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Abstract: Geographically weighted regression (GWR) is a classical method for estimating nonsta-
tionary relationships. Notwithstanding the great potential of the model for processing geographic
data, its large-scale application still faces the challenge of high computational costs. To solve this
problem, we proposed a computationally efficient GWR method, called K-Nearest Neighbors Geo-
graphically weighted regression (KNN-GWR). First, it utilizes a k-dimensional tree (KD tree) strategy
to improve the speed of finding observations around the regression points, and, to optimize the
memory complexity, the submatrices of neighbors are extracted from the matrix of the sample dataset.
Next, the optimal bandwidth is found by referring to the spatial clustering relationship explained by
K-means. Finally, the performance and accuracy of the proposed KNN-GWR method was evaluated
using a simulated dataset and a Chinese house price dataset. The results demonstrated that the
KNN-GWR method achieved computational efficiency thousands of times faster than existing GWR
algorithms, while ensuring accuracy and significantly improving memory optimization. To the best of
our knowledge, this method was able to run hundreds of thousands or millions of data on a standard
computer, which can inform improvement in the efficiency of local regression models.

Keywords: GWR; K-Nearest Neighbors; KD tree; K-means clustering; large-scale geographic data

1. Introduction

Owing to the influence of geographical location, changes in the relationship or struc-
ture between variables is an important issue in spatial data analysis. The geographically
weighted regression (GWR) model, originally developed by Fotheringham and Bruns-
don [1,2], is a common tool for exploring spatial non-smoothness. Currently, GWR is
widely used in a variety of fields, such as geology [3–5], ecology [6,7], house price mod-
eling [8–11], epidemiology [12–14], and environmental science [7,15]. The popular GWR
packages are Spgwr [16], MGWR (PySAL) [17], GWmodel [18], and FastGWR [19]. With
the expansion of demand for geographic information technology and resources in various
industries [20,21], geographic data with high spatial and temporal resolution have seen
explosive growth while promoting innovation in GIS methods [22–26]. Many studies have
explicitly reported the computational limitations of GWR when oriented to large-scale
geographic data [19,27] in order to fully utilize the geographical information.

Each regression point in GWR is regressed individually based on the distance matrix,
and the optimal bandwidth selection is performed before that, which makes it computa-
tionally intensive and requires a large amount of memory usage. However, the application
of GWR to extract information from large-scale geographic data is difficult. Harris esti-
mated that it would take two or more weeks to complete the experiment using the Spgwr
package for a dataset of one hundred thousand points (and five predictor variables) [28].
Li pointed out that the maximum number of records that can be handled by the current
open-source GWR software is approximately fifteen thousand observations on a standard
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desktop [19]. In Yu’s experiment [29], random sampling of a house price dataset was forced
to reduce the calculation cost owing to the computational demand of building a GWR
model for the 68,906 house price dataset; therefore, 3437 data were selected for the GWR
calculation. Although this method addresses the problem of computational volume, it
can lead to incomplete exploitation of data information. Feuillet provided a method to
deal with a large sample dataset by building GWR sub-models [30]. Wang proposed an
improved method based on a computational unified device architecture (CUDA) parallel
architecture that can handle GWR corrections for millions of data points [31]. Tasyurek
reverse-nearest-neighbor geographically weighted regression (RNN-GWR) only calculates
updated data points when dealing with frequently updated datasets, which can result
in a higher computational efficiency with guaranteed calculation results [32]. Although
many efforts have been made, there is still a lack of an effective GWR algorithm that can
analyze large numbers of geographic data in a limited timeframe. Currently, data sets
with millions of observations are becoming increasingly common. During the analysis of
the GWR regression process, we found that for each regression point, a certain distance
(bandwidth) radius range of observation points is analyzed, and therefore observations
outside of this range are not considered in the calculation. Additionally, the current optimal
bandwidth search range is typically global, and reducing unnecessary calculations can
alleviate the computational burden of GWR. Thus, implementing new improvements to the
GWR algorithm are necessary to address computational bottlenecks, enable its application
in extremely large datasets, and fully exploit data information.

Currently, the nearest-neighbor indexing method demonstrates better performance
in the computational optimization of some models, with the k-dimensional tree (KD tree)
being the most commonly used. Meenakshi suggested a new index structure KD tree with
a linked list (k-dLst tree) for retrieving spatial records with duplicate keys [33]. To improve
the computationally expensive state of performing repeated distance evaluations in the
search space, a special tree-based structure (called a KD tree) was used to speed up the
nearest-neighbor search [34]. Chi-Ren Shyu developed a web server (named ProteinDBS)
for the life science community to search for similar protein tertiary structures in real time,
which returned search results in hierarchical order from a database of over 46,000 chains in
a few seconds and showed considerable accuracy [35]. Böhm performed a range search
by indexing K-Nearest-Neighbor join queries [36]. Muja proposed the Fast Library for
Approximate Nearest Neighbors (FLANN) library, which reduced the time for nearest-
neighbor search by an order of magnitude [37,38]. The FLANN library has been applied
in many studies to improve computational efficiency [37,39]. The advantages of nearest-
neighbor indexing for optimal computation have been demonstrated in these studies.

When dealing with large amounts of data, clustering methods can help to better
understand the distribution patterns and structure of the data, thus revealing hidden
information in the data [40,41]. K-means, a widely-used clustering algorithm, partitions
a dataset into K clusters and assigns each data point to the nearest cluster. This method
has been extensively implemented to analyze data in various domains [40,42]. Macqueen
argued that spatial clustering uses spatial location and relationships as feature terms to
discover spatial clustering relationships [43,44]. Li used K-means clustering to analyze the
impact of building environmental factors on the variation of rail ridership in the study
area and proposed differentiated planning guidance for different regions [45]. Hernández
employed the K-means clustering algorithm to identify distinct clusters of tourism types
within large geographic areas [46]. Deng applied a combination approach of geographically
weighted regression and K-means clustering to partition the study area into distinct regions
and devise regional policies to mitigate PM2.5 concentrations [47]. The aforementioned
studies all indicate that K-means clustering has significant advantages in discovering the
spatial distribution of geographic data.

The main objective of this study is to develop a method that can quickly calibrate
GWR to overcome the challenges of processing large-scale geographic data. This paper
contributes to the previous literature as follows. (1) Using a K-D tree to accelerate the
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speed of searching for observation points around the regression point. In the GWR model,
searching for neighboring points usually requires traversing the entire dataset, leading to
significant time consumption as the dataset size increases. Therefore, this paper attempts to
incorporate the KD tree into the GWR model to take advantage of its fast search capabilities
to quickly identification of surrounding observation points in each local regression process.
(2) Transforming the large matrix into a small matrix in the regression process. When using
the Bi-square kernel function to calculate the weight matrix, the full sample matrix can
cause significant memory and time consumption. Therefore, the matrices of independent
variables, dependent variables, and weight matrices involved in the regression are trans-
formed into corresponding small matrices according to the bandwidth. (3) Optimizing the
search range of optimal bandwidth. The optimal bandwidth in GWR is extracted in the
process of global traversal, which is time-consuming. This may be caused by considering
only the local scale of operation of the model represented by the bandwidth and ignoring
the spatial relationships implied by the bandwidth at local spatial locations. Therefore,
this paper attempts to use K-means to cluster the geographic location data and refer to the
obtained clustering results to limit the search range of the optimal bandwidth. Finally, this
paper incorporates the KD tree index and K-means clustering into the GWR model, restruc-
turing the matrices of independent variables, dependent variables and weight matrices
involved in the calculation, and proposes a new model called KNN-GWR. The potential of
using KNN-GWR models for geographically weighted regression on large-scale geographic
data was explored in this paper, using simulated data and a dataset of house prices in
selected regions of China.

The remainder of this paper is organized as follows. In Section 2, we introduce the
proposed algorithm. In Section 3, we compare the performance of KNN-GWR with other
GWRs using simulated datasets and house price datasets. In Section 4, conclusions and
discussions are presented.

2. Method
2.1. Geographically Weighted Regression

GWR is used as a local fitting technique, and its regression coefficient varies with the
geographical location. The mathematical expression is as follows:

yi = β0(ui, vi) +
p

∑
j=1

β j(ui, vi)xij + εi (1)

where (ui, vi) represent the coordinates of the ith point in space, β0(ui, vi) denotes the
intercept value, and β j(ui, vi) is the spatial variation coefficient of the ith independent
variable. i ε {1, 2, · · · , n}, j ε {1, 2, · · · , p}, yi is the response variable at location i, xij is the
jth predictor variable, and εi is the error term. n is the size of the sample dataset and p is
the number of independent variables. The GWR calibration in matrix form is given by:

βi = (XTWi X)−1XTWiY. (2)

where X is a n× (p + 1) matrix of the independent variables, Y is a n× 1 matrix of the
response variable, and the matrix of X and Y can be calculated, respectively, by:

X =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 (3)
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And

Y =


y1
y2
...
yn

 (4)

where Wi is a space weight matrix and is expressed as:

Wi =


wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · win

 (5)

where Wi is an n × n diagonal matrix. It is calculated using a specified kernel function and
bandwidth (bw). For example, the adaptive bi-square weighting function is as follows:

wij =


[

1−
( dij

bw

)2
]2

dij ≤ bw

0 dij > bw
(6)

where dij represents the spatial distance between points i and j. bw represents the adaptive
bandwidth, and means that the number of neighbors around regression point i is constant,
but the distance is variable.

Where the coefficients βi of the model can be expressed in matrix form:

βi =


βi0
βi1
...

βip

 (7)

To calibrate the GWR model, a cross-validation (CV) approach is typically used to
iterate the bandwidth. In other words, the optimal bandwidth is selected by minimizing
the following CV scores:

CV =
n

∑
i=1

[
yi − ŷ 6=i(bw)

]2, bw ∈ (1, n) (8)

In general, the traversal of bw ranges from one to n. Because each regression point
in the GWR does not participate in its own local regression calculation, bw 6= 1. When
bw = n, the operation scale of the GWR model is global, so bw 6= n.

2.2. Geographically Weighted Regression with K-Nearest Neighbors

To speed up the computation and optimize the storage of the weight matrix in the
GWR, the KD tree was adopted to find the observation points around the regression point.
In this manner, hundreds of thousands or even millions of calculations are filtered. Thus,
the large-scale regression problem can be transformed into an acceptable calc value. This
method allows GWR to run hundreds of thousands or even millions of data records on an
ordinary computer. The flow of the algorithm is illustrated in Figure 1.

The algorithm can be divided into four parts. Part a: Optimal bandwidth selection
reference K-means. K-means clustering is performed on the incoming data to explain the
spatial relationships in the dataset. Part b: KD tree construction and search. Establish-
ing the KD tree for the incoming data and searching the observation points around the
regression point according to the GWR bandwidth optimization rule based on the results

obtained in Part a. Part c: Restructured
∼
Wi,

∼
Xi,
∼
Yi. The weight matrix

∼
Wi, the independent
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variable matrix
∼
Xi and the dependent variable matrix

∼
Yi of the GWR regression process are

reconstructed according to the requirements of each regression point based on the findings

in Part b. The reconstructed results are
∼
Xi,
∼
Yi, and

∼
Wi, respectively. Part d: KNN-GWR in

calibration. Running the model based on the results of Part c and outputting the results of
the optimal bandwidth run to complete the model diagnosis.
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2.2.1. Optimal Bandwidth Selection Reference K-Means

We counted the optimal bandwidth in some studies, which was usually within a
smaller range [19,48,49]; the specific range of values depended on the research field, spe-
cific dataset, the researcher’s experience and judgment, and in general was usually ≤200.
However, GWR usually searches for the optimal bandwidth on a global scale, which is
less necessary in local regression. Murakami pointed out the use of rank reduction and
pre-compression to eliminate the effect of data size in the regression of large datasets [49].
Geographically adjacent observation points were considered to have highly similar charac-
teristics; therefore, in the KNN-GWR, they should be grouped into the same category or
group as much as possible when performing geographic analysis. In this study, K-means
clustering was utilized to analyze the latitude and longitude coordinates of geographic
data, thereby facilitating a more comprehensive examination of the distribution patterns
and spatial relationships of the data. For K-means clustering of big datasets, a set of values
is defined and referred to as KC values, where the optimal number of clusters will be
generated from this set of KC values, with KC ∈ {kmin , ksec, kmean, k f our, kmax}. Using the
heuristic approach, the square root value of half the data size is kmean [50–52], where kmean
is obtained by the following formula:

kmean =

√
n
2

(9)

where n denotes the number of observation points.ksec and k f our are the results of moving
kmean up or down by one number. kmin and kmax are the results of moving kmean up or down
by two different numbers.

The sum of squared errors was used to calculate the clustering error of the sample to
select the optimal KC value [53,54].

The formula is as follows.

SSE = ∑k
g=1 ∑sεcg

|s−mi| (10)

where Cg is the g-th cluster, s is a sample point in Cg, and mi is the center of Cg.
The pseudocode of the Determine Optimal Bandwidth Range algorithm is given in

Algorithm 1. The clusters obtained by the K-means clustering method are labeled as
A1, A2, . . . , Akoptimal

, respectively. The number of observation points in each cluster was
counted using the Num() function to represent the cluster size. For example, Num(A1)
represents the number of observation points in Cluster A1. The Num() function helps find
the largest and smallest clusters, denoted as Amax and Amin. Amax and Amin represent the
upper and lower limits of the spatial distribution of all observation points based on spatial
location features. The cross-validation (CV) method was chosen to determine the optimal
bandwidth. The formula is as follows.

CV = ∑n
i=1

[
yi − ŷ 6=i(bw)

]2, bw ∈ [Num(Amin), Num(Amax)] (11)

Algorithm 1: Optimal Bandwidth Selection Reference K-means

1. According to the number of data n, determine KC ∈ {kmin , ksec, kmean, k f our, kmax}
2. Perform K-means clustering analysis based on KC
3. Find the optimal KC value koptimal depending on the SSE
4. Obtain clustering results A1, A2, . . . , Akoptimal

5. Defined (Num(Amin), Num(Amax)) = Num(A 1, A2, . . . , Akoptimal
)

6. Function Num(A 1, A2, . . . , Akoptimal
)

7. Count the number of data points in each cluster of A1, A2, . . . , Akoptimal
, denoted as

Num(A1), Num(A2), · · · , Num(Akoptimal
)

8. Compare the size of Num(A1), Num(A2), · · · , Num(Akoptimal
) and return the maximum

value (Num(Amax)) and minimum value (Num(Amin))
9. Output Num(Amin) and Num(Amax) to provide a reference for the optimal bandwidth
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2.2.2. KD Tree Construction and Search

Using the bi-square kernel function in GWR, the surrounding observations need to be
found to participate in the calculation during the local regression of regression point i. For
two-dimensional geographic data, traditional linear search methods involve brute-force
computation of the distances between all pairs of points in the dataset. Assuming a sample
size of n, the time complexity of this method is O

(
n2). Since there is no adjacency between

point i and point (5, 6, 7, 8, 9) in the limit range of R, as shown in Figure 2. Therefore,
the distance calculation between point i and point (5, 6, 7, 8, 9) is not necessary. Further,
by reducing the number of visited nodes and the corresponding distance calculation, the
speed of finding surrounding points can be improved. In this study, a KD tree was created
for all regression points based on spatial coordinates in order to effectively filter invalid
calculations when searching for observations around regression points.
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Figure 2. An example of finding observations within a certain range around the regression point. 1, 2,
3, and 4 are points within the bandwidth distance from point i, and 5, 6, 7, 8, and 9 are points outside
the bandwidth distance from point i.

A K-dimensional tree (KD tree) built based on distance is an extended version of a
binary tree for speeding up the dataset search. If the points include the (u, v) dimension,
they are first sorted according to the value of a dimension, such as u. Then, the middle point
is selected as the split (parent) node, and all points are divided into two parts according to
the coordinates on the u axis. The u value of the left subspace is smaller than that of the
parent node, and the u value of the right subspace must be greater than or equal to the u
value of the parent node. This process continues repeatedly until both subregions have no
sample points (the terminating node is a leaf node), and finally, the region division of the KD
tree is formed. Using this approach, sample points are saved on the appropriate nodes. In
this case, the time complexity for performing a perimeter point lookup is O(nlog(n)). After
the tree structure is established, this algorithm starts from the root node and recursively
searches the left and right child nodes to find all points within the radial range of the
regression point. The lookup of the observation points around the regression point was
completed quickly after the KD tree was constructed, which accelerated the process of
reconstructing the matrix in the KNN-GWR method.

2.2.3. Geographically Weighted Regression with K-Nearest Neighbors and Model
Evaluation

Press stated that the desirable characteristics of an algorithm are to be fast, compu-
tationally inexpensive, and to use as little memory as possible with high computational
accuracy [55]. When the bi-square kernel function is selected as the kernel function for
GWR, only the observation points within the bandwidth participate in the regression calcu-
lation. Here, the zero rows and columns of the weight matrix were removed to minimize
the computational cost. In the local regression calculation of regression point i, the con-
struction of the KD tree speeds up the search for the points surrounding regression point i.
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Considering the above, the KNN-GWR algorithm was set up in this study. The expression
of the KNN-GWR algorithm is expressed as follows:

yi =
∼
β0(ui, vi) +

p

∑
j=1

∼
β j(ui, vi)xij + εi (12)

The formula for calculating
∼
βi is shown below.

∼
βi =

(∼
X

T

i
∼
Wi
∼
Xi

)−1∼
X

T

i
∼
Wi
∼
Yi (13)

The corresponding
∼
Xi and

∼
Yi matrices are determined based on the bandwidth of the

regression point and KD tree data structure. The matrices of
∼
Xi and

∼
Yi can be calculated by

∼
Xi =


1 xd11 · · · xd1 p
1 xd21 · · · xd2 p
...

...
. . .

...
1 xdK1 · · · xdK p

 (14)

And

∼
Yi =


y1
y2
...
yK

 (15)

where
∼
Xi is composed of independent variables from the observation points within the

bandwidth around the regression point i (
∼
Xi is a K× (p + 1) matrix).

∼
Yi is composed of the

dependent variable of the observation points within the bandwidth around the regression

point i (
∼
Yi is a K × 1 matrix). K is a constant equal to the number of observation points

around the regression point. [1, 2, . . ., K] is the point number in the bandwidth range after

sorting by distance.
∼
Wi is a space weight matrix and is expressed as:

∼
Wi =


wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · wiK

 (16)

The equation for the weight matrix wij is expressed as

wij =

[
1−

( dij

diK

)2
]2

(17)

where dij represents the spatial distance between points i and j and diK represents the
spatial distance between points i and K.

The hat matrix
∼
S is the projection matrix from the observed y to the fitted ŷ, where

each row
∼
Si of the hat matrix is:

∼
Si = Xi

(∼
X

T

i
∼
Wi
∼
Xi

)−1∼
X

T

i
∼
Wi (18)
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where
ŷi(bw) =

∼
Si
∼
Yi (19)

where ŷi(bw) is the fitted value of yi using a bandwidth. The residual vector is then

e = yi − ŷi(bw) (20)

and the residual sum of squares is

RSS = ∑n
i=1 e2 = ∑n

i=1(yi − ŷi)
2 (21)

The estimation accuracy of the GWR model was evaluated by comparing the fitted
dependent variable values with the dependent variable values of the sample data, as R2.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (22)

The calculated runtime ratio of the KNN-GWR algorithm to other GWR packages is
described by the runtime increase rate (RIR).

RIR =
Runtimeothers

RuntimeKNN−GWR
(23)

The pseudo-code of KNN-GWR algorithm is given in Algorithm 2.

Algorithm 2: KNN-GWR Algorithm

I Optimizing bandwidth search by minimizing CV scores
1. Given the initial data bw1, X, Y, U and V
2. Start the loop bw = bw1, bw2, · · · , bwo, · · · , bwt:
3. Build KD tree spatial index
4. Starting loop with i = 1, 2, · · · , n:
5. Take the data from the result of 3 steps:

6. Reconfiguration
∼
Wi,

∼
Xi, and

∼
Yi

7. Calculate
∼
βi , ŷi

8. End of loop
9. Calculate CV Scores
10. End of loop
II Optimal bandwidth selection based on minimum CV criterion
11. Start the loop i = 1, 2, · · · , n:

12. Reconfiguration
∼
Wi,

∼
Xi, and

∼
Yi

13. Calculate
∼
βi , ŷi

14. End of loop

15. Return
∼
β, ŷ

16. Spatial analysis and model diagnosis using
∼
β, ŷ

2.2.4. Computational Complexity of GWR and KNN-GWR in Calibration
Time Complexity

In the GWR regression calculation, the time complexity of XTWiX matrix is O
(
(p + 1)2n

)
and the big O is an asymptotic notation used to describe the upper bound of an algorithm’s
efficiency. Calculating its inverse,

(
XTWiX

)−1 , requires O
(
(p + 1)3

)
[19,30,56] (p is the

number of independent variables, (p + 1) ≤ 10 in common). Therefore, the time complexity
of computing βi is O

(
(p + 1)2n

)
[19,31]. The calculation of βi is repeated at each regres-

sion point location n times; therefore, the total time complexity of the GWR calibration
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for a known bandwidth is O
(
(p + 1)2n2

)
. If the golden partition is used to find the

optimal bandwidth, the time complexity is close to O(logn), and the total time complex-
ity of the bandwidth selection and model calibration is O

(
(p + 1)2n2logn

)
[19]. The

time complexity of KNN-GWR is explained in the same manner as above. In the KNN-

GWR model,
∼
Xi is a K × (p + 1) matrix and

∼
Wi is a K × K matrix. The time complexity

of the
∼
X

T

i
∼
Wi matrix is O((p + 1)K), and the time complexity of the

∼
X

T

i
∼
Wi
∼
Xi matrix is

O
(
(p + 1)2K

)
. Calculating its inverse,

(∼
X

T

i
∼
Wi
∼
Xi

)−1

, takes O
(
(p + 1)3

)
, which can be

neglected.
∼
βi is computed at each regression point n times; therefore, the total time com-

plexity of the KNN-GWR calibration for a known bandwidth is O
(
(p + 1)2n

)
. If the

golden partition is used to find the optimal bandwidth, the time complexity is close to
O(log(Num(Amax)− Num(Amin))), and the total time complexity of the bandwidth selec-
tion and model calibration is O

(
(p + 1)2Knlog(Num(Amax)− Num(Amin))

)
. Therefore,

in theory, the time complexity of KNN-GWR is much lower than that of GWR. The time
complexity of each algorithm is listed in Table 1.

Table 1. Comparison of time complexity among KNN-GWR, FastGWR, MGWR (PySAL), GWmodel,
and Spgwr.

Name of Algorithm Time Complexity

KNN-GWR O
(
(p + 1)2Knlog(Num(A_max)− Num(A−min))

)
FastGWR O

(
(p + 1)2n2logn

)
[19]

MGWR(PySAL), GWmodel and Spgwr O
(
(p + 1)2n2logn

)
[19,31]

Note: K is the data of the observation points around the regression point in the bandwidth, n is the number of
observation points, and p is the number of independent variables.

Memory Complexity

The KNN-GWR algorithm improves the matrix and dataset storage model of the
GWR operation by adopting distance sorting and a data structure. The weight matrix
Wi of the GWR method is stored as an n× n diagonal matrix, which requires n2 storage
spaces during the operation, and the memory complexity is O

(
n2). In the process of GWR

regression calculation, XTWi X,
(
XTWi X)−1 , and

(
XTWi X)−1XTWi inherit the memory

complexity of the weight matrix Wi. The KNN-GWR algorithm avoids this situation during

the calculation. The weight matrix
∼
Wi is calculated by selecting only the points within the

GWR bandwidth (
∼
Wi is a K × K matrix), and the

∼
Xi and

∼
Yi matrices are reconstructed

accordingly (
∼
Xi is a K× (p + 1) matrix;

∼
Yi is a K× 1 matrix). The memory complexity of

the KNN-GWR algorithm is affected by K, and the memory complexity is O
(
K2). (typically,

K << n). The memory complexity of each algorithm is presented in Table 2.

Table 2. Comparison of memory complexity between KNN-GWR and other GWR packages.

Number of Data
Points

KNN-GWR
O
(
K2) FastGWR

O(n(p + 1))

MGWR(PySAL), GWmodel,
and Spgwr

O
(
n2)

1000 33.8 KB 19.5 KB 3.8 MB
10,000 33.8 KB 195.3 KB 380 MB

100,000 33.8 KB 1.9 MB 37.25 GB
1,000,000 33.8 KB 19.1 MB 3.8 TB

10,000,000 33.8 KB 190.7 MB 364 TB
Note: The data are 32–bit floating points, where K is numerically equal to 93, n is the number of observation
points, and p is the number of independent variables.
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3. Experiment
3.1. Data Source

To explore the actual performance of KNN-GWR, two datasets were used in the
experiment—the simulated dataset [31] and the house price dataset in China from the
Anjuke.com website (accessed on 25 March 2022). A simulated dataset was used to verify
the viability of the model. The Chinese house price dataset was used to test the scalability
of the KNN-GWR model.

3.1.1. Simulated Dataset

The test data were distributed in a square area with a side length of l units and the
data sample points were evenly distributed in this area. The sample size of each line was m,
the total number of samples was n = m×m, and the distance between adjacent sample
points was ∆l = l/(m− 1). Considering the lower left corner of the square area as the
origin of the coordinate system, the calculation formula for the sample point position is as
follows:

(ui, vi) = (∆l ×mod(i− 1, m), ∆l × int(i− 1, m)) (24)

where mod (a, b) and int (a, b) are the remainder and integer part of a divided by b [57].
The experimental data samples were generated using a predefined GWR model with the
following equation:

yi = β0(ui, vi) + β1(ui, vi)xi1 + β2(ui, vi)xi2 + β3(ui, vi)xi3 + β4(ui, vi)xi4 + εi (25)

To standardize the regression coefficient β, all regression coefficients β were limited to
the (0, βmax) interval (βmax was a fixed constant) [31]. The regression coefficient beta of the
model follows the following five functions.

β0(ui, vi) =
2βmax

l2

(
l2

2 − (l − ui)
2 − (l − vi)

2
)

β1(ui, vi) =
βmax

2

((
sin uiπ

l
)2

+
(
sin viπ

l
)2
)

β2(ui, vi) =
βmax

2

(
2−

((
tan
( uiπ

2l −
π
4
))2

+
(
tan
( viπ

2l −
π
4
))2
))

β3(ui, vi) = βmaxe−
1
2l ((

l
2−ui)

2
+( l

2−vi)
2
)

β4(ui, vi) =
16βmax

l4

(
l2

4 −
(

l
2 − ui

)2
)(

l2

4 −
(

l
2 − vi

)2
)

(26)

This paper prepared 8 sets of simulated datasets with different numbers: 1000, 5000,
10,000, 15,000, 20,000, 50,000, 100,000, and 1,000,000.

3.1.2. House Price Dataset in China

The study area ranged from 108◦21′ to 122◦42′ E and 23◦33′ to 42◦40′ N. Fourteen
provinces or municipalities were mainly involved (Anhui, Jiangxi, Henan, Hubei, Hu-
nan, Shanxi, Hebei, Jiangsu, Zhejiang, Fujian, Beijing, Tianjin, and Shanghai). The total
area was approximately 17,454,000 square kilometers comprising two world-class urban
agglomerations, Beijing–Tianjin–Hebei and Yangtze River Delta, as shown in Figure 3.

The house price dataset used in this study was collected from www.anjuke.com
(accessed on 25 March 2022). The experimental dataset was selected from residential
land price statistics with geographic location, including the number of bedrooms (NBeds),
bathrooms (NBaths), floor area (Area), and age of the house (Age). Detailed information
on the experimental dataset is shown in Figure 4. In this study, 123,691 research data were
sequentially divided into 7 different datasets by random sampling: 1000, 5000, 10,000,
15,000, 20,000, 50,000, and 100,000. Seven sets of datasets were applied to MGWR (PySAL),
GWmodel, Spgwr, and KNN-GWR, which satisfy the following expression.

yi = β0 + β1 Areai + β2NBathsi + β3NBedsi + β4 Agei + εi (27)

Anjuke.com
www.anjuke.com
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Figure 3. Study area. (a) Geographical location of each province of the study area in China. (b) Distri-
bution of house price dataset in the study area.

3.2. Testing Specifications and Environment

The differences in runtime between the KNN-GWR and other GWR packages (MGWR
(PySAL), GWmodel, and Spgwr) were compared. Details of the equipment used in the
experiments are listed in Table 3.

Table 3. Device parameters for running study GWR models.

KNN-GWR, MGWR(PySAL), GWmodel, Spgwr

CPU Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz, 8 cores
Memory 16,384 MB RAM

3.3. Results
3.3.1. Case One: Simulated Dataset

In Figure 5, the coefficients β(β0, β1, β2, β3, β4) and the respective dependent variable

values Y for the simulated data are presented, along with the coefficients
∼
β

(∼
β0,
∼
β1,
∼
β2,
∼
β3,
∼
β4

)
and predicted values of the dependent variable Predicted Y obtained by applying the KNN-
GWR method. As shown in Figure 5, the five coefficients β selected by the model are closely
related to the locations of the sample points and exhibit spatial non-stationarity. The spatial

distribution of the coefficients
∼
β

(∼
β0,
∼
β1,
∼
β2,
∼
β3,
∼
β4

)
obtained by the KNN-GWR method is

quite similar to the distribution of the simulated data, indicating that it addresses the spatial
non-stationarity.
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Figure 4. Details of each independent variable (a) Map of NBeds parameter estimates for the predictor
variables. (b) Map of NBaths parameter estimation for predictor variables. (c) Map of Area parameter
estimates for the predictor variables. (d) Map of Age parameter estimation for the predictor variables.
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Figure 5. Estimated regression coefficients β of KNN-GWR method on simulated dataset.

Due to the transformation of a large matrix into a small matrix, the regression efficiency
of KNN-GWR is significantly improved compared with that of GWR. As shown in Figure 6
and Table 4, the average running times of KNN-GWR at 1000, 5000, and 50,000 points are
0.34, 3.59, and 31.77 s, respectively. However, the average running time of MGWR(PySAL)
increased from 3.71 s at 1000 points to 178.52 s at 10,000 points, and then reached 6327.91 s
at 50,000 points. Figure 7 showed the comparison of KNN-GWR with other GWR packages
in terms of runtime increase ratio. The results indicated that for 10,000 observations, KNN-
GWR was approximately 49.7 times faster than MGWR(PySAL), approximately 58.9 times
faster than GWmodel, and approximately 3224.2 times faster than Spgwr. Spgwr cannot
obtain the results because the data are larger than 10,000 observations. In addition, when
the data increased to 50,000 observations, KNN-GWR was approximately 199.2 times faster
than MGWR(PySAL) and approximately 260.7 times faster than GWmodel. KNN-GWR
implements calibration operations at amounts of data greater than 50,000, whereas in other
GWR packages memory bottlenecks are caused by storing redundant computations.
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Table 4. Information on the runtime and R2 of four software packages (KNN-GWR, MGWR(PySAL),
GWmodel, and Spgwr) in simulated dataset experiments.

Number of
Data Points

KNN-GWR MGWR(PySAL) GWmodel Spgwr

Runtimes (s) R2 Runtimes (s) R2 Runtimes (s) R2 Runtimes (s) R2

1000 0.34 0.995 3.71 0.995 1.33 0.994 21.65 0.994
5000 3.11 0.996 43.51 0.995 41.51 0.997 1514.71 0.997

10,000 3.59 0.996 178.52 0.994 211.41 0.998 11,574.78 0.997
15,000 6.56 0.993 342.51 0.996 598.91 0.992 n/a n/a
20,000 8.52 0.994 758.81 0.996 1234.06 0.993 n/a n/a
50,000 31.77 0.997 6327.91 0.996 8283.33 0.995 n/a n/a
100,000 83.06 0.998 n/a n/a n/a n/a n/a n/a

10,000,000 865.13 0.999 n/a n/a n/a n/a n/a n/a
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The advantage of geographically weighted regression methods for analyzing geo-
graphic data was retained in the KNN-GWR method, and the storage of the full sample
matrix by other GWR software models was changed in the KNN-GWR method to store
only the matrix consisting of the observations involved in the regression.

3.3.2. Case Two: House Price Dataset in China

The local model can discover the rich information in geographic data and we per-
formed KNN-GWR modeling on the house price data collected from www.anjuke.com.
KNN-GWR generated local parameter estimates that reflect information on the spatial
heterogeneity affecting house prices. The performance of KNN-GWR and its spatial non-
smoothness are explored visually through local coefficient estimation of mapped variables.
Figure 8a–d show the spatial patterns of the KNN-GWR model estimated coefficients.
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Figure 8. Space mapping for: (a) number of bedrooms in the house, (b) number of bathrooms, (c) area
of the house, and (d) age of the house, by KNN-GWR modeling.

The results indicate that Area is positively correlated with residential land price, and
the larger the residential area, the higher the residential land price (Figure 8c). And it seems
reasonable that the effects of age are greater in Beijing–Tianjin–Hebei and the Yangtze River
Delta. As these cities are better developed, housing construction has slowed down in recent

www.anjuke.com
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years, resulting in higher house prices in some areas. In addition, the number of bathrooms
is negatively correlated with house prices in some coastal cities, possibly because higher
housing prices have dampened the greater demand for the number of bathrooms.

Compared with other GWR packages, the KNN-GWR method demonstrated high
efficiency in processing housing price datasets in the study area. As shown in Figure 9
and Table 5, as the number of data increases, the running time of KNN-GWR remains
relatively stable, while the running time of all the other GWR packages increases rapidly.
For instance, with 50,000 observations, the KNN-GWR method requires 51.21 s, while
MGWR (PySAl) and GWmodel require 4116.12 and 7445.82 s, respectively. This indicates
that KNN-GWR is capable of processing large-scale geographic datasets relatively quickly,
while other GWR packages struggled to achieve the same level of efficiency. In addition,
as shown in Figure 10, KNN-GWR has an efficiency improvement of a thousand times
compared to other GWR software packages. This indicates that KNN-GWR overcomes the
memory limitations and process larger datasets more efficiently than other GWR packages.
Overall, these findings demonstrate the usefulness of the KNN-GWR method in analyzing
large-scale geographic data and its potential to outperform in computational efficiency and
memory optimization compared to existing GWR algorithms.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 18 of 23 
 

 

Yangtze River Delta. As these cities are better developed, housing construction has slowed 

down in recent years, resulting in higher house prices in some areas. In addition, the num-

ber of bathrooms is negatively correlated with house prices in some coastal cities, possibly 

because higher housing prices have dampened the greater demand for the number of 

bathrooms. 

Compared with other GWR packages, the KNN-GWR method demonstrated high 

efficiency in processing housing price datasets in the study area. As shown in Figure 9 and 

Table 5, as the number of data increases, the running time of KNN-GWR remains rela-

tively stable, while the running time of all the other GWR packages increases rapidly. For 

instance, with 50,000 observations, the KNN-GWR method requires 51.21 s, while MGWR 

(PySAl) and GWmodel require 4116.12 and 7445.82 s, respectively. This indicates that 

KNN-GWR is capable of processing large-scale geographic datasets relatively quickly, 

while other GWR packages struggled to achieve the same level of efficiency. In addition, 

as shown in Figure 10, KNN-GWR has an efficiency improvement of a thousand times 

compared to other GWR software packages. This indicates that KNN-GWR overcomes the 

memory limitations and process larger datasets more efficiently than other GWR pack-

ages. Overall, these findings demonstrate the usefulness of the KNN-GWR method in an-

alyzing large-scale geographic data and its potential to outperform in computational effi-

ciency and memory optimization compared to existing GWR algorithms. 

 

Figure 9. Comparison of the computational speeds of four software packages (KNN-GWR, 

MGWR(PySAL), GWmodel, and Spgwr) in the house price dataset in China. 
Figure 9. Comparison of the computational speeds of four software packages (KNN-GWR,
MGWR(PySAL), GWmodel, and Spgwr) in the house price dataset in China.

Table 5. Information on the runtime of four software packages (KNN-GWR, MGWR(PySAL), GW-
model, and Spgwr) in the house price dataset in China.

Number of Data
Points KNN-GWR MGWR(PySAL) GWmodel Spgwr

1000 0.73 3.43 1.45 24.70
5000 4.51 44.92 45.26 1564.89

10,000 8.73 164.20 239.99 14,812.23
15,000 18.32 359.21 646.92 n/a
20,000 25.21 563.13 978.95 n/a
50,000 51.21 4116.12 7445.82 n/a

100,000 138.33 n/a n/a n/a
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4. Discussion

The KNN-GWR proposed in this paper is an optimized version of GWR. Specifically,
it optimized the computational efficiency and memory of GWR by strategies such as
constructing KD tree, referencing geographical clustering and reconstructing regression
matrices. In essence, there is no difference between KNN-GWR and GWR in exploring
spatial non-stationarity. However, KNN-GWR is better suited for processing geographical
big data applications and address the changes associated with it.

Therefore, in our experimental results, KNN-GWR has a good fitting degree, just like
GWR. Compared with GWR, the advantages of KNN-GWR in computational optimization
are as follows. First, the KD tree is used to establish a spatial data index structure that
can quickly identification the observation points around the regression point. Second,
KNN-GWR reconstructed the weight matrix Wi(n× n), independent variable matrix X
(n ×(p + 1)), and dependent variable matrix Y(n× 1) in the local regression calculation

for each regression point (the reconstructed matrices are
∼
Wi (K× K);

∼
Xi (K× (p + 1));

∼
Yi (K× 1)). In this process, observation points that are not within the bandwidth in the
local regression of each regression point are directly removed according to the spatial data
index structure established by the KD tree. Memory complexity is reduced from O

(
n2)

to O
(
K2), where n is the number of observation points. Third, KNN-GWR references the

spatial clustering relationship obtained by K-means, which in turn helps to find the optimal
bandwidth. To optimize GWR performance, increasing the hardware configuration is one
approach; however, it is often necessary to optimize performance of GWR without relying
on hardware enhancements.

To demonstrate the practicability of KNN-GWR, simulated data and the Chinese house
price dataset were used for the experiments. The results show that GWR cannot handle
regression tasks of large amount of data; in contrast, KNN-GWR has great potential to
handle a large amount of geographic data, which can largely alleviate the dilemma of
GWR in terms of data size. In this paper, we collected house price data from 14 provinces
and municipalities and applied it to verify the practical significance of the model in a
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real geographical environment. When analyzing the house price data of 14 provinces and
municipalities, it was found that the factors affecting the house price in coastal cities, more
developed areas and slow-developing areas differed. For example, the Age variable has
strong effects on house prices in Beijing and Shanghai, but relatively weak effects in other
provinces. In terms of runtime, taking simulated data as an example, for 50,000 observations,
KNN-GWR is several hundred times faster than MGWR(PySAL), and the GWmodel. In
terms of the memory required for calculation, the memory requirement of KNN-GWR
is affected by the number K of the nearest neighbors. Generally speaking, the required
memory is very small. The memory assignment of KNN-GWR O

(
K2) was compared with

that of FastGWR O(nk), MGWR(PySAL) O
(
n2), GWmodel O

(
n2), and Spgwr O

(
n2) (the

number of independent variables of the database is four, and the adjusted bandwidth is 93).
For 50,000 observations, KNN-GWR required 33.8 KB of memory, FastGWR required 976.6
KB, and MGWR(PySAL), GWmodel, and Spgwr required 9.31 GB of memory. KNN-GWR
has the same ability as GWR to explore spatial non-stationarity. However, in terms of
memory usage, KNN-GWR stores a small matrix consisting of observations involved in the
regression rather than a full sample matrix.

5. Conclusions

Geographically weighted regression has become a classical method for exploring the
spatial non-stationarity in geographic data. However, it faces computational challenges
when applied to geographical big data. Previous studies have adopted strategies such as
parallelism to optimize GWR, which can handle applications with millions of geographical
spatial data, but still encounter problems of memory and computational efficiency. This
paper aims to address this limitation, and the main research results are summarized as
follows:

(1) The KD tree is proposed to organize geographical spatial data, which can quickly
identify the observation points around the regression points in local regression calculations.
This greatly optimizes the time-consuming search process in the geographically weighted
regression model and significantly improves the computational efficiency.

(2) This paper reconstructed the weight matrix, the independent variable matrix,
and the dependent variable matrix based on the characteristics of the kernel function
in GWR. This achieves the transformation from a large matrix (n× n) to a small matrix
(K× K), avoiding the large memory consumption caused by the large matrix (n× n)
during regression calculation in classical geographically weighted regression.

(3) The spatial clustering relationships of the geographic data obtained by the K-means
clustering method are referenced to help narrow the search for the optimal bandwidth.
This reduces the computational waste in the process of determining the optimal bandwidth
in GWR.
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