately 4717, while that within
high-end residences was approximately 9015. Additionally, the variance between groups

https://www.amap.com/
https://openrouteservice.org/
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was approximately 5126. Therefore, the binning results preserve the price characteristics of
common residences while blurring the uncertainty of the high-end residence group.
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Figure 4. Chengdu metropolitan housing market division results.

2.3.4. Selection of Built Environment Indicators

Open data platforms have enriched the city’s crowdsourced datasets, providing mul-
tiple perspectives for the exploration of the urban built environment. In the design of
built environment indicators, this paper centers its attention on the formulation of life
circle, striving for a semblance of uniformity in the composition of these indicators. This
approach not only facilitates the establishment of nonlinear relationships with pragmatic
planning significance but also enhances the feasibility of rendering substantive evaluations
of the built environment quality tailored to the specific geographical context. Therefore,
this study, with residents’ behavioral trajectories as the main focus, pedestrian streets as
the dimension, and the scope of the life circle as the guide, comprehensively considers six
types of objects: density and types of living facilities, environmental perception, travel
ability, shopping vitality, and human flow activities. Living facilities refer to facilities
directly related to residents’ production and life, presented in the form of POIs (points of
interest), including seven categories: tourism, sports, education, medical, shopping, dining,
and transportation [63,64]. Environmental perception uses the area of water bodies and
green spaces (blue–green spaces) as an indicator. The blue–green space shows the natural
landscape of the living space, which is very important for improvements in the quality of
life and the experience of travel [25,65]. Traffic accessibility is exclusively quantified as the
total length of road according to the actual range of the life circle. The creation of a life
circle is predicated upon isochrones (zones reachable within stipulated timeframes). Hence,
the aggregated road length efficaciously mirrors both the connectivity and accessibility of
road networks [8,56]. Shopping vitality is based on data collected from China’s mainstream
social website Weibo and consumer website Meituan [38,66]. The former reflects the “check-
in” consumption behavior of popular places, while the latter provides dining consumption
information. Combining the two yields a more comprehensive coverage of consumer
trajectories across demographics. Finally, human flow activities are reflected by Tencent’s
location data and Keep’s running trajectory data. These data record location information
via software. From the perspective of usage frequency, Tencent’s location data collect
information at a large scale and the macro level [23,24], while Keep’s data are targeted at
micro human flow information at the community neighborhood scale [67,68]. Moreover,
the phenomena of morning and evening peaks in fitness jogging behavior enhance the time
dimension of the study [19]. Data collection was conducted in the year 2022, encompassing
the life circle of various residential communities as the sampling scope. Table 1 records the
descriptions and specific sources of these data, and Table 2 presents the basic situation of
the indicators under the 10 min, 15 min, and 20 min multiscale life circles.
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Table 1. Selection of built environment indicators and data description.

Aspect Variables Variables Description Meaning of Building Data Sources

Diversity of Built
Environment

Function (DBEF1)
Types of POIs

Shannon diversity index
(SHDI) of tourism, sports,

education, medical, shopping,
catering and

transportation facilities

Measure the supply capacity
of service facilities in the

life circle [63,64]
Amap open platform

(https://lbs.amap.com/
(accessed on 16 October 2022))Density of Built

Environment
Function (DBEF2)

Number of POIs

The point density of tourism,
sports, education, medical,

shopping, catering and
transportation

facilities (/km2)

Measure the richness of
service facilities in the

life circle [24,64]

Blue-Green
Environment (BGE)

Proportion of
Blue-Green Spaces

Proportion of green and
water area (km2)

Measure the amount of
natural landscape enjoyed in

the life circle [25,65]

Map World development platform
(https://www.tianditu.gov.cn/
(accessed on 10 August 2022))

Traffic Accessibility (TA) Road Network Length Total length of roads within
the life circle (km)

Measure the convenience of
travel in the life circle [8,56]

Population Vitality (PV)

Tencent Localization Data

Activity density
per km2 (/km2)

Measure the spatial vitality in
the life circle [24,68]

Tencent map location service
platform (https://lbs.qq.com/
(accessed on 14 March 2023))

Keep Trajectory Data
Keep open platform
(https://keep.com/

(accessed on 8 May 2023))

Shopping Vitality (SV)

Weibo Check-in Data
Measure the consumption

tendency in the
life circle [38,66]

Weibo open platform
(https://open.weibo.com/

(accessed on 23 March 2023))

Meituan Comments Data
Meituan open platform

(https://developer.meituan.com/
(accessed on 19 April 2023))

Table 2. Index status under multiscale life circle.

Aspect
10-min Life Circle 15-min Life Circle 20-min Life Circle

Mean Std Mean Std Mean Std

Diversity of Built Environment Function (DBEF1) 4.06 0.32 4.19 0.23 4.26 0.18
Density of Built Environment Function (DBEF2) 1276.48 756.93 1188.19 658.30 1116.08 594.29

Blue-Green Environment (BGE) 0.18 0.08 0.18 0.07 0.18 0.06
Traffic Accessibility (TA) 13.80 3.81 13.25 2.93 12.83 2.42
Population Vitality (PV) 335.02 390.18 331.54 367.20 326.07 343.50
Shopping Vitality (SV) 626.81 343.83 621.70 338.08 614.26 332.46

2.4. Modeling Method
2.4.1. Kernel Density Estimation

This study first developed a method to convert location data and social media data
into spatial vitality based on kernel density estimation. Given the significant population
aggregation in shopping malls, especially in central business districts (CBDs), kernel density
estimation reflects the spatial density distribution of pedestrian traffic and shopping activities.

To smooth the vitality measurement, we performed kernel density estimation (KDE)
on location data, trajectory data, review data, and social media data, outputting the point
density in each grid pixel [69]. The calculation of density f̂ (x, h) is typically based on the
bandwidth h and the kernel function, as expressed by Formula (1):

f̂ (x) =
1

nh ∑n
i=1 Kh(x− xi) (1)

where xi represents various types of point datasets containing coordinates X, Y, where
i takes values 1, 2,. . ., n; x is the center of X, Y in each pixel grid; and h is the search
bandwidth, i.e., the smoothing parameter. Considering the range of 10–20 min life circles,
the bandwidth h is set to 1500 m; Kh is the distance decay kernel function, which can be
expressed by Formula (2):

Kh(x) =
exp

(
− 1

2 xT , x
)

√
2πh

(2)

https://lbs.amap.com/
https://www.tianditu.gov.cn/
https://lbs.qq.com/
https://keep.com/
https://open.weibo.com/
https://developer.meituan.com/
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Given the variations in life circle areas across different scales, the vitality density
coverage rate will naturally diverge gradually, potentially undermining the model’s ro-
bustness. Furthermore, the data collection time intervals may not be completely consistent.
Considering the population’s mobility, density accumulates greater influence over time. As
a result, the density is treated as dimensionless and adjusted based on the life circle areas
and the collection time, as shown in Formula (3):

V =
f̂S
St

(3)

where f̂S is the total vitality density within the life circle; S is the area of the life circle; and t
is the duration of data collection.

2.4.2. Gradient Boosting Decision Tree

The study also uses the GBDT model to explore the relationship between housing
prices and the built environment. GBDT divides samples into multiple subgroups and uses
the average value of observations in each subgroup for prediction. Its goal is to simulate
real values through the minimum loss function, iterate multiple times, and reduce the
prediction error. Compared to ordinary regression models, GBDT has two advantages [18]:
(1) it does not demand normality of data and can accommodate variables with missing
values; (2) it solves the problem of multicollinearity within the data serves to avert the
intercorrelation among the built environment indicators.

GBDT can be used to construct multiple decision trees and, under their joint action,
establish an approximate function of response variable y for a set of explanatory variables
x, that is, f (x) [24,50]. This method is based on the accumulation of multiple single decision
trees h(x; am) to achieve f (x):

F(x) =
M

∑
m=1

fm(x) =
M

∑
m=1

βmh(x; am) (4)

where am is the average value of the starting and ending nodes of each split variable in the
single decision tree h(x; am) and βm is estimated by minimizing the loss L:

L(y, F(x)) = (y− F(x))2 (5)

To reduce the possibility of overfitting, a learning rate parameter ξ(0 < ξ ≤ 1) is
introduced to control the contribution of each base tree:

fm(x) = fm−1(x) + ξβmh(x; am) (6)

To obtain robust model results, fivefold cross-validation is used during model training,
with the main parameters including the number of trees, learning rate, and tree depth.
Under the overall sample (housing price data not stratified), this study selected up to
5000 trees, kept the shrinkage parameter at 0.001, and set the maximum depth to 5. After
2000 iterations, the model results were stable and achieved the best effect, with the pseudo
R2 of the three life circle samples all exceeding 0.5. In the design of housing price hierarchi-
cal effect, since the sample was divided into two portions and the data volume decreased,
the model was tested in the same way, and, finally, 1000 trees were used. The learning rate
was still kept at 0.001, the maximum depth was 4, and the pseudo R2 of both common
residences and high-end residences exceeded 0.6.

In addition, among many machine learning methods, the decision tree model is
particularly outstanding in terms of interpretability [20]. It establishes nonlinear relation-
ships between variables by creating partial dependencies (PDPs), overcoming the inherent
“black–box” characteristic of many machine learning models [20,22].
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Breiman et al. [70] adopted a method to evaluate the relative importance of factor xk
in predicting responses:

I2
k (T) =

J−1

∑
t=1

τ̂2
t I(v(t) = k) (7)

where the sum term is the nonterminal node of the J-end node number; xk is the split
variable associated with node t; and as the number of training iterations increases, τ̂2

t
continuously reduces the square error value of the prediction result. For the set of decision
trees {Tm}M

1 obtained via the gradient enhancement method, the average of all additive
trees is taken as follows:

I2
k =

1
M

M

∑
m=1

I2
k (Tm) (8)

3. Results
3.1. The Nonlinear Effects of the Built Environment on Housing Prices in a Multiscale Life Circle
3.1.1. The Relative Importance of Multiscale Built Environment Factors

The GBDT model can be used to identify the relative importance of various indicators
of the built environment to urban housing prices, that is, the relative contribution of each
indicator to the prediction of housing prices during the modeling process. This result
serves as a quantitative indicator of the impact. A higher value signifies a greater effect
on housing prices. The GBDT model findings demonstrate that all six indicators impact
housing prices (Table 3), with PV and SV being the most important. In the 10 min life circle,
SV exhibits the highest relative importance to housing prices, followed by DBEF2, while
TA has the weakest effects. Within the 15 min life circle, SV retains the most important
indicator, and the relative importance and order of each indicator are essentially the same
as those for the 10 min life circle. Within the 20 min life circle, the relative importance
and order of indicators change substantially, with PV becoming the most important. The
relative importance of SV, DBEF2, and DBEF1 remains consistent at approximately 16%,
while the weakest indicator is BGE.

Table 3. The relative importance of built environment factors of multiscale life circle to housing prices.

Independent Features
Relative Importance (%)

10-min 15-min 20-min Mean

Diversity of Built Environment Function (DBEF1) 10.67 10.88 15.85 12.47
Density of Built Environment Function (DBEF2) 20.83 19.88 15.59 18.77

Blue–Green Environment (BGE) 15.29 17.14 11.33 14.58
Traffic Accessibility (TA) 4.23 4.27 10.71 6.40
Population Vitality (PV) 14.61 13.79 30.39 19.60
Shopping Vitality (SV) 34.37 34.04 16.12 28.18

Overall, SV (28.18%), PV (19.60%), and DBEF2 (18.77%) are the most important indica-
tors within life circles of different scales. Although many studies have confirmed the impact
of various built environment factors on housing prices, in the life circle scale, population
and consumption affect housing prices most strongly. Within the 10–15 min life circles, the
importance of SV and DBEF2 is significantly higher than that within the 20 min life circle.
As the life circle expands, the significance of PV grows, and the underlying human flow
activities become an important indicator supporting regional housing prices. Conversely,
the importance of SV and DBEF2 diminishes, while the importance of DBEF1 rises. This
suggests that as the life circle scale expands, DEBEF1 becomes more important than density.
A richer built environment function enhances its capacity to cater to the varied living needs
of different populations on a larger scale.
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3.1.2. The Nonlinear Relationships between the Multiscale Built Environment and the
Housing Prices

The partial dependence plot (PDP) visualizes the nonlinear relationship between
different built environment factors and housing prices at different life circle scales (Figure 5),
and its trend is consistent with the results of the relative importance analysis. The overall
trend of the nonlinear relationship at the three life circle scales is consistent, but there are
significant differences in the nonlinear relationship between the 20 min life circle and the
10–15 min life circles at local points.
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Figure 5. Nonlinear relationship between the built environment factors and housing price in different
life circles. (a) DBEF1. (b) DBEF2. (c) BGE. (d) TA. (e) PV. (f) SV.

The partial dependence (PD) analysis reveals a declining trend in the effects of the built
environment function diversity and density on housing prices (Figure 5). In the 10–15 min
life circles (Figure 5a,b), both DBEF1 and DBEF2 exhibit similar downward trends, starting
with a rapid decline and eventually stabilizing with reduced impact. This suggests a
threshold hierarchical effect, indicating that the impact on housing prices is greater when
the DBEF1 and DBEF2 are at lower levels. As the function density and diversity gradually
increase, the impact on housing prices quickly declines until reaching a certain threshold,
after which it stabilizes. In the 20 min life circle, the influence of DBEF1 on housing prices
slightly increases with the increasing diversity, while the influence of DBEF2 remains stable.
In other words, increasing function density does not significantly augment the impact on
housing prices. Although the diversity and density of the built environment function have
an important impact on housing prices, there is a hierarchical threshold effect. This impact
is clearly manifested only when the function diversity and density are insufficient. As the
function diversity and density increase, this impact weakens.

The impact of the BGE on housing prices demonstrates an overall upward trend,
maintaining a similar trend across the three life circles (Figure 5c). This suggests that as
the proportion of BGE area increases, its impact on housing prices gradually strengthens.
The most pronounced strengthening trend is observed in the 10 min life circle, followed by
that in the 15 min life circle and the 20 min life circle. Notably, the scale difference of BGE
local dependence is noticeable. When the BGE area proportion is in the 0.15~0.22 interval,
the impact of BGE on housing prices quickly strengthens, and its area proportion increase
significantly affects housing prices in the 10–15 min life circles. This result indicates that
there is a strong and significant dependence and scarcity effect of BGE on housing prices. It
implies that the demand for BGE within the life circle remains unfulfilled, and an increase
in BGE can swiftly and significantly affect the changes in housing prices, highlighting the
current rigid demand for BGE in life circles. This underscores the rigid demand for BGE in
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life circles, most notably in smaller-scale ones. Residents envision a highly accessible green
environment within a 10 min life circle, where nearby BGE can greatly enhance residents’
happiness and livability. However, the impact of distant large-scale BGE on livability is
relatively weak.

The impacts of TA, PV, and SV on housing prices exhibit notable nonlinear relation-
ships (Figure 5d–f), and the local characteristics of dependence are clear. In the 10–15 min
life circles, the impact trends of TA, PV, and SV on housing prices are relatively consistent,
and the nonlinear trend of the impact in the 20 min life circle changes significantly, indicat-
ing a scale effect. In the 10–15 min life circles, the impacts of TA and SV on housing prices
show a gradually strengthening trend. The strengthening trend of TA’s impact on housing
prices is relatively consistent throughout the value range, among which the strengthening
trend of TA in the 15 min life circle is the most significant, suggesting that the relationship
between transportation accessibility and housing prices is the most significant at this scale.
In the 20 min life circle, the influence of TA shows a weakening trend, indicating that an
increase in transportation accessibility beyond a certain distance range will actually reduce
its impact on housing prices. This implies that the demand for transportation accessibility
for living needs is limited to a specific neighborhood. The impact of SV on housing prices
gradually strengthens in the 10–15 min life circles, but its strengthening trend has obvious
stages. When SV is in the low-value range (<250), the influence quickly increases; in the
middle-value range (250~700), the strengthening trend slows; and in the high-value range
(>700), the relationship remains stable. This result suggests that an increase in SV can
significantly affect housing prices, particularly when the impact trend is more pronounced
in the low-vitality stage. However, as SV continues to increase, the marginal effect on the
impact weakens; that is, SV has a high hierarchical threshold effect. The influence of PV
on housing prices exhibits a trend of first decreasing and then gradually increasing. The
turning point of the impact occurs at approximately 500 in the 10–15 min life circles and
approximately 400 in the 20 min life circle. This change implies that there is a threshold
in the impact of PV on housing prices. In other words, the impact of low-density PV on
housing prices tends to be weaker, while the impact of high-density PV tends to be stronger.
This relationship trend holds true across all three life circle scales.

3.2. The Hierarchical Effect of the Relationship between the Built Environment and Housing Prices
in a Multiscale Life Circle
3.2.1. Nonlinear Relationship and Hierarchical Effect of the Built Environment

The local dependence of various indicators of the built environment on housing
prices varies greatly in the 10 min life circle (Figure 6). The impact of DBEF1 and DBEF2
on high-end residential housing prices is relatively stable, with the impact of functional
diversity greater than that of functional density. However, both DBEF1 and DBEF2 exhibit a
downward trend in local dependence on common residences and, overall, it is weaker than
their impact on high-end residences. Similarly, for BGE and TA, their impact on high-end
residential housing prices is stronger than their impact on common residences, and the
fluctuation in the trend is also weaker. PV and SV show evident nonlinear trends in their
impact on common residences and high-end residences. Overall, as PV and SV strengthen,
their impact on housing prices increases, especially the impact of SV on common residences,
which increases substantially and quickly surpasses its impact on high-end residences.
Overall, within the 10-minute life circle, the impact of different built environment factors
on different types of housing shows nonlinear and stratified trends, among which high-end
residence housing prices are more dependent on DBEF1, DBEF2, BGE, and TA, while
common residence housing prices are more dependent on SV and PV.
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Figure 6. The nonlinear relationship between the built environment and the price of different grades
of housing in the 10 min life circle. (a) DBEF1. (b) DBEF2. (c) BGE. (d) TA. (e) SV. (f) PV.

Within the 15 min life circle, the differences in the dependence of different types of
housing prices on built environment indicators are further highlighted (Figure 7). The
impact of DBEF2 on high-end residences is significantly stronger than its impact on common
residences, while the impact of DBEF1 on both types of housing prices is similar; the BGE
exhibits a nonlinear strengthening trend on the prices of common and high-end residences,
while the dependence of high-end residences on BGE is significantly stronger than that
of common residences. The impact of TA on high-end residences showcases an overall
downward trend, while its impact on common residences is weaker and maintains a stable
trend. The impacts of PV and SV on common residences and high-end residences both
illustrate a nonlinear strengthening trend, among which the impact trend of SV on the
two types of housing prices is relatively similar, both quickly strengthening and then
maintaining a stable trend. The impact of PV on high-end residential housing prices
is significantly stronger than its impact on common residences, but its impact trend is
relatively stable. The impact of PV on common residences showcases a typical nonlinear
strengthening trend, indicating that common residential housing prices have a strong
dependence on high-density PV.

Within the 20 min life circle, the differences in the local dependence of common and
high-end residential housing prices on various indicators of the built environment become
more pronounced (Figure 8). Comparatively, except for DBEF1, the impact trends of the
remaining built environment factors on housing prices are relatively stable. The impact
of DBEF1 on the prices of the two types of housing expresses a stepwise upward trend,
with its impact on high-end residences significantly stronger than its impact on common
residences. The impact of DBEF2 on housing prices tends to be stable, but it showcases a
clear hierarchical effect. This reveals that its impact on high-end residences is stronger than
its impact on common residences. Similarly, within the 20 min life circle, the impact of the
BGE and TA on housing prices tends to be stable, but the differentiation of their impact
on different types of housing prices becomes more pronounced. The impacts of SV and
PV on high-end housing prices both sharply decline initially and then become stable. The
difference is that the impact of SV on high-end residences is significantly stronger than its
impact on common residences, and as the PV increases, its trends with respect to high-end
residences and common residences gradually converge.
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Figure 7. The nonlinear relationship between the built environment and the price of different grades
of housing in the 15 min life circle. (a) DBEF1. (b) DBEF2. (c) BGE. (d) TA. (e) SV. (f) PV.
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Figure 8. The nonlinear relationship between the built environment and the price of different grades
of housing in the 20 min life circle. (a) DBEF1. (b) DBEF2. (c) BGE. (d) TA. (e) SV. (f) PV.

By comparing the nonlinear relationships between the built environment and the prices
of different residences across different life circles (Table 4), it can be observed that there is a
significant hierarchical effect in the nonlinear relationship between the built environment
and housing prices at different life circle scales. Namely, the dependence of prices on the
built environment gradually differentiates between grades of housing, and as the research
scale expands, the differentiation becomes more pronounced. However, the effects of
the built environment on different types of residences tend to be consistent. Specifically,
within the 10 min life circle, the trend lines of the impacts of various indicators of the
built environment on the prices of both types of residences are generally similar. However,
as we expand to the 15 min and 20 min life circles, the differentiation is highlighted and
emphasized. For example, for BGE and TA, the difference in their impact within the
10 min life circle is approximately 500, and this difference increases to approximately
1000 within the 15–20 min life circles. This indicates that within the small-scale life circle,
the performance of the built environment on housing premiums is not prominent; as the
life circle scale expands, after the built environment becomes more diverse and complex,
its impact on housing prices shows a clear hierarchical effect. This hierarchical effect
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is mainly reflected in DBEF2, BGE, TA, and SV. As DBEF2, SV, BGE, and TA increase,
this hierarchical effect becomes more pronounced. Furthermore, as the scale expands,
the nonlinear relationship between the built environment and housing prices tends to
be consistent. For example, DBEF1 and BGE in the 15 min and 20 min life circles have
basically the same curve shape, and TA and SV in the 20 min life circle maintain a consistent
nonlinear trend.

Table 4. Coefficient of variation of nonlinear relationship between multiscale life circle built environ-
mental indicators and housing prices.

Independent
Features

10-min 15-min 20-min

Unstratified Common
Residence

High-End
Residence Unstratified Common

Residence
High-End
Residence Unstratified Common

Residence
High-End
Residence

DBEF1 0.59 0.61 0.63 0.16 0.60 0.11 1.44 0.12 0.48
DBEF2 0.56 0.55 0.56 0.14 0.24 0.21 2.05 0.09 0.75

BGE 0.44 0.29 0.31 0.54 0.15 0.29 0.41 0.24 1.33
TA 0.51 0.67 0.73 1.22 0.20 0.27 0.99 0.44 0.35
SV 0.54 0.37 0.66 1.11 0.23 0.29 1.57 0.54 0.19
PV 1.30 0.08 0.11 0.14 0.22 0.77 0.29 0.03 1.31

Mean 0.65 0.43 0.50 0.55 0.27 0.32 1.13 0.25 0.74

3.2.2. The Effects of the Built Environment on Residential Differentiation in Multiscale
Life Circle

Table 5 displays the relative importance of built environment factors on the prices of
different grades of residences within various life circle scales. There are significant differ-
ences in the relative importance of some built environment factors on the prices of different
grades of residences, and these differences exhibit scale dependency. DBEF1 shows a minor
difference in relative importance on the prices of different grades of residences across
various life circle scales, while DBEF2 presents a significant difference. Specifically, DBEF2
is less important for the prices of common residences compared to high-end residences.
Within a 10 min life circle, the relative importance differs by 0.09, and this difference in-
creases to 0.13 within a 20 min life circle. Thus, as the life circle expands, the impact of
DBEF2 on the internal differentiation of residence prices becomes more pronounced. The
importance of BGE for common and high-end residences gradually decreases within the
10–20 min life circles, suggesting that residents’ preference for BGEs weakens as the scale
expands, and its impact on residential differentiation also weakens with the expansion
of the scale. This confirms, to some extent, that the creation of BGEs on a large scale
can enhance residential fairness, while the creation of BGEs in small-scale microspaces
intensifies residential differentiation. The relative importance of TA varies among different
grades of residences as the scale expands. Initially, it increases and then decreases, with
the difference reaching its peak within the 15 min life circle. Notably, TA holds the highest
significance for high-end residences, while its impact on common residences is relatively
weaker. This is mainly because common residence inhabitants prefer to choose public
transportation, while high-end residence inhabitants prefer driving, making them more
sensitive to nearby road networks. However, within the 20 min life circle, the importance
of TA for common residences is significantly higher than its importance within the 10 and
15 min life circles, while the impact of TA on high-end residences is significantly weaker
than its impact within the 10 and 15 min life circles. This denotes that the preference for
transportation among different types of residence inhabitants varies. As the scale expands,
the impact of nearby road networks on common residence inhabitants increases, while
the impact on high-end residence inhabitants weakens. This ascertains that the impact of
transportation accessibility on residential differentiation exhibits scale dependency, which
is mainly manifested through residents’ travel behavior.
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Table 5. The relative importance of built environment factors of multiscale life circle to housing prices
of different grades.

Independent
Features

10-min 15-min 20-min Mean

Common
Residence

High-End
Residence

Common
Residence

High-End
Residence

Common
Residence

High-End
Residence

Common
Residence

High-End
Residence

DBEF1 0.10 0.11 0.11 0.05 0.13 0.12 0.11 0.09
DBEF2 0.21 0.30 0.28 0.37 0.16 0.29 0.22 0.32

BGE 0.18 0.15 0.08 0.09 0.04 0.04 0.10 0.09
TA 0.01 0.13 0.01 0.24 0.07 0.03 0.03 0.13
SV 0.42 0.05 0.43 0.17 0.09 0.15 0.31 0.12
PV 0.09 0.25 0.10 0.07 0.51 0.37 0.23 0.23

Within the 10 and 15 min life circles, the impact of SV on common residences is
significantly greater than its impact on high-end residences, with this difference being
most pronounced in the 10 min life circle. However, within the 20 min life circle, the
impact of SV on high-end residences surpasses its impact on common residences. This
change illustrates that SV can significantly influence residential differentiation, and its
impact is scale-dependent and closely related to indicators, such as SV and residents’
consumption preferences. The difference in the importance of PV to housing prices is
greatest within the 10 and 20 min life circles and smallest within the 15 min life circle.
However, within the 10 min life circle, the importance of PV to high-end residences far
exceeds its importance to common residences; within the 20 min life circle, the impact of
PV on common residences is significantly greater than its impact on high-end residences.
This implies that PV is influenced by residential differentiation and varies within different
scales; high-end residences are more dependent on PV within smaller scales, while common
residences show a more pronounced dependence on PV within larger areas.

A case study in Chengdu shows that built environment factors not only significantly
influence residential differentiation but this differentiation also exhibits clear scale depen-
dency, with TA, SV, and PV being the most prominent influencing factors. By examining
the impact of various factors on residential differentiation within different scale life circles,
it was found that DBEF2 has the most pronounced impact on residential differentiation
within the 10 and 15 min life circles, while BGE, TA, SV, and PV have the most pronounced
impact within the 10, 15, 10, and 10 min life circles, respectively. This signifies that dif-
ferences in the built environment within smaller-scale life circles can shape residential
differentiation, i.e., housing prices are more sensitive to the impact of the built environment
on a smaller scale. When comparing the differences in the impact of various indicators
on residential differentiation, the impact of SV within the 10 min life circle on residential
differentiation stands out most. This implies that the shopping environment within the built
environment has a greater impact on residential differentiation than other environmental
indicators. This is because residential preferences are a form of consumption behavior,
and different consumption behavior preferences include preferences for residential choice.
Residents of high-end residences, benefiting from their socioeconomic advantages, tend
to be more sensitive to the consumer environment. Additionally, a high concentration of
SV can promote residential premium within the neighborhoods. Notably, this impact is
dependent on the scale. As the scale expands, the impact of SV on residential differentiation
weakens, i.e., residents’ dependence on SV exhibits proximity.

4. Discussion
4.1. Construction of Life Circle and Residential Equity

The platform economy and the financialization of housing can easily disrupt the fair-
ness of urban development [71], but fairness is not reflected through the market, as the
market itself is selective. Instead, it is presented through the needs and life experiences of
residents [58,60]. As shown in this study, compared to the six aspects of the built environ-
ment, the price advantage of common residences is more reflected in the convenience of
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life experience, while high-end residences focus on the quality of life. This is similar to the
conclusions of most studies [12,38].

The life circle, as the urban space most closely related to residents’ life activities [1], can
accurately reflect residents’ life experiences when used to measure the built environment.
There are two points worth noting: First, the quantity of built environment factors. This
study mentioned that all indicators show a certain hierarchical effect and abrupt change
in the process of affecting housing prices, so excessive increases in the quantity of built
environment factors cannot play a positive role. Second, the scale of the life circle is vital.
Due to individual differences, a fixed life circle range obviously cannot meet the needs of
all residents. As the scale increases, the overlap of life circles in various communities will
also increase. While improving the efficiency of public resource utilization, it also promotes
the group fairness of living space [11,16].

With the urban expansion and gentrification of space development, residential dif-
ferentiation is inevitable, especially in rapidly urbanizing cities such as Chengdu. From
the perspective of built environment indicators, Chengdu, under the background of the
park city, shows almost no imbalance in blue–green space [72]. The densities of functional
facilities, traffic accessibility, and shopping vitality have become the main contributors to
residential differentiation, and the impact of population vitality is most strongly affected by
scale effects. Different built environment factors have the best functional spatial scale, and
different types of residential neighborhoods also have the best living space scale. Therefore,
choosing to break through the existing life circle scale in planning policies (15-min), seeking
the best scale that meets the needs of urban development and residential equity, such as
based on individual behavior [2] and refining urban units [73], can lead to reasonable plan-
ning of living space. Moreover, it is important to grasp the scale of the built environment
factors, capture their abrupt changes in the impact on housing prices in the local range,
prevent the dramatic manifestation of housing price differences within a large area, and
effectively alleviate the degree of residential differentiation in urban areas [33,74].

4.2. Broad Applicability of the Research Framework

The analytical framework proposed in this study exhibits universality, primarily
manifesting in two key aspects. First, it can be readily adapted to analyze the influence of
built environment factors on housing prices and residential space differentiation across
urban spaces of varying scales and dimensions. While this study primarily delves into
analysis from the comprehensive lens of the basic life circle, there is an exciting prospect in
further dissecting spatial facets into realms, like consumption space, public service space,
and social vitality space. Second, the construction criteria for living environments in China
are still in the exploratory stage. With the rise of the 5~10 min life circle, the capacity of
a 15 min life circle to fully cater to residents’ needs has waned [8,11]. Furthermore, as
Chengdu falls within the ranks of emerging first-tier cities in China and possesses a spatial
hierarchy akin to cities such as Beijing and Shanghai, this framework is fully applicable to
cities sharing similar spatial structures or comparable levels of development.

Moreover, the influx of data, when coupled with the transformative influence of
machine learning, has triggered a paradigm shift in traditional urban spatial modeling. The
convergence of these factors has led to a formidable driving force behind the modeling
and analysis of urban spaces. The potent leveraging of machine learning techniques
in handling data has greatly advanced the modeling and analysis of urban spaces. Of
particular significance is the establishment of nonlinear relationships, thereby significantly
augmenting the interpretability of the model’s independent variables. This analytical
approach improves upon traditional geospatial models that struggle to establish definitive
functional or linear relationships. Thus, machine learning showcases substantial versatility
in urban spatial modeling, capable of application in more intricate and multidimensional
subjects of study.
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4.3. Study Limitations

In the era of digital smart cities, the advent of crowdsourced data enables a finer ex-
ploration and perception of various dimensions within urban environments. This synthesis
of data sources empowers us to better grasp the interplay between socioeconomic factors,
mobility patterns, and the formation of life circles, thereby enriching our insights and
contributing to a more informed urban planning and policy-making discourse.

Notably, because this study offers data-driven modeling and interpretation of the
impact of built environment factors on property prices, a complete causal relationship
between the two is not fully unified and robust. On the one hand, interpretations should be
contextualized with the actual circumstances and domain expertise of the research subject,
a common predicament encountered in all machine learning approaches. On the other
hand, although machine learning methods drive the interpretability of data modeling, the
robustness of this relationship has potential risks [75,76]. If there is an insufficient sample
size or the difference between data is excessive, the results will be affected [51,75]. In our
study, the determination of PV and SV predominantly relies on smartphone app usage
records, inevitably omitting a wealth of user-specific information, such as income, gender,
age, and the nuanced temporal variations at destinations, like daytime and nighttime
fluctuations. The utilization of more refined multisource urban crowdsourcing data to
construct built environment factors emerges as a prospective direction for the future.

5. Conclusions

To conclude, this study combines a gradient boosting decision tree (GBDT) and partial
dependence plot (PDP) to use machine learning models to reveal the factors influencing
housing prices in the metropolitan area of Chengdu under the guidance of multiscale
life circles. With the support of urban crowdsourced data, six types of indicators were
selected: diversity of built environment functions (DBEF1), density of built environment
functions (DBEF2), blue–green environment (BGE), traffic accessibility (TA), population
vitality (PV), and shopping vitality (SV). In addition, this paper considers the dual impact
of multiscale life circle and housing price hierarchical phenomena, further revealing the
nonlinear relationship between the built environment and housing prices, elucidating
the scale, premium, and stability of its impact on the housing market. It provides strong
theoretical support for life circle planning, constructing the built environment, and guiding
the housing market. The conclusions and understandings are as follows:

(1) There is a significant nonlinear relationship between the built environment and hous-
ing prices. This relationship has hierarchical effects and inflection point effects on
each indicator, which has a profound impact on residential premiums. The impacts of
SV and PV on housing prices are the most significant, revealing that resident behavior
is the main factor of housing pricing on the scale of residential neighborhoods.

(2) From the multiscale life circle perspective, the impact trend of the built environment
on housing prices within a 15 min life circle remains stable; however, after dividing
the types of residences, the stability of each indicator’s impact on housing prices
is no longer obvious. As the life circle scale increases, the price effects of the built
environment on different residences tend to be consistent, but the performance of
price differences is more intense.

(3) The difference in the built environment is the main effecting factor of residential
differentiation, and the effect of the built environment has scale dependence. On
a small life circle scale, housing prices are more sensitive to the impact of the built
environment; on a large scale, the performance of residential differentiation is more
obvious, and the influence is greater.

This study makes substantial contributions to existing knowledge in the following
three aspects: (1) It reveals the nonlinear relationship between the built environment and
housing prices, providing new ideas for the quantitative creation of the built environment
indicators. (2) It explores the rationality and importance of multiscale life circle construc-
tion, providing a basis for the fine reconstruction of urban space and the creation of a



ISPRS Int. J. Geo-Inf. 2023, 12, 371 19 of 22

suitable living environment. (3) It clarifies the impact and scale dependence of residential
differentiation affected by built environment factors.

This study considers the actual situation of the housing market to explain the scale
dependence of the shaping indicators of residential differentiation and clarifies that the
performance of built environment factors on housing premiums is different in large- and
small-scale life circles. Therefore, whether the scale of life circle planning should be
refined from the city as a whole to neighborhood blocks and create different scale life circle
standards has become a new topic worthy of attention. It is undeniable that this will help
the rational allocation of built environment factors, avoid the local surplus and lack of
public resources, avoid the waste of social resources, and improve social fairness.
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