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Abstract: With the widespread use of the location-based social networks (LBSNs), the next point-
of-interest (POI) recommendation has become an essential service, which aims to understand the
user’s check-in behavior at the current moment by analyzing and mining the correlations between
the user’s check-in behaviors within his/her historical trajectory and then recommending the POI
that the user is most likely to visit at the next time step. However, the user’s check-in trajectory
presents extremely irregular sequential patterns, such as spatial–temporal patterns, semantic patterns,
etc. Intuitively, the user’s visiting behavior is often accompanied by a certain purpose, which makes
the check-in data in LBSNs often have rich semantic activity characteristics. However, existing
research mainly focuses on exploring the spatial–temporal sequential patterns and lacks the mining
of semantic information within the trajectory, so it is difficult to capture the user’s visiting intention.
In this paper, we propose a self-attention- and multi-task-based method, called MSAN, to explore
spatial–temporal and semantic sequential patterns simultaneously. Specifically, the MSAN proposes
to mine the user’s visiting intention from his/her semantic sequence and uses the user’s visiting
intention prediction task as the auxiliary task of the next POI recommendation task. The user’s
visiting intention prediction uses hierarchical POI category attributes to describe the user’s visiting
intention and designs a hierarchical semantic encoder (HSE) to encode the hierarchical intention
features. Moreover, a self-attention-based hierarchical intention-aware module (HIAM) is proposed
to mine temporal and hierarchical intention features. The next POI recommendation uses the self-
attention-based spatial–temporal-aware module (STAM) to mine the spatial–temporal sequential
patterns within the user’s check-in trajectory and fuses this with the hierarchical intention patterns
to generate the next POI list. Experiments based on two real datasets verified the effectiveness of
the model.

Keywords: next POI recommendation; intention prediction; self-attention network; multi-task
learning

1. Introduction

With the rapid development of Internet technology and the widespread application of
mobile smart devices with wireless positioning functions, location-based social network
(LBSN) services are gradually emerging [1]. At present, the application software based on
LBSNs mainly includes the foreign Gowalla, Yelp, Foursquare, etc., as well as the domestic
Meituan, Dianping, and Weibo. According to Foursquare’s statistics, more than 550 million
users visit the Foursquare website every month, and the total number of check-ins exceeds
three billion times per month. As shown in Figure 1, users can perform location check-
ins, information sharing, and online social activities anytime and anywhere, resulting in
massive spatial–temporal trajectory data and social activity data. In return, these check-in
data give LBSNs the chance to create more-individualized services, such as point-of-interest
(POI) recommendations.
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Traditional POI recommendation aims to recommend the POIs that the user is inter-
ested in based on his/her historical check-in records, which treats the user’s historical
trajectory as a set, regardless of the time order. Compared with the traditional POI recom-
mendation, the next POI recommendation focuses on mining the sequential patterns within
the user’s check-in trajectory and aims to recommend the POI that the user is most likely to
visit at the next time step. Most of the existing models focus on mining the spatial–temporal
sequential patterns within the user’s check-in trajectories [2–5], which mainly include
sequential transition patterns and spatial–temporal correlations (e.g., spatial–temporal
interval features) between POIs in the trajectories. Early models were mainly based on the
Markov chain (MC). However, these models only considered sequential transition patterns.
Later, many studies [2,5,6] extended recurrent neural networks (RNNs) to incorporate the
spatial–temporal features within the user’s check-in trajectory.

Social relationship

User

Check-in

POI

Yuyuantan Park

Shichahai Park

Olympic Forest Park

Wuliqiao Park

Ditan Park

Longtan Park

Yuanmingyuan

Tian’anmen Square

Dongba Country Park

Figure 1. This is a typical LBSN system (the line weight indicates the user’s check-in frequency,
and the greater the weight of the line, the higher the user’s check-in frequency at the POI).

Recently, many methods [3,4,7] have modeled the spatial–temporal sequential pat-
terns within the user’s check-in trajectory based on a self-attention mechanism and have
achieved remarkable results. GeoSAN [3] models geographic information by partitioning
geographic space into hierarchical grids and uses self-attention mechanisms to learn geo-
graphic correlations between POIs in trajectory sequences. The STAN model [4] proposes
to directly integrate the time intervals and geographical distances between each check-in
behavior and aggregates all the relevant visits from the user’s check-in trajectory to recall
the candidates with the highest probability.

However, the user’s check-in behavior presents extremely irregular sequential patterns
owing to multiple factors such as temporal correlations, geographical correlations, and
semantic correlations. Existing methods mainly focus on exploring the spatial–temporal
sequential patterns and lack the mining of semantic information within the user’s check-in
sequence, so it is difficult to accurately capture users’ visiting intentions. Intuitively, the
user’s visiting behavior is often accompanied by a certain purpose. For example, if a
user wants to go shopping, he/she may visit a department store. Therefore, mining the
user’s visiting intention from the semantic trajectory and combining the prediction of
the user’s visiting intention with the next POI recommendation can further improve the
recommendation accuracy of the model. However, few studies have paid attention to it
at present.

In this paper, we propose a novel next POI recommendation method, called the MSAN,
to explore spatial–temporal and semantic sequential patterns simultaneously. This model
proposes to mine the user’s visiting intention from the semantic sequence and uses the
user’s visiting intention prediction task as the auxiliary task of the next POI recommenda-
tion. By building a multi-task learning framework to achieve knowledge sharing between
the two tasks, the performance and generalization ability of the model are improved.
The user’s visiting intention prediction task uses hierarchical POI category attributes to
describe the user’s visiting intention and designs a hierarchical semantic encoder (HSE) to
encode the hierarchical intention features. Moreover, it proposes a hierarchical intention-
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aware module (HIAM) based on the self-attention to capture temporal and hierarchical
intention features. The next POI recommendation uses the self-attention-based spatial–
temporal-aware module (STAM) to mine the spatial–temporal sequential features within
the user’s check-in trajectory and fuses this with the hierarchical intention features to
generate the next POI list. The main contributions of this paper are listed as follows:

• To improve the performance and generalization of recommendation, we propose a
self-attention- and multi-task-learning-based method (MSAN) to fully explore spatial–
temporal and semantic sequential patterns simultaneously, which mines the user’s
visiting intention from his/her semantic sequence and uses the user’s visiting intention
prediction task as the auxiliary task of the next POI recommendation task.

• We propose to use hierarchical POI category attributes to describe the user’s vis-
iting intention. To mine the user’s visiting intention, we designed a hierarchical
semantic encoder (HSE) to encode the hierarchical intention feature. Moreover, a self-
attention-based hierarchical intention-aware module (HIAM) is proposed to consider
the temporal effect for aggregating relevant POI categories within the user’s semantic
sequence to update the intention representation of each check-in.

• Experiments based on two real-world datasets demonstrated that the MSAN model
outperformed most of the current state-of-the-art baseline models. Thus, we verified
the effectiveness of using the visiting intention prediction task as the auxiliary task of
the next POI recommendation.

The current research status of POI recommendation is listed in the Section 1. The
Section 2 will briefly review related work on POI recommendation. In the Section 3, we
introduce some preliminary work. The Section 4 details our proposed MSAN method for
the next POI recommendation. In the Section 5, a series of experiments on two real datasets
is conducted and the experimental results’ analyses are given to verify the effectiveness of
the model. The Section 6 summarizes the content of this paper.

2. Related Work

In this section, we conduct a literature review on traditional POI recommendation and
the next POI recommendation.

2.1. Traditional POI Recommendation

Traditional POI recommendation aims to recommend the POIs that the user is inter-
ested in. In order to improve the accuracy of POI recommendation, related works tried
to mine the temporal correlations, spatial correlations, social correlations, and semantic
correlations to construct recommendation models.

Temporal modeling: The time influence in POI recommendation is mainly reflected
in three aspects: periodicity, continuity, and inconsistency [8]. Most of the studies [9–13]
modeled the periodicity and continuity of time influence. Li et al. [10] considered that the
user’s check-in behavior presents daily patterns, so they divided the time of the day into
time slices in units of hours and combined the tensor factorization (TF) model to capture
the category preferences of users in different time periods. Wang et al. [13] considered the
weekly pattern characteristics of the user’s check-in behavior, so they divided the time of
the week into two patterns: weekdays and weekends, and combined matrix factorization
(MF) to recommend POIs to users. Temporal continuity means that the POIs where users
check-in in continuous time are potentially relevant, which is usually modeled in the next
POI recommendation.

Geographical modeling: In LBSNs, the user’s check-in behavior presents the spatial
clustering phenomenon [3]. Ye et al. [14] proposed that the geographical distance between
the POIs that users continuously visit presents a power-law distribution and modeled
geographical factors based on the power-law distribution. Furthermore, Cheng et al. [15]
considered that the spatial distribution of the user’s check-in behavior presents a multi-
centered Gaussian distribution, and modeling based on the one-dimensional geographical
distance alone cannot capture the two-dimensional multi-centered Gaussian distribution, so



ISPRS Int. J. Geo-Inf. 2023, 12, 297 4 of 20

they proposed a personalized multi-centered Gaussian distribution model (MGM) to model
geographic patterns and incorporate these into the MF model for POI recommendation.

Social modeling: In LBSNs, users tend to visit POIs that their friends have visited [16].
Most of the related works extracted the similarity between users from their social relation-
ship and integrated this into the traditional memory-based or model-based collaborative
filtering (CF) to improve the recommendation performance [17–19]. Other studies [20,21]
fused social factors as regularization items or the weights of latent factor models.

Semantic modeling: The category information of POI can reflect the user’s activity
theme. Most researchers focused on the category information of the POI to analyze the
user’s check-in behavior from the perspective of semantics. For example, a user has
visited a supermarket, which means that he/she is going shopping there. Existing research
mainly modeled the category information of the POI from the following two perspectives.
On the one hand, different users have different category preferences; on the other hand,
the same user has different category preferences at different times. Bao et al. [22] integrated
the user’s category preference into the CF method and calculated the similarity between
different users by calculating the user’s POI category deviation. Liu et al. [23] clustered
users according to their POI category attributes based on their historical check-in records
and replaced the user–POI matrix by constructing a user–category matrix and then used
MF technology to predict the top-N category list.

2.2. Next POI Recommendation

The next POI recommendation aims to mine the sequential patterns within users’
check-in trajectories and recommend the POIs that the users most likely visit at the next
time step.

Most of the existing models focus on mining the spatial–temporal sequential features
within the user’s check-in trajectories [2–5], which mainly include sequential transition
patterns and spatial–temporal correlations (e.g., spatial–temporal interval features) between
POIs within the trajectories. Early works mainly relied on the Markov chain (MC) to model
the sequential patterns. Zhang et al. [24] proposed an additive MC model to learn the
check-in probability between two consecutive check-in behaviors. However, Markov-based
models mainly focus on the transition probability between two consecutive visits and ne-
glect mining high-order transition patterns. To model the high-order sequential patterns,
RNN-based models are proposed. Meanwhile, researchers also exploit temporal and spa-
tial correlations to assist sequential recommendation. The STRNN model [2] introduces
the temporal intervals and spatial distances between consecutive check-in behaviors to
capture the spatial–temporal correlations between them, which was the first work to mine
the spatial–temporal correlations within the user’s check-in sequence. The HST-LSTM
model [25] integrates spatial–temporal context information into LSTM and proposes a tra-
jectory hierarchy division method based on functional areas, which alleviates the problem
of data sparsity by mining the spatial–temporal transition characteristics between different
functional areas. However, due to the special structural design of RNNs, these RNN-based
models are limited to modeling long-term sequential dependencies [26].

In recent years, the self-attention mechanism has been shown to be powerful in model-
ing long sequential patterns [27]. In view of this, the current state-of-the-art models [3,4,7]
are all based on the self-attention mechanism to model the spatial–temporal sequence
characteristics within the user’s check-in trajectories and have achieved remarkable re-
sults. GeoSAN [3] mines geographic information by partitioning geographic space into
hierarchical grids and uses the self-attention mechanism to learn geographic correlations
between POIs in trajectory sequences. The STAN model [4] proposes to directly integrate
the time intervals and geographical distances between each check-in behavior and aggre-
gate all the relevant visits from the user’s check-in trajectory to recall the candidates with
the most probability. Although all the above models have achieved remarkable results
in the mining of spatial–temporal sequential features, they all neglect the exploration of
semantic information within the user’s check-in sequence. If the user’s visiting intention
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can be understood from the user’s semantic activity characteristics, the recommendation
performance of the model can be further improved.

3. Motivation and Preliminaries
3.1. Motivation

The user’s check-in behavior usually has a certain purpose, and the POIs frequently vis-
ited by users in LBSNs also show corresponding functional attributes. Therefore, the check-
in trajectory carries rich semantic information. By capturing the hidden semantic factors in
the trajectory sequence, we can better understand the user’s visiting intention and achieve
more-accurate predictions. However, in the research of the next POI recommendation, most
studies only mine user check-in sequence patterns from time and geographical features,
ignoring the exploration of semantic information in the sequence.

Existing studies have shown that category attributes of items or POIs can be used
to describe the user’s intention [28]. Intuitively, if a user visits a supermarket, his/her
intention is shopping. Therefore, we used the category attribute of the POI to represent the
user’s check-in intention. In addition, the hierarchy of the POI category attribute needs
to be considered when mining user’s travel intention. Hierarchy refers to the hierarchical
dependency between POI category attributes. Figure 2 shows a two-level category hierarchy.
The first level includes 9 categories: outdoors and recreation, residence, travel and transport,
art and entertainment, college and university, nightlife spot, shop, food, professional spot.
The second floor contains 252 categories such as art gallery, movie theater, and subway
stations, each of which belongs to a certain first-level category. For example, bus station
and subway station all belong to the transportation category.

Travel & 

Transport

Bus 

Statio
Subway

Light 

Rail
……

Level 1

Level 2

POI

Categories (level 1) Sub-categories (level 2)

Outdoors & Recreation Park, Skating Rink…

Residence Home…

Travel & Transport Airport, Bus station…

Art & Entertainment Performing Arts, Art Gallery…

College & University Baseball stadium, Law School…

Nightlife Spot Wine Bar, Pub…

Shop Gourmet, Hardware…

Food Coffee Shop, Bakery…

Professional Spot Company…

(a) Detailed POI category hierarchy (b) An example of a two-layer category hierarchy

Figure 2. Hierarchical representation of POI categories.

3.2. Preliminaries

This section defines the concepts and symbols involved in this paper and formally
defines the research questions of this paper. Let U = {u1, u2, . . . , u|U|} be a set of users,
L = {l1, l2, . . . , l|L|} be a set of POIs, and C = {c1, c2, . . . , c|C|} be a set of POI categories
(e.g., restaurant, fitness center, etc.), where |U|, |L|, and |C| are the total number of users,
POIs, and categories, respectively.

Definition 1 (POI). A POI is defined as a spatial location that can be uniquely determined by
geographic location information coordinates (longitude and latitude), denoted as < li, lati, loni >.

Definition 2 (Check-in or visit). A check-in or visit is a triple < ui, li, ti >, which describes user
ui ∈ U visiting POI li ∈ L at time ti. Further, the set of historical check-in records of user u can be
expressed as: Du = {< u, l1, t1 >,< u, l2, t2 >, . . . ,< u, ln, tn >}.

Definition 3 (Check-in sequence). The check-in sequence of user u is his/her historical check-in
records in chronological order, denoted by Qu = {qu

1 , qu
2 , . . . , qu

|Qu |}, in which qu
i =< u, li, ti >

and ∀i < j, qu
i .t ≤ qu

j .t.



ISPRS Int. J. Geo-Inf. 2023, 12, 297 6 of 20

Definition 4 (Semantic sequence). The semantic sequence is a semantic description of the user’s
check-in sequence. In this paper, it is composed of the POI category in the check-in sequence and
preserves the chronological order. In particular, since the POI categories have a hierarchical structure,
users’ semantic sequences are also hierarchical. Therefore, the user u’s j-th semantic sequence can
be expressed as: Su

j = {su
1 , su

2 , . . . , su
|Su

j |
}, in which su

i denotes the POI category of user u’s i-th

check-in, and it can be denoted as: su
i =< u, cj

i , ti >, in which cj
i denotes the j-th POI category.

Given a user u ∈ U, his/her check-in sequence Qu = {qu
1 , qu

2 , . . . , qu
t }, and his/her

semantic sequence Su = {Su
1 , Su

2 , . . . , Su
t }, our goal was to recommend the POIs that u may

visit at the next time step t + 1 (the results are given in the form of a top-N prediction list).

4. The Proposed Framework

The structure of the MSAN is shown in Figure 3. The MSAN constructs a multi-
task learning framework to predict the user’s visiting intention and the next POI to visit
separately. In the visiting-intention-prediction task, the hierarchical semantic encoder
(HSE) is used to learn the dense representations of hierarchical POI categories and the
temporal effect in the semantic sequences. Secondly, the self-attention-based hierarchical
intention-aware module (HIAM) was designed to aggregate relevant POI categories within
the user’s semantic sequence to update the intention representation of each check-in; finally,
all candidate categories are matched and sorted by the matching function, and then, a
list of the top-N intention predictions is given. In the next POI recommendation task,
the spatial–temporal encoder (STE) was designed to learn the dense representations of
the POI and spatial–temporal effects within the check-in sequence; secondly, the self-
attention-based spatial–temporal-aware module (STAM) is proposed to aggregate the
relevant POIs within the user’s check-in sequence to update the representation of each
check-in; then, the spatial–temporal sequence feature vector and the hierarchical intention
feature vector are concatenated as the weighted check-in representations of the spatial–
temporal and semantic patterns; finally, the most-plausible candidates from the weighted
representations are recalled, and the top-N list of POIs is given. The two learning tasks
improve the predictive performance and generalization ability of the model by sharing
the intent features of the embedding layer and establishing a weighted loss function for
joint learning.

Next POI recommendation task Next visiting intention  prediction task

Candidate
POIs

POI & 
Timestamp

Candidate
categories

Embedding STEHSE

STAM

Match & Sort

top-N POI list

Candidate
categories

Categories & 
Timestamp

HIAM

HSE HSE

Match & Sort

top-N intention list

 Timestamp & 
geographic 
coordinates

STIE

Input Layer

Embedding
Layer

Self-attention
Layer

Prediction
Layer

Figure 3. The architecture of the proposed MSAN model.
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4.1. Spatial-Temporal Interval Encoder

Before formally introducing the internal structure of the MSAN, this subsection intro-
duces the spatial–temporal interval encoder (STIE) module. The STIE is used to calculate
the time intervals and geographical distances between any check-in behaviors within the
user’s check-in sequence. Specifically, the STIE calculates the time intervals between the
i-th and j-th visits by ∆t

i,j = |ti − tj|, in which | · | denotes the absolute value function.
In addition, the STIE calculates the geographical distances between any POIs within the
user’s check-in sequence by ∆s

i,j = Haversine(li, lj). If we learn an embedding vector for
each time interval and geographic distance, it will lead to a serious data sparsity problem.
Inspired by the STRNN model, this paper designed an interpolation embedding layer
to embed the spatial and temporal interval information by setting the upper bound unit
embedding vector and lower bound unit embedding vector to approximate other interval
information, which is calculated as Equation (1):

e∆t
i,j =

esup
∆t (Up(∆t)− ∆t) + ein f

∆t (∆t− Lo(∆t))
Up(∆t)− Lo(∆t)

e∆s
i,j =

esup
∆s (Up(∆s)− ∆s) + ein f

∆s (∆s− Lo(∆s))
Up(∆s)− Lo(∆s)

(1)

where esup
∆t , ein f

∆t ∈ Rd represent the time upper and lower bound unit embedding vectors

and esup
∆s , ein f

∆s ∈ Rd represent the spatial upper and lower bound unit embedding vectors,
respectively. Up(·) and Lo(·) represent the maximum and minimum values of the time
intervals and geographical distances, respectively. Finally, the temporal and spatial relation
matrices RT , RG of user u’s check-in sequence are calculated as:

RT =

e∆t
1,1 · · · 0
...

. . .
...

e∆t
n,1 · · · e∆t

n,n



RG =

e∆s
1,1 · · · 0
...

. . .
...

e∆s
n,1 · · · e∆s

n,n


Since only the visit behavior of the first i-1 time steps is considered when predicting

the POI of the i-th time step, the upper right element values of the spatial–temporal relation
matrices RT and RG were set as 0.

4.2. Visiting Intention Prediction Task

The visiting intention prediction aims to mine the user’s historical semantic sequence
and then predict the user’s next visiting intention. This paper used the category attribute
of the POI to describe the user’s intention and predicts the user’s next visiting intention by
capturing the hierarchical categorical features and temporal effect. Firstly, a hierarchical
semantic encoder (HSE) was designed to learn the dense representations of the hierarchical
POI categories and temporal effect in the semantic sequences; secondly, a self-attention-
based hierarchical intention-aware module (HIAM) was designed to aggregate relevant
POI categories within the user’s semantic sequence to update the intention representation
of each check-in; finally, all candidate categories are matched and sorted by the match-
ing function, and then, a list of the top-N intention predictions is given. The next two
subsections introduce the HSE and HIAM modules respectively.
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4.2.1. Hierarchical Semantic Encoder

The structure of the HSE module is shown in Figure 4. The HSE takes each item su
i in

the semantic trajectory of user u as the input and outputs the embedding representation
vector su

i ∈ Rd of the item. In order to capture the weekly temporal regularity of the
users’ visiting intentions, we divided the continuous timestamp by 7× 24 = 168 h, which
represents the exact hour in a week. Then, for each item su

i =< cj
i , ti > in the semantic

sequence, the HSE maps the check-in timestamp ti to the corresponding time slice Ti, and su
i

can be further expressed as su
i =< cj

i , Ti >. Next, we map the categories cj
i and Ti to the

low-dimensional latent space through the embedding layer. For example, the embedding
vector of time slice Ti is calculated as Equation (2):

Ti = ET · oTi (2)

where oTi denotes the one-hot representation of Ti, ET represents the embedding matrix of
the temporal feature, and Ti ∈ Rd is the final embedding vector of the time slice Ti.

Figure 4. The structure of the HSE module.

Different from the embedding process of the above time slices, since the POI categories
have a hierarchical structure, it is necessary to model the category hierarchy. Specifically,
the parent category can directly use the embedding layer to transform its one-hot vector into
the low-dimensional latent space. For the embedding method of the subcategory, this paper
concatenates the embedding vector of the subcategory with its parent category embedding
vector and uses the concatenated vector as the final embedding of this subcategory, since
there is a strong correlation between the subcategories and their parent categories. If j = 1,
the embedding vector c1

i ∈ Rd is obtained directly through the embedding layer. If j = 2,
c2

i = c2
i ||c1

i , where || represents the vector concatenation operation.
Finally, the HSE aggregates the category embedding vector and the time slice embed-

ding vector to calculate the final embedding representation of the current check-in behavior,
as shown in Equation (3).

eu
i = WtTi + Wccj

i + b (3)

where Ti, cj
i are the time slice embedding vector and category embedding vector of the i-th

item within the user’s semantic sequence, Wt, Wc ∈ Rd×d are the weight parameters, and
b ∈ Rd is the bias parameter. In addition, since the length of the user’s semantic sequence is
not fixed, we set a fixed sequence length n. If the user’s semantic sequence length is greater
than n, only the last n records in the sequence will be considered. On the contrary, if the
user’s semantic sequence length is less than n, the left of this sequence will be padded zero
vectors. When the model is updated through the forward propagation process, these zero
vectors will be masked off and do not participate in the learning process. Finally, the j-th
layer semantic sequence embedding vector of user u is Su

j = {eu
1 , eu

2 , · · · , eu
n}.
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4.2.2. Hierarchical Intention-Aware Module

In order to capture the hierarchical features of the user’s visiting intention, the HIAM
designs two stacked interval-aware encoders to mine the user’s intention from two different
granularities, which is shown in Figure 5.

Hierarchical Intention 
Aware Module (HIAM)

Hierarchical 
semantic 

matrix

Time interval 
matrix

Intention 
representation 

matrix

N ×
Interval 
Aware 

Encoder

N ×
Interval 
Aware 

Encoder

Figure 5. The structure of hierarchical intention-aware module.

The interval-aware encoder takes user u’s semantic sequence matrix Su
j and temporal

relation matrix RT as the input and takes the attention encoding matrix Au as the output.
The structure of the interval-aware encoder is shown in Figure 6. Firstly, the interval-aware
attention layer uses three linear layers to transform the semantic sequence matrix Su

j of user
u into Q(Query), K(Key), and V(Value), respectively, which are calculated as Equation (4):

Q = Su
j WQ

K = Su
j WK

V = Su
j WV

(4)

where WQ, WK, WV ∈ Rd×d are the weight parameters and Q, K, V ∈ Rn×d are the updated
representation matrices. Then, the time relation matrix RT is introduced into the self-
attention layer in the form of matrix elementwise addition (Equation (5)):

Au = (M ∗ so f tmax(
QKT + RT√

d
))V (5)

where M ∈ Rn×n is the mask matrix whose elements above the diagonal are filled with

−∞. QKT+RT√
d

means that the serial correlations are continuously corrected through the time
interval relation, so that the self-attention mechanism can mine the temporal correlation in
the sequence. Au ∈ Rn×d is the calculated attention weight matrix.

Interval 
Aware 

Encoder

Attention 
weight 
matrix

Candidate 
POI 

categories

Intention 
representation 

matrix

Softmax

Self-attention Layer

Masked 
Softmax

Figure 6. The structure of interval aware encoder.
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As mentioned above, the interval-aware self-attention layer combines all semantic
sequence items, relative time intervals, and adaptive weights together based on a linear
combination. To optimize the attention weight matrix, we introduced the pointwise feed-
forward network (FFN), which is calculated as Equation (6):

Hu = ReLU(0, AuW1 + b1)W2 + b2 (6)

where W1, W2 ∈ Rd×d are the weight parameters, b1, b2 ∈ Rd are the bias parameters, and
Hu ∈ Rn×d is the optimized attention weight matrix.

Studies have shown that stacking multi-layer neural networks in the model will
cause errors to accumulate continuously, resulting in unstable model training performance
(gradient disappearance) [29]. Therefore, we introduced the residual network [30] and
layer normalization [31]. Taking the input vector x as an example, the calculation equations
are shown in (7):

x = x + Layer(LayerNorm(x))

LayerNorm(x) = α� x− µ√
σ2 + ε

(7)

where � represents that the corresponding positions of the two matrices are multiplied,
α, γ, and ε are learned parameters for controlling numerical scaling and biasing, and µ,
σ represent the mean and variance of each dimension of the vector. Based on the above
method, we can obtain a two-level user’s intent representation matrix Hu

1 and Hu
2 . Then,

the two matrices are fused by the vector-by-vector addition operation, and the user’s final
intention representation matrix is calculated as Equation (8):

Hu = Hu
1 ⊕Hu

2 (8)

where ⊕ represents the vector addition operation and Hu ∈ Rn×d denotes the final intent
representation matrix.

4.2.3. Intention Prediction

Given the updated intention representation matrix Hu ∈ Rn×d of user u, this paper
used the latent factor model to calculate the probability that the visiting intention of user u
at time step i + 1 is cj, and the equation is shown in (9):

Ru
i,cj

= Hu
i · cj (9)

where cj ∈ Rd is the embedding vector of the candidate POI category.
In this paper, the binary cross-entropy loss function was used, and the model was

optimized with the goal of minimizing the loss. The calculation equation is shown in (10).

Jc = − ∑
Su∈S

∑
t∈[1,2,··· ,n]

(logσ(Ru
t,ot) + ∑

ot /∈Su

log(1− σ(Ru
t,ot

))) (10)

where S denotes the set of all trained semantic sequences and σ(x) = 1
1+e−x is the softmax

function. During the training process, for each positive class sample ot in the sequence, we
randomly sampled a negative class sample ot from the POIs that the user had not visited
and used the Adam optimizer [32] to optimize the parameters in the model.

4.3. Next POI Recommendation Task

The next POI recommendation aims to predict POIs that users may visit at the next
time step. Firstly, this paper designed a spatial–temporal sequence encoder (STE) to embed
the POI and spatial–temporal effects within the check-in sequence into the latent space;
secondly, a spatial–temporal-aware module (STAM) is proposed to capture the spatial–
temporal sequential patterns in the user’s check-in sequence; then, the spatial–temporal
sequence feature vector and the hierarchical intention feature vector are concatenated as the
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weighted check-in representations of the spatial–temporal and semantic patterns; finally,
the most-plausible candidates from the weighted representations are recalled, and the top-N
list of POIs is given. The next two subsections introduce the STE and STAM, respectively.

4.3.1. Spatial-Temporal Sequence Encoder

Given the check-in trajectory Qu = {qu
1 , qu

2 , . . . , qu
|Qu |} of user u, the STE takes each

item in the user’s check-in trajectory as the input and takes the embedding representation
vector qu

i ∈ Rd of this item as the output. Similar to the embedding of POI categories
in the HSE, the POI and timestamp embeddings of each check-in item are denoted as li
and Ti, respectively. Furthermore, the geography encoder [3] is introduced to embed the
exact position of the POI by first mapping the latitude and longitude into a grid and then
encoding the unique ID (quadkey) of the grid with a self-attention network. Thus, we
denote the embedded representations of the POIs’ positions as PL = [pl

1, pl
2, · · · , pl

L]. Hence,
the spatial–temporal-aware visiting aggregation qu

i is represented by Equation (11):

qu
i = WtTi + Wlli + pl

i + b (11)

where Wt, Wl ∈ Rd×d are the weight parameters b ∈ Rd is the bias parameter. In addition,
since the length of the user’s semantic sequence is not fixed, we set a fixed sequence length
n. If the user’s semantic sequence length is greater than n, only the last n records in the
sequence will be considered. On the contrary, if the user’s check-in sequence length is
less than n, the left of this sequence will be padded zero vectors. When the model is
updated through the forward propagation process, these zero vectors will be masked off
and do not participate in the learning process. Finally, the check-in sequence embedded
representations are denoted as qu = {qu

1 , qu
2 , · · · , qu

n}.

4.3.2. Spatial-Temporal Aware Module

The STAM consists of N stacked interval-aware encoders, each of which takes the
spatial–temporal sequence representation qu ∈ Rn×d and the corresponding spatial–
temporal relation matrix RTG ∈ Rn×n as the input and takes the updated sequence rep-
resentation matrix Au ∈ Rn×d as the output. The spatial–temporal relation matrix RTG
is obtained by adding RT and RG item by item, which is denoted as: RTG = RT + RG.
The structure of the interval-aware encoder is introduced in Section 4.2.2.

4.3.3. Next POI Recommendation

Given the updated spatial–temporal sequence representation matrix Au ∈ Rn×d of
user u, this paper used the latent factor model to calculate the probability that user u will
visit POI lj at time step i + 1, and the equation is shown in (12):

Ru
i,lj

= Au
i · lj (12)

where lj ∈ Rd is the embedding vector of candidate POI lj.
Sequential recommendation models usually use the binary cross-entropy loss function.

During training, most of the models randomly select an unvisited item as a negative
sample for each positive sample, which makes it impossible to effectively use a large
number of negative samples. In view of this, this paper adopted the negative sample
sampling method [4] and tuned the number of negative samples by setting the parameter
φ. The calculation equation is shown in (13):

Jl = − ∑
Qu∈Q

∑
t∈[1,2,··· ,n]

(logσ(Ru
t,lt) + ∑

lt /∈Qu

log(1− σ(Ru
t,lt
))) (13)

where Q represents the set of check-in sequences and σ(x) = 1
1+e−x is the softmax function.

During training, for each positive sample lt in the sequence, we randomly sampled φ nega-
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tive samples from the POIs that the user had not visited and used the Adam optimizer [32]
to optimize the parameters in the model.

4.4. Model Training

Both of the above two tasks use binary cross-entropy loss as the loss function of the
model. This paper proposes a multi-task learning strategy to jointly optimize the loss of
the two tasks. The final loss function calculation formula of the model is calculated as (14):

J = λJc + (1− λ)Jl (14)

where λ denotes weight parameter.

5. Experiment
5.1. Datasets

In order to verify the effectiveness of the MSAN model, this paper used two real-
world LBSNs datasets, NYC and TKY [33], for the experiments. The statistics of the
datasets are listed in Table 1. Both datasets include about 10 months from April 2012 to
February 2013. The attributes of each check-in record include the user ID, the POI ID,
the check-in timestamp, the geographic information of the POI (including latitude and
longitude information), and the POI category information. Given the check-in trajectory
Qu = {qu

1 , qu
2 , · · · , qu

n} of each user u, we divided it into the training set, validation set,
and test set, respectively. Specifically, the training set included n− 3 check-in sequences,
with the first [1, n− 3] check-ins in the sequence as the input sequence and the [2, n− 2]-th
check-in as the label, respectively; the verification set used the first n− 2 check-ins as the
input sequence and used the (n− 1)-th check-in as the label; the test set used the first n− 1
check-ins in the sequence as the input sequence, and the n-th check-in was used as the label.

Table 1. Statistics of the datasets.

Dataset # of Users # of POIs # of Check-Ins Avg. # of
Check-In

NYC 1083 38,333 227,428 210.0
TKY 2293 61,858 573,703 250.2

5.2. Evaluation Metrics

We adopted two widely used metrics, Acc@N and NDCG@N, to evaluate the perfor-
mance of the MSAN model. Acc@N measures the percentage of recommended top-N POIs
that are actually visited by the user, which is calculated as Equation (15):

Acc@N =
∑L

i=1 #hiti@N
|L| (15)

where #hiti@N represents the number of POIs that are actually visited by the user and
appear in the top-N recommended list. If the top-N recommended list includes i, then
#hiti@N = 1, else #hiti@N = 0. |L| represents the total number in the test set.

NDCG@N measures the quality of top-N ranking list, and it is calculated as
Equation (16):

NDCG@N =
DCG@N
IDCG@N

DCG@N =
N

∑
i=1

2reli − 1
log2(i + 1)

(16)

where n is the ranking of the POIs actually visited by the user in the recommended list
and reli represents the rank correlation of each candidate POI between the recommended
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list and the test list. In this paper, if the ranked i POI is in the test list, then reli = 1, else
reli = 0. IDCG@N is the maximum value of DCG@N.

5.3. Baseline Models

In order to verify the effectiveness of the MSAN model, this paper selected the follow-
ing baseline models to compare with the MSAN:

• STRNN [2]: The STRNN is an improvement to the traditional RNN, which incorporates
the spatial–temporal interval matrix between consecutive check-in behaviors into the
RNN to model spatial–temporal context information.

• HST-LSTM [25]: HST-LSTM integrates spatial–temporal context information into
LSTM and proposes a trajectory hierarchy division method based on functional areas,
which alleviates the problem of data sparsity by mining the spatial–temporal transition
patterns between different functional areas.

• TMCA [6]: TMCA designs an LSTM-based encoder–decoder network and proposes
three types of attention mechanisms to fuse the spatial–temporal context informa-
tion, including multi-level context attention (micro and macro levels) and temporal
attention.

• LSTPM [5]: LSTPM divides the user’s historical check-in trajectory into long-term
trajectory sequences and short-term trajectory sequences and designs corresponding
LSTM networks to capture long-term and short-term sequence preferences, respec-
tively.

• iMTL [34]: iMTL is an interactive multi-task learning framework, which uses a dual-
channel encoder based on an LSTM network to capture the temporal features and POI
categorical features separately, and it designs a task-specific decoder to optimize the
interactive learning of the two tasks.

• GeoSAN [3]: GeoSAN is a self-attention-based sequence prediction model that can
capture long-term sequence dependencies, and a self-attention-based geography en-
coder is proposed to capture the spatial correlations between POIs within the user’s
check-in trajectory.

• SANST [7]: SANST uses the self-attention network (SAN) to simultaneously fuse
spatio-temporal context information. Specifically, it uses the hierarchical grid embed-
ding method to capture geographic clustering features.

• STAN [4]: STAN proposes to model the spatial–temporal intervals between non-
adjacent POIs and non-sequential check-ins and integrate them into the self-attention
mechanism.

• CHA [35]: CHA proposes to explore the category hierarchy of POIs to help learn
robust location representations even when there is insufficient data. Moreover, it
develops a spatial–temporal decay LSTM to model the influence of the time interval
and distance and proposes a discrete Fourier-series-based periodic attention to model
users’ innate periodic activities.

• LSMA [36]: LSMA utilizes a multi-level attention mechanism to study the multi-factor
dynamic representation of a user’s check-in behavior and non-linear dependence
between check-ins in his/her check-in trajectory. Moreover, it combines the long- and
short-term preferences of the user to form the final user preference.

5.4. Experimental Setting

Both the spatial–temporal sequence length and the semantic sequence length in the
model were set to 100. All embedding vectors in the NYC and TKY datasets have dimension
50 in the MSAN. We adopted the number of negative samples φ = 10 in Section 4.3.3 to
train the MSAN model as the experiments of previous work showed that this is the optimal
setting [4]. In addition, this paper used the Adam optimization algorithm [32] to tune the
parameters, and the learning rate was set to 0.001. The task weight parameter of the model
was λ = 0.7. The learning rate and embedding dimension were set to 0.001 and 50 for all
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baseline models, respectively. The other parameters of the baseline models were set to their
default values that came with the original paper.

5.5. Performance Evaluation
5.5.1. Overall Performance

Tables 2 and 3 show the comparative experimental results (Acc@N and NDCG@N) of
the MSAN model on the NYC and TKY datasets respectively. The last row indicates the
degree of performance improvement of the MSAN model compared to the best-performing
baseline model (STAN). Tables 2 and 3 indicate that the MSAN model had superior perfor-
mance compared with all baseline models on Acc@N and NDCG@N for the two datasets.
Compared with STAN, the performance of the MSAN improved by 6–8% on Acc@N,
and the NDCG@N index improved by 3–9%.

Table 2. Performance comparison of all models under NYC.

Model Acc@10 Acc@20 NDCG@10 NDCG@20

STRNN 0.153 0.192 0.103 0.175
TMCA 0.161 0.205 0.117 0.182
LSTPM 0.169 0.213 0.128 0.197
iMTL 0.187 0.255 0.137 0.212

HST-LSTM 0.202 0.298 0.168 0.231
LSMA 0.213 0.305 0.188 0.247
CHA 0.219 0.323 0.199 0.257

SANST 0.227 0.342 0.205 0.263
GeoSAN 0.276 0.367 0.228 0.284

STAN 0.304 0.393 0.236 0.291
MSAN 0.324 0.425 0.251 0.31

Improv. 6.6% 8.1% 6.4% 6.5%

Table 3. Performance comparison of all models under TKY.

Model Acc@10 Acc@20 NDCG@10 NDCG@20

STRNN 0.147 0.188 0.133 0.157
TMCA 0.153 0.196 0.146 0.178
LSTPM 0.188 0.239 0.158 0.201
iMTL 0.205 0.258 0.164 0.235

HST-LSTM 0.217 0.276 0.173 0.251
LSMA 0.225 0.283 0.177 0.259
CHA 0.231 0.286 0.181 0.264

SANST 0.243 0.292 0.188 0.265
GeoSAN 0.256 0.314 0.207 0.271

STAN 0.297 0.325 0.227 0.282
MSAN 0.317 0.355 0.234 0.291

Improv. 6.7% 9.2% 3.1% 3.2%

Among all the comparison models, the best performance was based on the self-
attention mechanism, such as SANST, GeoSAN, and STAN, which proved that the self-
attention mechanism has a significant advantage in sequence modeling. In addition,
the performance of the STAN model was better than that of the GeoSAN model, because the
GeoSAN model only models the geographical influence factors and does not consider the
time interval characteristics within the user’s check-in sequence, while STAN uses the
spatial interval matrix instead of GeoSAN’s geographic grid embedding, which can capture
geographic information more accurately. In all comparison models based on the RNN and
LSTM, the performance of the LSMA and CHA models was the best, and there was not
much difference in the prediction performance between the two models. The reason is that
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LSMA captures the category transition patterns in users’ check-in trajectories and takes into
account the differences in users’ long-term and short-term preferences. The performance of
CHA was slightly higher than that of LSMA, mainly because it considers the hierarchical
features of POI categories and designs an encoding method to model this, which proves
that capturing the hierarchical features of POI categories is beneficial for mining user’s
visiting preference. The performance of the TMCA, LSTPM, iMTL, and HST-LSTM models
was better than the STRNN, which proved that LSTM is stronger than RNN in terms of
long sequence modeling ability. In addition, the LSTPM model considers the difference
of users’ long-term and short-term preferences when modeling and designs different
schemes to capture the long-term and short-term preferences of users’ check-in behavior,
as well as uses the attention mechanism when modeling long-term preferences, so its
performance was better than TMCA. The performance of the iMLT and HST-LSTM models
was superior. iMTL introduces the semantic information of users’ check-in behavior
and uses a multi-task learning framework to take the semantic sequence mining task as the
auxiliary task of temporal feature mining. The experimental results showed that the joint
learning between the two tasks helped each other, which proved the validity of the multi-
task learning framework to learn the semantic sequence and spatial–temporal sequence
of the user’s check-in behavior respectively. HST-LSTM incorporates spatial–temporal
interval features within the user’s check-in sequences into LSTM and showed the best
performance among the LSTM-based models, which fully demonstrated the effectiveness
of spatial–temporal interval features for modeling user’s check-in behavior. The MSAN
model integrates the advantages displayed by the iMTL and HST-LSTM models. It mines
user’s visiting intention from semantic sequences and uses the user’s visiting intention
prediction task as the auxiliary task to predict the next POI, which greatly improved the
recommendation accuracy.

5.5.2. Ablation Study

In order to further prove the effectiveness of each module of the MSAN model, this
section designs the variants of the MSAN model to conduct experiments to quantitatively
analyze the key parts of the model:

1. MSAN-HIAM: We removed the HIAM module and only used the self-attention
mechanism to capture the sequential correlations within the user’s check-in trajectory.
Correspondingly, Equation (8) was modified as: Hu = Hu

1 .
2. MSAN-Intention: The visiting intention prediction module was removed, and we kept

only the next POI recommendation.

Taking the NYC dataset as an example, we experimented with the performance of
different variants of the models, and the results are shown in Figure 7. Figure 7 indicates
that the performance of the MSAN model was always better than other variants of the
models under the Acc@N and NDCG@N evaluation indicators. Specifically, the MSAN
was 5–19% higher than the MSAN-Intention model on Acc@N and 18–33% higher than
the MSAN-Intention model on NDCG@N, which demonstrated the effectiveness of using
user’s visiting intention prediction as the auxiliary task for the next POI recommendation.
In addition, it can also be seen from the figure that the performance of the MSAN model was
always better than that of the MSAN-HIAM model, indicating that hierarchical modeling
of users’ semantic sequences has a significant impact on improving model performance.



ISPRS Int. J. Geo-Inf. 2023, 12, 297 16 of 20

1 5 10 20
0.0

0.1

0.2

0.3

0.4

0.5

A
c
c
@
N

N

 MSAN-Intention
 MSAN-HSAM
 MSAN

1 5 10 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
D
C
G
@
N

N

 MSAN-Intention
 MSAN-HSAM
 MSAN

(a) Acc@N of different variant models under NYC (b) Acc@N of different variant models under NYC

Figure 7. Performance comparison of different variants of the models.

5.5.3. Stability Study

Effect of task weight parameter λ: The interactive multi-task learning model tends
to be biased towards specific tasks, so an appropriate weight parameter λ needs to be
selected experimentally. We varied the value of the weight parameter λ from 0.1 to 1.0
with a step of 0.1, and the experimental results are shown in Figure 8. It can be seen from
the figure that, when λ = 0.7, the model achieved the best performance on both datasets.
At this time, the POI prediction task was the dominant task, and the intention prediction
task was an auxiliary task. When λ = 1, the MSAN model completely ignored the user
intention prediction task, and its performance dropped significantly. When λ was small,
the model focused too much on the intention prediction task and failed to capture the
spatial–temporal sequential dependencies between POIs, resulting in weaker performance.
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Figure 8. Effect of parameter λ.

Effect of embedding dimension d: This section studies the impact of the embedding
vector dimension d of each element in the model. We varied the embedding dimension d to
observe the performance of the MSAN model in terms of Acc@10, and the results are shown
in Figure 9. It can be seen from the figure that, when d was too small, the performance
of the model was relatively poor because it could not effectively extract the features of
the corresponding elements. When d exceeded a certain threshold, the performance of the
model did not improve significantly, or even there would be a downward trend, making
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the model face the risk of overfitting. In this experiment, the threshold was 50, so in the
comparison experiment, the dimension of the embedding vector of each element was set to
d = 50.
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Figure 9. Effect of embedding dimension d of MSAN model.

5.5.4. Analysis of Training Process

In order to explore the relationship between the two prediction tasks and their impact
on model performance, we analyzed the intent prediction loss and POI prediction loss
during training, and the results are shown in Figure 10. It can be seen from the figure that,
in the early stage of training, the loss value trend of the intention prediction task was more
severe than that of the POI prediction task, and its convergence speed was faster (the intent
prediction task started to converge when the number of iterations was about 40, while
the POI prediction task was 60), which means that the model paid more attention to the
learning of the user’s visiting intention in the early stage of training and then optimized the
POI prediction task after it converged. This phenomenon further proved the effectiveness
of selecting the intention prediction task as an auxiliary task for POI prediction.
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Figure 10. The training loss of intention prediction and POI prediction task.

5.5.5. Interpretability Study

As mentioned above, the check-in behavior of different users has different spatio-
temporal sequence features and semantic sequence features, and the MSAN can adaptively
capture the spatio-temporal and semantic patterns of the user’s check-in behavior. To un-
derstand the mechanism of the MSAN, we randomly selected a user u from the NYC dataset
and predicted his/her visiting intention and check-in behavior in the next time step. Firstly,
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we separated the two learning tasks of the MSAN framework into two separate modules:
the user’s visiting intention prediction module and the next POI prediction module. Based
on these two modules, we predicted the user’s visiting intention and the next possible POI
to visit in the next time step, respectively. Secondly, we predicted the next POI that the user
may visit based on the MSAN. Finally, we explain the mechanism of the MSAN model
by visualizing the attention weights of each POI in the user’s check-in sequence, and the
results are shown in Figure 11b. Figure 11a shows the distribution of geographic intervals
between the last POI visited by user u and the POIs visited by user u the last 10 times.
The geographical distance was relatively close, and the geographical correlation was rela-
tively strong. Figure 11b shows that, under the condition of only considering the next POI
prediction task, the module mainly focused on POIs that had a small geographical distance
from the user’s current location, such as POIs 1, 9, and 10. At this time, the prediction result
of the module was l10264, which is the company of user u. Under the condition of only
considering the intention prediction task, this module paid more attention to POIs 4 (art
and entertainment), 5 (food), 7 (outdoors and recreation), 9 (shop), and 10 (food) from the
trajectory, so it can be known that the visiting intention of user u was entertainment and
shopping. At this time, the prediction result of this module was an art and entertainment
place. The MSAN model not only paid more attention to POIs with small space–time
intervals, but also had a high degree of attention to entertainment or shopping POIs. At this
time, it was predicted that the POI that the user would visit in next time step was l470, which
belongs to the visiting intention predicted above, consistent with the actual result. From the
above analysis, it can be proven that the travel intention prediction task in the MSAN can
effectively promote the self-attention mechanism to consider the user’s visiting intention
and adjust the corresponding attention weight in the sequence to adaptively capture the
spatiotemporal correlation in the user check-in sequence and semantic relevance, thereby
improving POI prediction performance.
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Figure 11. Interpretability analysis of MSAN.

6. Conclusions

In this paper, we proposed a self-attention- and multi-task-based model (MSAN) for
next POI recommendation. The MSAN takes the user’s visiting intention prediction task as
the auxiliary task of the next POI recommendation task and realizes the knowledge sharing
between the two tasks by building a multi-task learning framework, which improved
the performance and generalization ability of the model. The user’s visiting intention
prediction task uses hierarchical POI category attributes to describe the user’s visiting
intention and designs a hierarchical intention embedding method to mine the hierarchical
features between intentions of different granularities, then proposes a hierarchical intention-
aware module based on a self-attention mechanism to mine the temporal and hierarchical
semantic features within the user’s check-in sequence. The next POI recommendation task
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uses the spatial–temporal-aware module to mine the spatial–temporal sequential patterns
within the user’s check-in trajectory and fuses this with the hierarchical intention features
to generate the next candidate POI list. Experiments based on two real datasets verified the
effectiveness of the model.
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