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Abstract: (1) Background: This work analyzes socioeconomic equity in bike-sharing systems. Specifi-
cally, we study the effect of income on bike use in an innovative way by analyzing the frequency of
bike routes connecting areas with different mean incomes. (2) Methods: We use Social Network Anal-
ysis tools to estimate the probability of connection between two stations depending on income and
controlling for other predictors. The method was applied to a bike-sharing system located in the city
of Las Palmas de Gran Canaria, Spain. (3) Results: Stations located in lower-income neighborhoods
have a lower probability of generating routes, and stations located in higher-income areas are more
likely to be connected to each other. (4) Conclusions: The frequency of bike routes is more influenced
by income than other socioeconomic characteristics of the area, such as commercial and leisure use.
Since socioeconomic inequities are corroborated by the work, policies for lower-income users should
be promoted.

Keywords: bike sharing; socioeconomic equity; social network analysis; exponential random
graph models

1. Introduction

Bike-sharing systems (BSSs) are presented as an environmentally friendly, healthy,
and friendly alternative to car use in cities. There is a general concern about the negative
influence of car use in cities for commuting and leisure purposes. Its negative effects are
well known: Traffic congestion, air pollution, and noise. Authorities have been aware of
this problem for decades, and promotion of alternative modes of transport has been offered
to the population as public transport (bus, meter). In this context, and pushed by recent
advances in technology, BSSs arise and develop all over the world [1].

BSSs have grown and evolved rapidly in the last decade, and in 2021, there will be
around 1900 programs all over the world that offer this facility [2]. China is the top country
in the use and number of bike shares, well above the rest, and most of them are dockless.
Parallel to the growth of bike-sharing systems, a recent research area dealing with bike-
sharing topics has been developed. Ref. [1] provides an overview of the different main
interests: identifying the user’s profile [3–5]; analysis of bike-sharing rates, patterns, and
purposes [6,7]; or socioeconomic impacts of bike-sharing use [5,8].

The recent pandemic outbreak has entailed changes in individuals’ modes of transport,
both from an offer and demand point of view. On the one hand, the promotion of other
sustainable modes of transport as a strategy in the long term, such as bike sharing, is
an opportunity that should be considered by policymakers in order to avoid a possible
increase in car use and ensure social distance. This recommendation has been supported
by a series of authors [9–11].
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In this paper, we are interested in delving into bike-sharing socioeconomic equity.
While bike sharing works about socioeconomic equity usually focus on stations, that is to
say, income is analyzed in the neighborhood of each bike station, our proposal consists of
studying how income affects trips focusing on bike routes. This way, every route includes
two stations with their respective levels of income corresponding to their neighborhood,
and we can analyze inequalities from a route perspective, which allows us to go deeper into
interactions between stations, contributing to the existing literature with new insight. For
this purpose, in the context of social network analysis [12], the exponential random graph
model (ERGM) will be applied [13]. These models allow us to estimate the probability of
connection between two nodes of the network, taking into account a series of network-
specific statistics. In the bike-sharing case, they will detect whether socioeconomic equity,
measured in terms of per capita income, influences the probability of connection between
bike-sharing stations.

As a case study, this proposed methodology will be applied to the bike-sharing
network “Sitycleta”, located in the city of Las Palmas de Gran Canaria, Spain. Specifically,
the probability of the existence of every possible route in the network has been estimated as
a function of income levels within a neighborhood and their interaction with the different
routes, as well as other control variables. Results show, on the one hand, that stations
located in lower-income areas have a lower probability of generating trips and, on the
other hand, that stations located in higher-income areas are more likely to generate trips
between them. Summarizing, we contribute to the literature on socioeconomic equity in
BSS by including the perspective of routes between stations located in neighborhoods with
different income levels.

The work includes the following sections: Section 2 is the literature review; the
methodology is explained in Section 3; Section 4 presents the case study; and discussion
and conclusions are shown in Section 5.

2. Equity in Bike Sharing

Equity in BSS refers to the fair distribution of their benefits among society and among
disadvantaged population groups [14]. Transportation equity considers both socioeco-
nomic and spatial aspects [15]: social equity is usually studied through socio-demographic
variables such as income, race, gender, or age, while spatial equity is aimed at determining
where inequities are occurring.

With respect to the relevance of social equity [16], we identified and categorized the
existing barriers to the implementation of BSS. They included the wealthy social status
of citizens in the category of social barriers and found that for users, social barriers rank
second among six categories, following technological barriers.

There is a general agreement that bike-sharing users are mostly White [2,4,5,17–19],
have higher income [2,4,5,17,19], and are predominantly men [2,5,20]. Often, in the context
of bike sharing, spatial equity is jointly studied with social equity factors since location and
income disparities are highly related. Work focused on analyzing equity with respect to the
location of the stations agrees that low-income and less-educated communities have lower
access to BSS [21–23].

Currently, policymakers are showing rising concern about reducing inequalities in
BSS. In fact, ref. [17] found that one-third of the programs made efforts to locate stations
in low-income neighborhoods. On the other hand, a survey by [24] found that of 55
programs in the U.S., more than half considered equity with respect to fee structure and
payment systems. Initiatives for social equity include subsidized memberships for low-
income residents [25]. As a result, some studies are focused on the analysis of the effect
of policies aimed at attracting lower-income users [5,26]. Ref. [5] found that extending
the number of stations to deprived areas in London was a successful policy. On the other
hand, they also found that poorer residents are very sensitive to prices. As a result, a price
rise discouraged casual trips among residents in poorer areas. The authors of [26] were
interested in assessing whether the incentive policies in Philadelphia (allowing payment
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with cash and discounts for residents on food stamps) resulted in increases in lower-income
areas. However, they could not draw any conclusions about this hypothesis.

One common weakness in the analysis of socioeconomic equity in BSS is the lack
of information about income from bike-sharing users. One approach to overcome this
handicap consists of collecting a survey from bike-sharing users [2,4,14]; another alternative
is linking the trips to the socioeconomic characteristics of a neighborhood [5,19].

Once socioeconomic inequities have been found, more emphasis should be placed on
measuring the effect of equity policies and exploring more specific impacts, such as their
effect on the use of different bike routes.

Some contributions to BSSs apply descriptive statistics to the network [4,5,14]. Ad-
ditionally, common linear regression is applied to generate statistical inferences on bike
use [18,19,26,27]. This methodology is convenient for analyzing significant factors influenc-
ing bike use from (or to) stations, but not for travel patterns. In this regard, ref. [20] applied
an exploratory analysis of a bike-sharing network using network theory approaches to
identify weaknesses in the system. Recently, ref. [28] applied an exponential random graph
model (ERGM) to find those statistically significant influencing factors on travel patterns in
Beijing. The results find that socioeconomic factors, such as housing prices and the number
of shopping and restaurant places, together with transport services, positively influence
the probability of using the bike for transport.

3. Materials and Methods

As commented above, in this paper we address the socioeconomic equity of bike
sharing, focusing on bike routes. Every bike route represents a link between two stations
and includes attributes such as the number of trips and other socioeconomic variables.
Then, the collection of bike routes in a BSS can be represented by a valued graph, which can
be analyzed using social network analysis [29]. We follow this methodology in this paper.

In general, social network analysis is based on the fact that social life is created by
relationships and their patterns. It is defined as a set of nodes that are tied together by one
or more types of relationships. In the last two decades, social networking has become a
new discipline of great importance, which has been promoted thanks to recent statistical
and computational developments as well as the recent availability of data provided by
social networks (e.g., Facebook, LinkedIn, Twitter), webpages, smart cards, smartphones
and other mobile phones, GPS devices, call center records, etc. Currently, social networks
can include a large number of nodes, which are analyzed using statistical techniques [30].

3.1. General Network Features

In this study, we analyze the social equity of bike-sharing use by analyzing trips
between stations from and to low- and high-income neighborhoods. Stations and trips are
represented in a network, where the nodes are the bike stations, which are linked if a trip
between them has occurred. For the purpose of the study, the direction of the trip is not
relevant. Therefore, the defined network is undirected.

The network also includes attributes, which are variables that measure the charac-
teristics of the links and stations. In this context, every link has an associated weight,
representing the number of trips between the stations connected by the link. The sta-
tion also includes some attributes that represent the socioeconomic characteristics of the
neighborhood where it is located.

To understand the structure of a network, a series of statistics have been developed,
distinguishing between those that provide information at the network level and those that
analyze the relevance of the nodes [29]. The most commonly used node-level metrics are
the centrality metrics, which provide an indicator of the relevance of a node based on the
number of links it has (degree) or its ability to connect stations in the network (betweenness).
The density of the links and the clustering coefficient, which measure the number of triangle
relationships among the nodes, are the most commonly used network-level metrics.
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In valued networks, such as the one treated here, we will consider node strength [31],
which describes the sum of the weights of the links a node has. In our context, it represents
the number of trips from and to station i, and its formula is:

si =
ki

∑
j=1

wij,

where j is the station connected to i, wij is the weight of the link between i and j, and ki is
the node degree or the number of stations connected to i.

3.2. Exponential Random Graph Models (ERGM)

The statistics above provide descriptive metrics for the networks. However, in order
to identify those structures and attributes that statistically influence network formation,
we would need new inference models. This is performed by ERGMs, which assume the
real networks are the realization of an exponential family of possible networks, determined
by some sufficient statistics [31]. These statistics include not only node characteristics but
structural and relational features, such as the existence of diverse triangular relationships
or a specific trend to relate nodes belonging to similar categories [32]. Therefore, ERGMs
allow estimating the probability of connection between nodes in a network from a series of
network attributes and explanatory variables of the nodes and the relationships between
them, which determine the links among nodes beyond what would be expected by a
random assignment of links and weights among the stations.

ERGMs consider the observed network as one particular realization from a set of pos-
sible networks and specify the probability distribution of that set of random networks. In
this context, maximum-likelihood estimators of the parameters of a model can be obtained
for a given data set. They allow contrasting individual estimators of the parameters, com-
paring various types of models, and simulating additional networks under the probability
distribution of the model.

Dependent terms are characterized because the presence or absence of a link depends
on the state of other links. Examples of dependent terms are mutuality (the tendency
for links to be reciprocal) or the existence of triads, that is, the fact that two stations
are connected to a third, which increases the probability that they are also connected to
each other. These dependent terms introduce complex cascading effects, which require a
different estimation algorithm [33].

ERGMs are therefore estimated using maximum-likelihood estimators that are approx-
imated by iterative procedures using the Monte Carlo Markov chain (MCMC). Parameter
estimators are based on simulations, where many (usually thousands) networks are ob-
tained from the particular model being tested.

The former ERGM assumed binary relations, in other words, whether the link between
two stations was present or not. A detailed explanation of ERGM-given binary relations is
found in [13,34,35]. For valued networks, such as the one treated here, we use the ERGM
proposed by Krivitsky [36]. Then, given N, the set of actors in the network, and Y, a general
set of networks, the general ERGM model states that the probability of having a specific
network y is defined by:

Prθ,h,η,g(Y = y) =
h(y)exp(θ·g(y))

κh,η,g(θ)

where θ is a vector of coefficients, g(y) is a vector of statistics, κh,η,g(θ) represents the
normalized constant, and h(y) is a reference measure that must be specified for weighted
networks, which stabilizes the distribution structure of dyads and restricts the parameter
space. Then the model assumes an exponential-family random graph model, which is
characterized by a vector of sufficient statistics. The inference results provide the maximum-
likelihood estimators of the vector of coefficients θ.
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ERGMs have the following advantages: They can handle complex network depen-
dencies without the degeneracy problems that were frequently found in previous network
models, and they allow a large number of predictors and covariates. ERGMs are imple-
mented in the ERGM package, which is a part of the Statnet R package for network analysis,
facilitating their application.

4. Case Study

In order to empirically demonstrate our proposal of using social network methodology
to analyze the socioeconomic degree of equity of bike sharing, the bike-sharing network
“Syticleta”, located in the city of Las Palmas de Gran Canaria, Spain, has been chosen as a
case study.

The city of Las Palmas de Gran Canaria is located on the island of Gran Canaria, one
of the eight islands that make up the Canary Archipelago in the Atlantic, near the West
African coast (see Figure 1). This situation, together with the trade winds, promotes average
temperatures of 20.7 ◦C per year, with mild winters and summers. In addition, it receives
less than 300 mm of rain a year and many sunny days. Las Palmas de Gran Canaria had a
population of 378,517 inhabitants in 2018, whose distribution by postal code is shown in
Figure 1.
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Figure 1. Scenario for the case study.

The city’s lower part is flat. Due to its population growth, neighborhoods have been
developed on the periphery, which is at a higher altitude than the city center. Specifically,
the city consists of 19 neighborhoods (identified with postal codes), of which eight are
located in the upper areas. The distribution of the upper and lower postal codes can be
seen in Figure 1. The population of the neighborhoods located in the upper area represents
52% of the city’s population. Las Palmas de Gran Canaria is a medium-sized, cosmopolitan
city. It is also a tourist city since it is visited by numerous cruise passengers and by tourists
who mostly stay in the south of the island to enjoy the sun and the beach.



ISPRS Int. J. Geo-Inf. 2023, 12, 320 6 of 15

The current public bicycle network in the city was put into operation in April 2018 and
is described in Figure 1. The network consists of 39 anchored bicycle stations distributed
throughout the city. At present, there are only two stations in the upper area. The company
Sagulpa is in charge of managing the bicycle service in Las Palmas de G.C., Sitycleta. The
shared bike offer consists of 375 standard bikes and 20 electric bikes. The data show that the
majority of the use of bicycles in Las Palmas de Gran Canaria is for commuting purposes
rather than leisure. Therefore, offering stations close to the place of residence is essential
to encouraging the use of the shared bicycle. More than 50% of the total population over
16 years of age has easy access to bike use.

The downtown area of the city of Las Palmas de Gran Canaria, due to the conditions
described above, is ideal for cycling. Currently, the city is dominated by cars. For this
reason, the city council has joined the initiative of more than two thousand cities in the
world in promoting the use of bikes, creating bike lanes, and creating a public bike rental
system. Although citizens are not used to using bikes as a regular means of transport, little
by little, the number of users is increasing.

Data have been provided by the company Sagulpa, which is in charge of managing the
Sitycleta network. It consists of a data set from the registry of people who rent bicycles, both
local and foreign, over a period of time. Based on these data, the ArcGIS program, which is
a geographic information system (GIS), has been worked on, and new variables have been
created that provide information about the stations or network links. The Sitycleta rental
stations have been geolocated with the ArcGIS program, and a network linking all bicycle
rental points has been created.

4.1. Data

The data include all the trips of the service from the beginning of April 2018 to the end
of October 2019. With respect to the trips, the following information is available: Rental
time of the bike and location, customer ID, return time of the bike and location, and bike ID.
Additionally, the characteristics of the customers are also considered: Birth date, language,
postal zip, and gender. Nevertheless, on many occasions, these personal characteristics of
the user are not available.

Trips shorter than two and a half minutes and looping trips were disregarded, while
only customers residing in the city were considered. The final data set includes 105,527 trips
by citizens of Las Palmas de Gran Canaria with different rental and return locations and
1976 different users.

The behavior of this group differs from those with the same rental and return station.
Non-looped trips represent 95% of the total bike trips and have a mean duration of 18.4 min,
which contrasts with a mean duration of 67.3 min for those with the same rental and return
station. Additionally, they also differ in their use over the week. Trips with different rental
and return stations are more commonplace during business days, as opposed to the other
group, which is more frequent on weekends. The rental peak hours of non-looped bike
trips correspond to 7–8 a.m., 13 p.m., and 17–18 p.m., while in the case of looped trips, they
are 11 a.m. and 18 p.m. These facts support the assumption that looped trips tend to be
leisurely. The dominant commuting use of the BSS agrees with other authors [21,27].

The trips on the shared bicycle network have increased over time. Specifically, when
considering the group of interest, that is to say, local users with different rental and return
stations, we can see in Figure 2 that it has increased steadily over time, and no significant
seasonal effect with respect to monthly periodicity can be observed.
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Figure 2. Monthly evolution of bike trips for local users with different rental and return stations.

The characteristics of the distribution of the number of trips for local customers with
different rental and return stations are shown in Table 1. A relevant percentage has used
the bicycle network only once or twice since percentile 25 is 2.50% of customers who have
used the bicycle 8 times or more, while 25% of customers have used the bike more than
51 times.

Table 1. Descriptive statistics of the number of trips and trip duration for local customers with
different rental and return stations.

Number of Trips Duration (min)

Mean 53.4 18.42
Minimum 1 2.5
Percentile 25 2 8.23
Median 8 12.35
Percentile 75% 51 18.6
Max. 1330 2052.6

With respect to the trip duration, the mean duration time of the trip is 18.42 min; 25%
of the trips last less than 8.2 min, while 50% of the trips last more than 12.3 min.

The distribution of the bike trips according to the user’s zip code is shown in Figure 3.
In general, customers who live in higher-income areas use the bike more often than others.
Additionally, most of the zip codes with lower use correspond to uptown neighborhoods,
many of which have no bicycle stations.

4.1.1. Characteristics of the Network

The bicycle network consists of 39 nodes, corresponding to the bicycle stations. The
trips between pairs of stations are the edges of the network, and the network has been
defined as undirected; that is, the direction between two stations is not relevant; only
whether they are connected or not matters.

Figure 4a shows the map of the stations, the existing network of bicycle paths, and the
relevance of the stations according to the number of trips at the origin station during the
period of analysis. This map also presents the road/street network, which is sometimes
used in combination with the bike paths to complete some trips. Additionally, zip codes
with a per capita income lower than the mean are distinguished from the rest. The map
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shows that there is a clear geographical bias in the distribution of income. The cutoff
point to distinguish higher- and lower-income zones is the mean income in the city. Of the
nineteen zones in the city, ten out of twelve have stations in higher-income zones, and three
out of seven have stations in lower-income zones. The map shows that most of the stations
are located in higher-income zones, which correspond to the city center. Neighborhoods
located far from the city center lack stations and bike paths currently. This fact is partly
due to the orography of the city, which hinders the use of bikes in higher-altitude areas.
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The network density is 0.93, meaning that connections represent 93% of the total
possible ones in the network. Additionally, when analyzing the node centrality, we find
that the degree centrality coefficient of the nodes, that is, the number of nodes connected to
each node, goes from 24 to 38. The number of different bike routes available in the network
is 691. The network considered is a weighted network; that is, the number of trips per route
is taken into account. However, since the original weights of the network vary from 1 to
2472, the weights have been simplified to a scale from 1 to 5.

4.1.2. Characteristics of the Nodal and Edge Variables in the Network

The network includes some quantitative and qualitative variables about the stations
and the variable “Distance between stations” that characterizes the alternative routes.
Table 2 shows the different variables that have been considered at the station and at the
edge level.

Table 2. Variables considered at the station and at the edge level.

Mean Median Mode Std. Dev. Min. Max. N◦ obs.

Variables at the Station Level

N◦ stations within 500 m 2.15 2 2 1.26 0 5 39
Popul.
within 250 m 9378 8488 670.89 1656 17,891 39

N◦ workers in comm. 3826.8 3545 2835.32 310 8885 39
Tourist/leisure (1 yes) 0.59 1 1 0.5 0 1 39
Comm. area
(1 yes) 0.23 0 0 0.43 0 1 39

Lower-income
(1 yes) 0.15 0 0 0.37 0 1 39

Uptown
(1 yes) 0.05 0 0 0.22 0 1 39

Distance (m) 3616.7 3538.4 1839 233.9 9215.8 741

The number of stations within a radius of 500 m for each station has been computed
with the ArcGIS program after geocoding all the nodes in the network. The population
within 250 m of every station has also been obtained with the ArcGIS program from
population data collected from the Municipal register of inhabitants of the city of Las
Palmas de Gran Canaria in 2019. Additionally, an estimation of the number of workers
per postal zip, which accounts for the economic activity in each area, has been computed
using a census of the commercial activities in the city, provided by the Government of the
Canary Islands. The geographical distribution of the workers in the area around the cycling
network is shown in Figure 4b.

Bivariate dummy variables have also been considered: Tourist_leisure and Commercial
areas show value if the zone has a tourist and/or leisure profile or a commercial area,
respectively. The layout of the post codes according to these activities is presented in
Figure 4b.

A dummy variable accounting for stations located in postal zip codes with lower
income has been defined (see Figure 4a). The cut-off point of the variable was the mean
income weighted by the number of tax returns filed in each zip code. Three zip codes with
bicycle stations were identified as lower-income areas (35,009, 35,012, and 35,016), and six
stations are in these areas. Therefore, those stations with lower income present a value of
one for the variable lower income and zero otherwise.

5. Results and Discussion

The regressors included in the model may capture different effects: Structural, main
nodal, interaction nodal, and relational. In this type of model, structural effects are used
to control for the goodness of adjustment. The structural effects included in this model
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are intensity and transitivity relationships. The latter predictor belongs to the group of
variables that generate dependent dyad models.

Table 3 shows the description of the predictors included in the model.

Table 3. Predictors included in the ERGM estimation.

Variable Description

Structural effects

Intensity Sum of the weights of the edges (intercept of
the model)

Transitivity It captures the trend towards the transitivity
(triangles) among nodes.

Nodal main effects
Nº Stations 500 m Number or stations within a radius of 500 m.
Population 250 m Population within a radius of 250 m.

Workers per postal zip Number of workers (thousands) per postal zip
for each station.

Uptown stations Denoted with 1 if the station is uptown, 0 else.

Lower-income stations Denoted with 1 if the station is in a
lower-income area, 0 else.

Nodal relational effects
Relationship between two higher-income zones Income at stationi = income at stationj = 0
Relationship between one higher and one
lower-income zone
Relationship between two tourist-leisure zones
Relationship between one tourist-leisure and
one non-tourist leisure zone
Relationship between two commercial zones
Relationship between one commercial and one
non-commercial zone

Income at stationi = 1, income at stationj = 0
Tourist-leisure at stationi = tourist-leisure at
stationj = 1
Tourist-leisure at stationi = 1, tourist-leisure at
stationj = 0
Commercial stationi = commercial stationj = 1
Commercial stationi = 1;
commercial stationj = 0

Environmental effects
Distance Distance (in km) between two stations

The solution to the ERGM estimators is obtained by maximum likelihood. There is no
closed solution for this problem, which is why it is approximated by simulation with the
Monte Carlo Markov chain (MCMC) [13]. The model is estimated with the ERGM package
of R.

The results of the ERGM estimation are shown in Table 4, where two models are
proposed. They estimate the expected probability that two bicycle stations are connected,
i.e., that at least one person has taken that route irrespective of the direction taken. As
observed in Figure 4a, the sample includes an uneven distribution of stations in low- and
high-income areas. Fortunately, the estimation of the coefficient for categorical variables in
ERGM is robust with respect to the number of nodes belonging to every category. Then,
we can interpret the significant effect of the connection of equal or different income areas
independently of the distribution of low and high-income stations in the sample.

Model 1 includes the income category just as a nodal predictor; that is, in this specifi-
cation, we study whether the income category in the neighborhood of a station affects the
probability of generating a route irrespective of the income category of the other stations.
Model 2 includes relational effects concerning the income level of the areas involved in
the rental and return stations belonging to a route. In this model, the interaction between
income categories involved in the rental and return stations on a route is considered. In
the two models, the non-significant variables (population within a radius of 250 m) were
removed from the estimation.

The structural effects in the model estimation are used as control variables. The
estimation results in the two models show a negative effect of intensity, reflecting that the
number of edges is lower than expected if weights are randomly distributed. Then, the
network presents a higher concentration of routes among some stations than was randomly
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expected. The positive sign of the transitivity variable reveals a statistical trend to form
triangles of connecting stations.

Table 4. ERGM estimation of the public bike-sharing network “Sitycleta” in Las Palmas de Gran
Canaria, from April 2018 to October 2019.

Variable Model 1
Coeff.

Model 1
Odds Ratios

Model 2
Coeff.

Model 2
Odds Ratios

Structural effects

Intensity −1.43
(0.00) * −2.16 (0.00) *

Transitivity 0.89
(0.00) *

0.88
(0.00) *

Nodal main effects

N◦ Stations 500 m 0.04
(0.00) * 1.04 0.04 (0.00) * 1.04

Workers per postal zip −6.24·10−3

(0.00) *
0.94 −6.26·10−3

(0.00) *
0.94

Uptown stations −0.75
(0.00) * 0.47 −0.76 (0.00) * 0.47

Lower-income stations −0.37
(0.00) * 0.69

Nodal relational effects

Relationship between 2
higher-income zones 0.74 (0.00) * 2.10

Relationship between 1 higher
and 1 lower-income zone 0.38 (0.00) * 1.46

Relationship between 2
tourist-leisure zones

0.12
(0.00) * 1.13 0.11 (0.00) * 1.12

Relationship between 1
tourist-leisure and 1 non-tourist

leisure zone

0.17
(0.00) * 1.19 0.17 (0.00) * 1.19

Relationship between 2
commercial zones

0.24
(0.00) * 1.27 0.25 (0.00) * 1.28

Relationship between 1
commercial and 1

non-commercial zone

0.46
(0.00) * 1.58 0.46 (0.00) * 1.58

Environmental Effects

Distance −9.11·10−3

(0.00) *
0.91 −9.03·10−3

(0.00) *
0.91

AIC
BIC

−1054
−1003

−1054
−998.3

Note: Asterisk means significant at 99%.

The estimators of the nodal effects are also stable in the two models. The concentration
of stations in a given radius slightly increases the probability of connection, as expected.
Due to geographical reasons, it is also expected that the up-town stations are less connected
and that the distance negatively influences the probability of connection among stations [37].
Moreover, areas with a larger number of workers are less likely to use bikes for transport.
This result reveals that bikes are not very commonly used for work purposes.

Some new findings can be extracted from the estimations of the relational effects. On
the one hand, the probability of connection between two stations differs depending on
whether they are located in tourist-leisure areas or not. Specifically, the probability of
connection between two stations located in tourist-leisure areas is greater than if they both
do not belong to tourist-leisure areas (reference category). Moreover, this probability of
connection between a station located in a tourist-leisure area and a second station located
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in a non-tourist-leisure area is also greater than in the reference case. More precisely, since
coefficients in ERGM models can be interpreted as in logit models, by calculating the odds
ratio, we find that the odds of two stations located in a tourist-leisure area connecting
with each other are 1.13 times the case for two stations in non-tourist-leisure areas. In
other words, it is 13% higher. With respect to the connection between one station in a
tourist-leisure area and another one in a non-tourist-leisure area, the odds ratio is 19%
higher than the reference case.

On the other hand, similar conclusions are drawn with respect to stations located
in commercial areas. The probability of connection between stations located in two com-
mercial areas is much higher than that between stations located in non-commercial areas.
Specifically, the odds of two stations in commercial areas are 27% greater than the reference
case (two stations in non-commercial areas). Moreover, the probability of connection when
one of the stations is located in a non-commercial area also increases with respect to the
reference case.

Therefore, the bike is more likely to be used in leisure and commercial areas, revealing
leisure and shopping uses. The positive influence of shopping and restaurant places,
together with other leisure activities, in the neighborhood on bike use was also highlighted
by previous contributions [27,28].

When analyzing the effect of income on the probability of connection, results agree
with previous literature [2,4,5,17,20], showing that there exists a significant relationship
between income and use of bike sharing. With respect to the influence of income on the
probability of generating routes, Model 1 includes income as a nodal factor predictor,
and results show that stations located in lower-income areas have a lower probability
of connection. Specifically, their odds ratio of connection is 30% lower than stations
located in higher-income zones. The fact that lower-income neighborhoods use the bike-
sharing network at a lower degree agrees with the user profile of the BSS: Users are
mainly individuals with higher income and education levels [3,4,29]. Moreover, the results
show that bike users’ preferred routes are those connecting higher-income neighborhoods,
showing inequality not only in the user’s profile but in the network connectivity.

Model 2 delves into this fact by analyzing the relational effects of income and finds
that the probability of connection between two stations located in zones with higher income
is greater than in the case where both stations are located in zones with lower income.
Quantifying the effect, we find that the odds of connecting two stations in a higher-income
area are 110% greater than when both stations belong to lower-income zones. It has also
been found that links between stations belonging to different income zones (higher and
lower) also present a greater probability of connection than in the reference case (the odds
ratio in this case is 46% higher than in the reference case).

6. Conclusions

This work contributes to the existing literature about socioeconomic equity in BSS in
two aspects: On the one hand, it is the first work in this field focused on analyzing the
effect of income on bike-sharing routes, as opposed to the majority of works, which focus
their attention on the income just in the neighborhood of each bike station. The possibility
of considering links between stations enriches the analysis and provides the manager with
interesting tools for planning or developing strategies. Secondly, the methodology applied
for this purpose is social network analysis, and more specifically, the ERGM estimates bike
trips based on factors that influence them. This approach is also new in the context of
bike-sharing literature.

As a case study, we have chosen the BSS established in Las Palmas de Gran Canaria,
in the Canary Islands, Spain. The probability of connection between stations has been
estimated using a weighted undirected exponential random graph model. Control variables
considered are population, number of workers per zone, distance, whether stations are
uptown or downtown, and type of zone (tourist-leisure, commercial, or none). Among
these factors, the geographical effects show the highest influence on using bike routes.
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In fact, bikes in stations located in the flat area of the town are 117% more likely to be
used than those in uptown. Routes, including commercial and leisure areas, are also more
preferred by bike users than those connecting areas with other uses.

Socioeconomic differences are taken into account by distinguishing between higher-
income and lower-income zones. Interactions between origin and return stations depending
on their zone income level have also been analyzed. Two findings are shown: On the one
hand, stations located in lower-income neighborhoods have a lower probability of being
connected to other stations, and on the other hand, stations in higher-income areas are more
likely to be connected to each other. In fact, routes connecting two stations in higher-income
areas are more than twice as likely as those connecting two stations in lower-income areas.
A route connecting a higher-income area and a lower-income area is 50% more likely than
those connecting stations in lower-income areas as well. These findings provide knowledge
of the pattern of relational behavior of the stations according to the income profile of
their area.

From the above findings, some proposals can be made to managers or policymakers:
Firstly, since socioeconomic inequities are corroborated by the estimated model, man-

agers should take this fact into account and promote policies for lower-income users.
Managers could also delve into the reasons behind the socioeconomic inequities, i.e., an-
alyze whether the annual quota represents a barrier to lower-income users or whether
lower-income individuals are more reluctant to use the bicycle because of a lack of habits.
Studies about the impact of equity policies on bike sharing show that their effect is some-
times lower than expected [30]. For this reason, better knowledge about lower-income user
behavior could be helpful to propose policies enhancing their use of bike sharing through
price policies or habit promotion.

One of the reasons for this inequity may be the price, the access to bike stations, or
the lack of habitual cycling. In the specific case of “Sitycleta”, analyzed as a case study, the
price system is reasonably affordable for commuting use since it allows paying an annual
quota of EUR 40, including the first thirty minutes, and fifty cents for the additional thirty
minutes. So, if we want to go deeper into the facts behind this socioeconomic inequity, a
survey should be delivered to users. However, if the BSS is used for leisure or casual use,
prices are too expensive for users, mostly lower-income individuals. Leisure use entails
longer trips, which means additional payments. Additionally, if individuals are interested
in casual use, in this case, the price is too high since it is EUR 1.3 for every thirty minutes,
which really represents a barrier to use.

Secondly, taking into account that our focus is on analyzing routes instead of stations,
we can detect user route preferences, go deeper into the niche corresponding to users from
deprived zones, and establish policies aimed at promoting and improving access to the
most demanded routes. Therefore, the fact that lower-income areas connect more with
higher-income areas than with other lower-income zones can be used to detect which routes
should be promoted. In this sense, lower-income zones would increase their trips if access
to higher-income areas was improved in terms of the quality and adequacy of bicycle paths
between stations located in lower-income zones and the main higher-income zones.

Thirdly, according to the descriptive analysis, the network studied is mostly used for
commuting purposes. We propose promoting bike sharing for leisure and casual use. Since
prices in these cases represent a clear barrier for lower-income individuals, this promotion
should entail a price policy for the lower-income group. This policy was applied in London
and analyzed by [5], who confirmed the success of the policy in leading to an increase in
casual trips for lower-income users.
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