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Abstract: Deforestation as a land-cover change process is linked to several environmental problems
including desertification, biodiversity loss, and ultimately climate change. Understanding the
land-cover change process and its relation to human–environment interactions is important for
supporting spatial decisions and policy making at the global level. However, current geosimulation
model applications mainly focus on characterizing urbanization and agriculture expansion. Existing
modelling approaches are also unsuitable for simulating land-cover change processes covering large
spatial extents. Thus, the objective of this research is to develop and implement a spherical geographic
automata model to simulate deforestation at the global level under different scenarios designed to
represent diverse future conditions. Simulation results from the deforestation model indicate the
global forest size would decrease by 10.5% under the “business-as-usual” scenario through 2100.
The global forest extent would also decline by 15.3% under the accelerated deforestation scenario
and 3.7% under the sustainable deforestation scenario by the end of the 21st century. The obtained
simulation outputs also revealed the rate of deforestation in protected areas to be considerably lower
than the overall forest-cover change rate under all scenarios. The proposed model can be utilized
by stakeholders to examine forest conservation programs and support sustainable policy making
and implementation.

Keywords: spherical geographic automata; modelling global deforestation; land-cover change;
complex spatial systems; geographic information systems

1. Introduction

Deforestation is a land-cover change (LCC) process caused by natural and anthro-
pogenic factors further entailing environmental degradation with several negative conse-
quences both at the regional and global scales [1,2]. Rates of deforestation especially in
developing countries, triggered by factors such as agricultural expansion, timber produc-
tion, forest fire, mining, and urbanization have been increasing over the last century [3–5].
These trends of decreasing forest cover and deteriorating conditions have resulted in de-
forestation becoming a major global environmental issue considering the several critically
important ecosystem services and functions forests provide [6,7]. Forests are important
areas for biodiversity, with approximately 80% of the world’s terrestrial biodiversity found
in forest regions [8]. Further, forests represent the largest terrestrial sink of carbon dioxide
(CO2) and are globally responsible for significant carbon stocks [9,10]. These highlight the
important roles forests play in the Earth’s biochemical and ecological systems.

Geosimulation modelling has become an important tool for representing land-cover
change (LCC) processes and assisting in understanding the interaction between anthro-
pogenic activities and the impact of deforestation on other environmental systems, permit-
ting spatial analyses of the underlying causes of this dynamic process [11]. Further, the
simulation of possible LCC scenarios provides a useful mechanism to inform environmental
and forest management policies and decision making for providing valuable insights for
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developing appropriate measures to alleviate the negative impacts of deforestation [12].
Specifically, data on forest cover and future trajectories provide significant information for
estimating carbon stocks, ecosystem service evaluation, and forestry conservation [13,14].
Assessing the performance and effectiveness of environmental policies such as the Reduc-
tion in Emissions from Deforestation and Forest Degradation (REDD+) policies requires
detailed spatial data on forest-cover change and future scenarios [15].

Forests can be considered as complex biophysical spatial systems with many compo-
nents, and some considerably depend on human interactions at the local level to give rise
to global patterns of deforestation processes over time [16]. Thus, geosimulation modelling
approaches are seen as suitable for representing forest change processes. Accordingly,
several geosimulation models have been implemented to represent the dynamics of forest
changes as a complex spatial process including approaches based on cellular automata
(CA) [17,18], and some were enhanced with techniques such as Markov chain [19,20],
logistic regression [21,22], multi-criteria evaluation (MCE) [23,24], machine learning [25],
and deep learning [26]. Several studies have also been incorporating human interactions to
represent deforestation processes using agent-based geosimulation models (ABMs) [27,28].
However, these modelling approaches are all developed mainly to operate on small spa-
tial extents and implemented to simulate forest-cover change dynamics at the local and
regional levels.

The use of existing geosimulation models at larger spatial scales presents challenges
that are peculiar to spatial modelling at the global level. Primarily, these models do not
consider the curvature of the Earth’s surface when modelling at larger extents, which
can lead to errors in spatial and statistical analyses due to spatial distortions caused by
planar map projections [29]. The limitations of using planar spatial models for analyses and
simulations at the global level have been documented in the scientific literature [30–32],
with spherical models proposed as a possible solution. While spatially explicit land-cover
change models have become prevalent over the last decade, geosimulation models for
deforestation are still scarce, with existing global applications typically focusing on simu-
lating urbanization [33,34] and agricultural expansion [35]. In order to improve simulation
results, CA models are often integrated with other techniques such as spatial multi-criteria
evaluation (MCE) to identify suitable or susceptible locations for the potential occurrence
of the geographic phenomena and then guide transition rules. The MCE technique pro-
vides a comprehensive approach that combines several often-conflicting criteria based
on suitability functions, weights, and their overall aggregation [36]. The approach has
been implemented in several applications, including land-cover change [37,38], deforesta-
tion [23], and urban growth [39], although all these studies address small spatial extents.
Therefore, the main objective of this research study is to develop and implement a spherical
geographic automata (SGA) modelling approach by integrating MCE and cellular automata
to simulate the process of deforestation at the global level and considering the curved
surface of the Earth.

2. Materials and Methods
2.1. Spherical Deforestation Model Overview

The methodology extends the theoretical concepts of the spherical geographic au-
tomata (SGA) approach [40] and integrates susceptibility analysis for global deforestation
modelling. The methodological flow chart of the modelling approach is presented in
Figure 1. The spherical component of the model is operationalized with the use of a discrete
global grid system (DGGS) [41] and hexagonal spatial tessellations as a base unit that
allows for geospatial data representation at the global level and with consideration of
the curvature of the Earth’s surface. The MCE technique is used to identify susceptible
locations for forest-cover loss using several criteria as possible drivers of deforestation.
Three scenarios have been developed to represent possible future deforestation processes
under different conditions.
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Figure 1. Flowchart of the spherical deforestation model for simulating forest land-cover change at
the global level.

2.2. Global Deforestation Spherical Geographic Automata

The spherical geographic automata (SGA) component is the central part of the pro-
posed modelling methodology, and it is designed to simulate the process of deforestation
at the global level. The SGA utilizes a spherical cell space based on DGGS and comprising
hexagonal tessellation covering the Earth’s curved surface. As a geospatial model, DGGS
applies a spherical grid framework to partition and represent the curvature of the Earth’s
surface [41]. The DGGS spatial model is based on an icosahedron polyhedron with equal-
area hexagonal cells. When used to tesselate spherical surfaces, hexagonal cells are the most
compact and offer uniform adjacency and neighbouring relationships over other regular
polygons such as squares and triangles. The global spatial datasets are transformed into
hexagonal spatial tessellations as the model input. The spherical geographic deforestation
model extends the previous research study [42] and can be formulated as follows:

GAt+1
h =

[
GAt

h, HNt
h, St

def_global , f , ∆T
]

(1)

where GAt+1
h is the state of the hexagonal cell h at the next time step t + 1, GAt

h denotes the
state of the hexagonal cell at initial time t, HNt

h represents the hexagonal neighbourhood of
six cells surrounding the central cell, St

def_global is the overall susceptibility value obtained
for each hexagonal cell, f is the function of transition rules that determine how the state
of cells changes over time, and ∆T is the discrete time step representing one iteration of
the model. The effects of protected areas on deforestation as constraints and values of
susceptibility analysis of deforestation are also considered. The function of transition rules
represents the actual dynamics of the deforestation process. During each iteration, cells
representing forest are converted to the dominant non-forest land-cover type based on the
cell’s neighbourhood, susceptibility value, and constraint parameter.
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2.3. Datasets

The study area in this research study encompasses the entire global land surface except
for Antarctica, and several spatial datasets with global extent were acquired to implement
the model. Land-cover datasets were obtained from the European Space Agency (ESA)
portal [43], global roads dataset from the Global Roads Inventory Project (GRIP) [44],
protected areas from the World Database on Protected Areas (WDPA) [45], past forest
disturbance from the Global Wildfire Information System (GWIS) [46], population density
from the LandScan portal [47], and elevation dataset from the United States Geological
Survey (USGS) portal [48]. All spatial datasets were converted into Icosahedral Snyder
Equal Area (ISEA) aperture 3 hexagonal cell format [49] with each cell having an area of
32 km2 and intercell spacing of 6.1 km. A total of 4,235,365 hexagonal cells were used to
tessellate the Earth’s land surface, which corresponds to an area of 135.5 million km2. The
global land size excluding Antarctica varies between 134.1 million km2 and 135 million km2

based on the scientific literature [50–52]. The existing spatial datasets were converted into
hexagonal DGGS cells following the approach presented in [53]. The temporal resolution
in the research study was determined to be 10 years, and the model was implemented and
evaluated using datasets for the years 2000, 2010, and 2020.

2.4. Susceptibility Analysis

General multi-criteria evaluation (MCE) approaches [36] have been adopted to im-
plement deforestation susceptibility analysis and were executed at the global level in this
research study. Driving factors were identified to represent relevant criteria that character-
ize the process of deforestation, and susceptibility functions were derived for each criterion.
Susceptibility functions transform criterion values into a normalized range between 0 and
1, where 1 indicates highest satisfaction and 0 denotes no satisfaction for the particular
criterion. Moreover, each criterion is normalized with the respective suitability function
and then weighted and aggregated to obtain the deforestation susceptibility scores for each
hexagonal cell. Finally, susceptibility scores can be used to generate global deforestation
susceptibility maps that can be one of the inputs that guide the transition rules of the
SGA model.

The selected criteria that express some of the key drivers of the deforestation process
at the global level are based on the scientific literature and can be grouped into three
categories: socioeconomic (population density), terrain (slope, elevation), and proxim-
ity (proximity to urban areas, major roads, water bodies, agriculture, forest edge, past
forest disturbances) [5,23,54]. Table 1 presents the selected criteria and their respective
susceptibility functions as graphs.

Table 1. Selected criteria of deforestation with their respective susceptibility functions with rationale
and criteria weights.

Category Deforestation
Criteria

Susceptibility Functions Rationale Criteria
Weights

Socioeconomic Population density
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Table 1. Cont.

Category Deforestation
Criteria

Susceptibility Functions Rationale Criteria
Weights

Terrain Slope
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Table 1. Cont.

Category Deforestation
Criteria

Susceptibility Functions Rationale Criteria
Weights

Proximity Proximity to forest
edges
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The susceptibility functions were generated for each criterion and informed by the
literature [23,55–57]. The socioeconomic group of criteria rooted in anthropogenic activities
is a major determinant of deforestation, and population density is often used as an indicator
for the concentration of urban regions and thus human activities [58]. Increasing population
density and urban area expansion cause pressure on nearby forests due to the harvesting
of wood for construction and fuel, farming, cattle grazing, and urban and infrastructure
development [59]. The population density susceptibility function is expressed as a linear
membership based on the maximum population density value obtained from the datasets
which is 1,168,691 inhabitants per cell. Characteristics of the terrain build another group
of criteria. Differences in elevation and slope can represent restrictions to deforestation.
Areas with steep slopes are less prone to deforestation as they are unfavourable for other
land-use types such as agriculture, infrastructure, and urban development [54,60]. Flat
areas, however, allow for accessibility for clearing of forest for agricultural activities and
urban and infrastructure development. For the slope susceptibility function, gradients less
than 5◦ yield maximum satisfaction, and slopes steeper than 59◦ are considered unsuitable
for deforestation. The susceptibility function for elevation has maximum satisfaction in
locations where altitude is less than 200 m and decreases with increasing elevation until
4900 m. The maximum elevation is set to 4900 m given the highest forest stand is located at
this altitude [61,62].

Proximity-based criteria were selected due to different land-use and land-cover fea-
tures that are driving the deforestation process. Urbanization creates increased demand
for land, and deforestation is more likely in areas closer to urban centres as forests are
more likely to be cleared for urban expansion, wood harvesting for fuel, and agricultural
activities. The function uses a linear membership with maximum susceptibility in locations
within 6.1 km of urban areas, which is equivalent to 1 hexagonal cell, and no suscepti-
bility beyond 61 km of urban areas, corresponding to 10 hexagonal cells in the spatial
dataset. Major roads provide accessibility to areas dominated by forest land-cover for
anthropogenic activities such as urbanization, infrastructure development, agriculture,
and resource extraction [63]. Several research studies have indicated a strong positive
correlation between deforestation rates and proximity to major roads [64,65]. Prior studies
indicate 95% of deforestation can occur with 4.5 km of major roads, with the influence
of roads on deforestation extending as far as 100 km [63]. The susceptibility function
decreases with increasing distance from major roads, with no susceptibility beyond 97.6 km
of roads, which is equivalent to 16 hexagonal cells in the spatial data layer. Proximity to
water bodies can also potentially influence the dynamics of deforestation by increasing
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accessibility to remote areas, transporting forest resources such as timber, and providing
water resources for human settlements [66]. The susceptibility function of proximity to
water bodies also decreases with increasing distance from water bodies, with no suscepti-
bility beyond 42.7 km of water bodies, which is represented by 7 hexagonal rings. Further,
prior studies have indicated agricultural expansion to be another significant driving fac-
tor of deforestation [67–69]. Forest areas closer to agricultural lands are more likely to be
converted for agricultural purposes to support increasing demand for food, biofuels, and
animal production. The susceptibility function is based on a decreasing linear function
with no susceptibility past 30.5 km, corresponding to 5 hexagonal cells.

Deforestation typically proceeds from the edge of forests into the interior and sub-
sequently leads to the fragmentation of large forest regions into smaller non-contiguous
areas [70,71]. Thus, areas closers to forest edges are more prone to deforestation due to their
accessibility by the local population. The susceptibility function for proximity to the forest
edge decreases with distance until 61 km. Also, past forest disturbance is often seen as a
precursor to future forest degradation, and several studies have indicated deforestation is
more likely to occur in areas that have experienced some form of disturbance such as forest
fire, logging, or mining [72–74]. The past disturbance susceptibility function also uses a
linear membership where susceptibility decreases with distance until 67.1 km, which is
equal to 11 hexagonal cells.

2.5. Criterion Weight Generation and Global Susceptibility Maps

Weights were generated for each criterion to reflect the relative importance of the
selected criteria in determining deforestation. While criteria weights in most GIS-based
MCE methods can be determined by subject experts or stakeholders, this was not possible
in this research study due to the global scope of the model’s application and resource
limitations. Thus, the Automatic Weight Selection technique [75] was applied to generate
the weights of importance, and values were normalized so the sum of all weights is equal
to one. The technique is based on the comparison between locations of deforestation and
random sampling sites using the Cohen’s d metric [76]. The obtained criterion weights
are presented in Table 1. Based on the normalized criterion values and criterion weights,
the Weighted Linear Combination (WLC) technique [77] was used to calculate the overall
deforestation susceptibility scores for each hexagonal cell for deforestation. The obtained
susceptibility scores were classified into five classes using the equal interval method. They
were categorized as very low (0–0.2), low (0.21–0.4), medium (0.41–0.6), high (0.61–0.8), and
very high (0.81–1) susceptibility to deforestation. The equal interval method was chosen to
classify the susceptibility values due to its ability to create categories of equal sizes and for
easy comparison. Figure 2 depicts the obtained global deforestation susceptibility output
maps for different parts of the Earth.
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(d) South America.

2.6. Deforestation Scenarios

In this research study, three deforestation scenarios were designed and implemented
to simulate forest land-cover change under different conditions: Business as Usual (BAU),
Accelerated Deforestation (AD), and Sustainable Deforestation (SD) scenarios. The Business
as Usual scenario assumes the historical rate of deforestation observed between 2010 and
2020 will continue in the future [78]. Further, deforestation inside protected areas is allowed
due to ineffective implementation of forest conservation policies in some regions and
to allow either for urbanization or agricultural expansion [79]. Research reveals that
increased demand for forest products and services could amplify rates of deforestation
by half in some parts of the world [80]. Therefore, the Accelerated Deforestation scenario
assumes the rate of forest loss would be 50% higher than the current rate as well as loose
implementation of environmental conservation policies. This represents a pessimistic
deforestation scenario used to characterize forest-cover change under complete absence of
forest management policies and lack of political commitments to reducing deforestation at
the local and global levels. The Sustainable Deforestation scenario is the most optimistic
and assumes a reduction in the current trend of deforestation by 50% through 2050 and
75% by 2100. Also, it encompasses the strict enforcement of forest conservation policies and
programmes, and deforestation is restricted in protected areas under this scenario. Prior
studies indicate the effective implementation of forest conservation policies and measures
can positively impact global climate change. The research findings indicate reducing rates
of deforestation by 50% could potentially reduce carbon emissions from land-cover change
by 13 to 50 gigatons of carbon (GtC) [81,82].

Under each scenario, the model is constrained by the rate of deforestation at the
country level and calculated using the 2010 and 2020 land-cover datasets. However, due to
a lack of adequate data, the conversion of forest cover to water and snow and the process
of reforestation are not considered.

2.7. Model Implementation and Evaluation

The spherical deforestation model was implemented in the Python programming
language [83] using the DDGRID open-source library [84]. The model was implemented on
a workstation with an Intel(R) Xeon(R) Gold 6128 CPU @ 3.40 GHz 3.39 GHz processor and
32 GB RAM, with the processing time for each scenario implementation varying between 81
and 88 h. The model was run for eight iterations with a temporal resolution of 10 years to
simulate global deforestation between 2020

(
Ti) and 2100 (Ti+8) and for the three scenarios.
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Model evaluation was performed using the relative operating characteristic (ROC)
technique [85] and the Figure of Merit (FoM) [86]. ROC entails metrics for assessing the
performance of binary classification with continuous output or rank order values [87,88].
ROC applies thresholds to generate a contingency table with four performance descriptors:
true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN) [89].
True positives (TP) correspond to changed forest cells correctly simulated as change by the
model, false negatives (FN) are unchanged forest cells wrongly simulated as changed cells,
false positives (FP) are changed forest cells the model was unable to simulate as changed
cells, and true negatives (TN) are changed forest cells simulated as change but to the wrong
land-cover class [90]. From the contingency table, the true positive rate (TPR) and false
positive rate (FPR) can be calculated as follows:

TPR =
True Positives

True Positives + False Negatives
(2)

FPR =
False Positives

False Positives + True Negatives
(3)

By plotting the TPR on the vertical axis and FPR on the horizontal axis of the graph,
the ROC curve and Area Under the Curve (AUC) metrics are obtained [91]. AUC values
range between 0 and 1, where a larger value indicates higher model accuracy. Additionally,
the simulation outputs are compared with actual land-cover datasets using the Figure of
Merit (FoM) index which can be expressed as follows:

FoM =
hits

misses + hits + f alse alarms
(4)

where the definition of the term misses is the same as false negatives, hits denote true
positives, and false alarms are equivalent to false positives.

In this research study, global datasets for the period 2000–2010 were used for model
calibration, and then global datasets for the period 2010–2020 were used for model valida-
tion. The AUC value obtained for the global spherical geographic deforestation model was
0.9 in the calibration phase and 0.87 in the validation phase. Other global geosimulation
model applications in the scientific literature report AUC values ranging between 0.72 and
0.93 [92–94]. For the FoM metric, the value obtained was 36.5 for the model calibration and
29.9% during model validation. FoM values obtained in other global geosimulation models
range between 19% and 43% [33,93]. Thus, the evaluation of the proposed modelling
methodology yields commensurate values.

3. Results
3.1. Global and Regional Variations in Forest-Cover Change

In 2020, forest covered 48 million km2 of the terrestrial Earth’s surface, corresponding
to 35.6% of the global land area. The simulation results of deforestation are presented in
Figure 3 for North America only as an illustration of detailed model outputs, and for each
time step between 2020 and 2100 under the Accelerated Deforestation (AD) scenario. The
obtained simulation outputs of deforestation under the different scenarios by the year 2100
compared with the base year 2020 are also presented for different parts of the globe in
Figure 4.

Under the BAU scenario, the global forest extent shrinks to 43 million km2, decreasing
by 5 million km2 between 2020 and 2100, which corresponds to an annual forest loss of
63 thousand km2 per year, about twice the size of the Netherlands. Approximately 10.5%
of the forest extent in 2020 would be lost by the end of the 21st century based on the current
trend of deforestation. Under the AD scenario, the global forest extent would decrease by
7.3 million km2, representing a forest loss of 15.3% by 2100. Conversely, the simulation
results indicate 1.8 million km2 of the global forest area would be deforested by 2100 under
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the SD scenario, which represents a global forest loss of 3.7%. Figure 5 presents the global
cumulative deforestation obtained for the three scenarios.
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The simulation results also revealed marked differences in deforestation dynamics at
the continental level. Table 2 presents summaries of the simulated forest-cover change per
continent in the period between 2020 and 2100. At the continental level, Europe had the
largest forest-cover loss with 1.9 million km2, corresponding to 15.5% of the continent’s
forest extent in 2020, under the BAU scenario. The results further indicate forest loss in
Europe would reach 2.7 million km2 under the AD scenario. It must however be noted
that the Russian Federation which is considered part of Europe in this research accounts
for 81.8% of Europe’s forest area in 2020. The simulation outputs also reveal considerable
deforestation in North America with 1.02 million km2 of forest lost under the BAU scenario
and 1.5 million km2 under the AD scenario. Forest losses in Africa, Asia, and South America
are revealed to be 0.58 million km2, 0.66 million km2, and 0.76 million km2, respectively,
under the BAU scenario. Figure 6 depicts simulated deforestation in 2100 compared to
the base year for different forest regions across the globe under the three scenarios. The
Amazon Forest, Congo Basin, and Eastern USA regions are presented here due to the
extensive forest loss revealed by the simulation results.

Table 2. Simulated forest-cover extent (in million km2) and percentage of cumulative forest lost (%)
by continent between 2020 and 2100 under the Business as Usual (BAU), Accelerated Deforestation
(AD), and Sustainable Deforestation (SD) scenarios.

Continent 2020
(106 km2) Scenario 2030 2040 2050 2060 2070 2080 2090 2100 Lost (%)

Africa
8.42 BAU 8.34 8.27 8.20 8.12 8.05 7.98 7.91 7.84 6.85

AD 8.31 8.20 8.09 7.98 7.88 7.77 7.67 7.57 10.08
SD 8.38 8.34 8.31 8.29 8.27 8.25 8.23 8.22 2.40

Asia
7.28 BAU 7.19 7.11 7.03 6.94 6.86 6.78 6.70 6.62 9.03

AD 7.15 7.02 6.90 6.78 6.66 6.55 6.43 6.32 13.18
SD 7.24 7.20 7.15 7.13 7.11 7.09 7.07 7.05 3.21

Australia
1.10 BAU 1.08 1.07 1.05 1.04 1.03 1.01 1.00 0.98 10.20

AD 1.07 1.05 1.03 1.01 0.99 0.97 0.95 0.93 14.97
SD 1.09 1.08 1.07 1.07 1.07 1.06 1.06 1.06 3.61

Europe
12.12 BAU 11.88 11.64 11.39 11.15 10.92 10.68 10.46 10.24 15.48

AD 11.75 11.39 11.03 10.68 10.34 10.02 9.70 9.40 22.45
SD 12.00 11.88 11.77 11.71 11.65 11.58 11.52 11.46 5.41

North
America

7.97 BAU 7.83 7.70 7.57 7.45 7.33 7.20 7.08 6.96 12.74
AD 7.77 7.57 7.38 7.19 7.01 6.84 6.66 6.49 18.61
SD 7.90 7.84 7.77 7.74 7.71 7.67 7.64 7.61 4.51

Oceania
0.51 BAU 0.50 0.50 0.49 0.49 0.48 0.48 0.48 0.47 6.58

AD 0.50 0.49 0.49 0.48 0.47 0.47 0.46 0.46 9.67
AD 0.50 0.49 0.49 0.48 0.47 0.47 0.46 0.46 9.67

South
America

10.40 BAU 10.30 10.20 10.10 10.00 9.91 9.82 9.73 9.64 7.33
AD 10.25 10.10 9.95 9.81 9.68 9.55 9.42 9.30 10.58
SD 10.35 10.30 10.25 10.22 10.20 10.18 10.15 10.13 2.65

Considerable differences in forest extent and rates of deforestation can be observed at
the country level as well. The simulation results indicate the largest extent of deforestation
would occur in the Russian Federation, Canada, the United States, and Brazil. Under
the AD scenario, for example, 2.3 million km2, 0.81 million km2, 0.67 million km2, and
0.45 million km2 of forest area were lost in the Russian Federation, Canada, the United
States, and Brazil, respectively, between 2020 and 2100. In relative terms, 17.4% of the forest
in Canada and 20.3% of the forest in the United States would be lost by the end of the 21st
century under this scenario. Moreover, there are several countries (over 50) with zero forest
loss due to these countries having no forest cover, a lack of data, or the country being too
small to capture the change in forest-cover change.
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3.2. Forest Change in Protected Areas

In 2020, about 9.3 million km2 of the global forest was in protected areas, correspond-
ing to 19.5% of the global forest extent. Simulation results indicate that this proportion,
however, increases to 21.8%, 23%, and 20.2% by 2100 under the BAU, AD, and SD scenarios,
respectively. The rate of deforestation within protected areas was significantly lower than
the global rate as well. Between 2020 and 2100, only 0.03% of forests in protected areas
were deforested under the BAU scenario, and 0.09% of forests in protected areas were
deforested under the AD scenario. Conversely, the forest extent in protected areas under
the SD scenario remained the same over the simulation period with no forest loss due to
the restriction of deforestation in these areas. Table 3 presents the percentages of the share
of forest extent located in protected areas at the continental level by 2100 and compared
to the base year under the three scenarios. By 2100, 3.7 million km2 of forest in South
America would be in protected areas under the BAU scenario, which represents 38.7% of
all forest cover on the continent. This represents the largest share of protected forest area at
the continental scale. In contrast, Oceania, North America, and Europe have the lowest
percentage of protected forests at the continental level under all scenarios.

Table 3. Proportions of forest cover in percentages (%) located in protected areas by 2100 at the
continental level under the Business as Usual (BAU), Accelerated Deforestation (AD), and Sustainable
Deforestation (SD) scenarios and compared to the base year 2020.

Scenario (%) Africa Asia Australia Europe North
America Oceania South

America

Base year 2020 20.92 11.22 32.53 14.55 10.70 3.91 35.90
BAU 2100 22.44 12.34 36.23 17.21 12.26 4.18 38.73
AD 2100 23.25 12.85 38.26 18.76 13.15 4.33 40.14
SD 2100 21.43 11.60 33.75 15.38 11.21 4.00 36.88

4. Discussion

Based on the simulation outputs, the global forest extent is projected to decrease over
the coming decades, with the total forest extent in 2100 ranging between 46 and 40 million
km2. However, the rate and magnitude of deforestation differ among the three scenarios
and at the regional and country levels. The results indicate that Europe has the largest
extent of deforestation by 2100; however, 85.4% of the deforested areas in Europe would
occur in the Russian Federation. The results from the model presented in this research
are comparable with other projections found in the literature with a range of outcomes
varying between 25 million and 50 million km2 by 2100 under different scenarios [30,31,95].
However, as a caveat, simulation results from the presented model are largely dependent
on the quality of the datasets utilized in the research. For instance, the rates of deforestation
obtained at the country level for implementing the scenarios are derived from the available
ESA-CCI land-cover datasets.

The pattern of forest-cover change observed also follows the process of deforestation
as reported by prior studies [70,71]. From the simulation outputs, deforestation initially
begins from the fringes of large forest regions and diminishes into the interior. This spatial
pattern can be justified where forest regions in proximity to past forest disturbances, urban
areas, water bodies, and road networks are more prone to deforestation. Over the course
of the simulation run, regions initially covered by large forests become fragmented as
deforestation spreads into the forest core. This pattern can be observed from the temporal
simulation outputs presented in Figure 3.

While no forest management policies were explicitly included in the scenario design
and implementation, the difference in results among the scenarios indicates the model can
be utilized to assess different forest conservation policies. When properly implemented,
protected areas can be used as effective forest conservation schemes to reduce deforestation.
For instance, in the SD scenario where forest management policies are strictly implemented
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and deforestation in protected areas is not allowed, the simulation results reveal no loss of
forest cover. However, such an outcome would be difficult to achieve due to the financial
and human resources required to implement such a policy across large regions. However,
the positive impact of protected areas on deforestation is proven by other studies in the
scientific literature [63,96]. A research study [97] indicates that deforestation in protected
areas accounted for only 5% of net forest loss between 2000 and 2021 in the Brazilian
Amazon. Presently, protected areas are predominantly located in tropical regions of Africa,
Asia, and South America, in contrast to the small proportion of protected forest areas in
Europe and North America as obtained from the simulation results. According to [98],
less than 10% of subtropical humid forests, temperate steppe and boreal coniferous forests
largely found in Europe and North America are protected.

Despite the model’s capabilities in simulating deforestation at the global level and
across different regions, the research study has some limitations. Improvements can be
made to the model depending on the availability of quality and detailed global datasets to
simulate land-cover change at finer spatial resolution as well as including more relevant
criteria related to deforestation such as soil properties, climate variables, and forest type
classification. By experimenting with different weighting methods such as Analytic Hi-
erarchy Process (AHP) [99] or incorporating advanced spatial decision techniques such
as Ordered Weighted Averaging (OWA) [100] and Logic Scoring of Preference (LSP) [101],
the deforestation susceptibility analysis can be further improved for the SGA modelling
framework. The selection of the relevant drivers of deforestation and generation of criterion
weights can also be determined through engagement with subject experts and stakeholders
in the model implementation phase of the research study. Considering the spatial het-
erogeneity and dynamics of the different drivers of deforestation across diverse regions
and countries, implementation of region-specific economic or climate policies would be
beneficial to improve the model. While only homogeneous forest was considered in this
research, different forest types such as rainforest, boreal, deciduous, and mangrove, to
name a few, can also be included in order to incorporate detailed characteristics of the
different forest change dynamics. Additionally, the model can further be developed to
incorporate multiple land-use/land-cover change types to reflect their different dynamics.
This can assist in making informed decisions at country or regional levels and considering
REDD+ [102] and OECD [103] concepts. Consideration of the natural regeneration of
forests, reforestation, afforestation, and age of forested areas would be beneficial to enhance
the proposed modelling approach. Moreover, with climate being one of the drivers of forest
distribution, the inclusion of climate variables and scenarios can enhance the model’s ability
to characterize future deforestation patterns and consider the effects of climate change.
Augmenting computational power with more efficient code for the SGA model to run faster
or on multiple processors when using global datasets would be another advantage.

5. Conclusions

This research study aimed to develop and implement a unique spherical geographic
automata modelling approach that has been applied to represent and simulate the global
deforestation process. Compared to existing geosimulation models and applications, the
proposed model considers the curvature of the Earth’s surface, which is often ignored when
modelling at the global level. For large-scale spatial applications, it is determined that
the use of planar spatial models can produce very different results. Further, most global
land-cover change models in the literature generally focus on simulating agricultural and
urban land-use change, with few studies including deforestation.

Results from this research study indicate the spherical deforestation model can be
successfully implemented to simulate the forest land-cover change process at the global
level and under different “what-if” scenarios. Ultimately, the model is flexible and allows
for further enhancements. Thus, the proposed deforestation modelling approach has
a solid foundation to be used by intergovernmental entities, policymakers, ecologists,
and researchers to support global forest management and conservation. With the United
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Nations (UN) Sustainable Development Goal (SDG) 15 set on promoting the sustainable
use of terrestrial ecosystems and sustainable forest management and halting biodiversity
loss, the spherical geographic deforestation model proposed in this research study can
provide valuable insight and a spatial decision-support tool for achieving these targets.
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