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Abstract: Classifying a time series is a fundamental task in temporal analysis. This provides valuable
insights into the temporal characteristics of data. Although it has been applied to traffic flow and
individual-centered accessibility analysis, it has yet to be applied to place-centered accessibility
research. In this study, we have proposed an actual isochrone and dynamic time-wrapping distance-
based k-medoids method and tested its applicability to a bus accessibility analysis. Using bus
floating car data, our method calculated the actual isochrone area as an accessibility measurement
and constructs an accessibility time series for each hexagonal geographical unit within the area of
interest. We then calculated the dynamic time warp distance between the accessibility time series of
pairwise geographical units and used these distances for k-medoid clustering. The optimized class
number k was selected by considering the elbow method, silhouette score, and human examination.
Our case study in Hefei, China demonstrates the feasibility of our method for accessibility time series
classification. We also discovered that the resulting classes follow clear spatial patterns, indicating
that different time series classes may be correlated with their spatial location. To our knowledge, this
is the first time that such a classification method has been applied to place-centered accessibility time
series analysis. Our data-driven method can inform place-centered accessibility in an era in which
large quantities of spatiotemporal data like floating car data are available.

Keywords: accessibility; isochrone; dynamic time warping; k-medoids; time series classification;
floating car data; public transportation

1. Introduction

Accessibility refers to the ability of individuals, goods, or services to reach their in-
tended destination and acquire necessary services through a transportation network [1,2].
In the context of public transportation, accessibility serves as a crucial indicator of service
quality and is essential for public transport planning. While static accessibility measure-
ments consider network conditions, provider capability [3], and demand [4], researchers
have long recognized the importance of a temporal perspective in accessibility [2,5]. The
condition of the transport network, the density of the service schedule, and the amount of
demand all contribute to fluctuations in accessibility. Accessibility research can be grouped
into two categories: individual-centered and place-centered [2]. Although accessibility
research that is centered on individuals has extensively incorporated a spatiotemporal
framework [6–8], conventional place-centered accessibility methods have been mostly
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static [7,9,10]. Only in the last decade has place-centered accessibility research widely
incorporated the temporal dynamics of traffic, service, and individual movement, thanks
to new data from location-based services and floating car data (FCD) [11]. One group of
studies introduced dynamic-describing variables for static accessibility measurements, such
as a service schedule, in the accessibility measurement of London, UK, and Santa Barbara,
California, USA [12,13]. Another group of studies calculated accessibility measurements for
selected time frames and visualized these snapshots to facilitate the researcher’s geo-visual
analysis of the accessibility dynamics, such as the research of Zhang et al., in ShenZhen,
China [14]. However, studies in both groups are not entirely data-driven and may require
subjectively selected metrics, statistical indices, time granularity, and visualization methods.
As a result, the analysis could be time-consuming and may miss some of the underlying
spatiotemporal patterns that the analyzer had not originally targeted. There is still a lack
of a data-driven classification method for place-centered accessibility research based on
the feature of the entire accessibility time series. This prevents scientists from classifying
different locations in the area of interest into different classes based on their time series
features. Such a classification task is fundamental to further spatiotemporal analysis.

This study aimed to classify a bus accessibility time series using a data-driven and
quantitative methodology. The proposed method consisted of four steps. First, the study
area was divided into uniform hexagonal geographical units, and actual isochrones were
calculated repeatedly for each unit with predefined travel time thresholds and the time
interval supported by the FCD of buses. This method used the area of the actual isochrone
surface as the accessibility index of a certain timeframe and constructed an accessibility time
series for each hexagonal unit. Second, the dynamic time warp (DTW) method was used to
calculate distances between the accessibility time series of pairwise hexagonal units. Third,
based on the pairwise distances, a k-medoids cluster method was used to classify these time
series into a predefined number of classes. The research evaluated the classification results
with quantitative metrics and thus chose the optimized class number. Finally, different
time series groups were plotted on the map, and an explanation of their between-group
differences and spatial distribution patterns is given, providing decision support for public
transit policy makers. The analysis of the classification results demonstrates the capability
of DTW in terms of detecting differences between accessibility time series in different
regions and the feasibility of chaining DTW with the following classification algorithm.

To our knowledge, this study is the first to apply dynamic time warp methodology to
the time series of actual isochrone-based bus service accessibility for spatial unit classifica-
tion. With preset class numbers, this methodology can be fully data-driven, automatically
analyzing bus transit data, classifying service regions by their accessibility time series, and
helping bus managers find service abnormalities.

The remainder of this manuscript is structured as follows: Section 2 reviews the
literature in terms of accessibility and its temporal-perspective-related research; Section 3
presents the methodology details of the proposed classification method; Section 4 presents
a case study of Hefei’s bus accessibility and explains the observed phenomenon; Section 5
discusses the methodological choice made by this study during the case study and the
potential implications; and Section 6 gives a short summary of this study.

2. Accessibility and Its Temporal Perspective

Accessibility is a measure of the ability of individuals, goods, or services to access
their desired destination and obtain necessary services via a transportation network. It
serves various purposes in different research regions, including facility location selection
in Nanjing, China [15], public service evaluation in Tokyo, Japan [16], urban planning in
Naples, Italy [17], and policy evaluation in Montreal, Canada, and also in China [18,19].
It also plays a significant role in the emerging fields of urban mobility sustainability [20]
and environmental sustainability [21]. While accessibility has been used in urban plan-
ning since the 1920s [22], it was only explicitly defined by researchers in 1959 [23], and
its definition and measurement remain multifaceted. There are two main categories of
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accessibility measurement: place-centered (passive accessibility) and individual-centered
(active accessibility) [2]. Place-centered accessibility measurement considers accessibility as
a characteristic of different locations, while individual-centered accessibility measurement
views accessibility as a measure of how easily a person can reach their destination and
obtain services [24,25].

A temporal perspective is a critical component of accessibility measurement, in addi-
tion to space and human perspectives [5,26]. Studies have established the importance of
considering the temporal dimension in accessibility measurement. The temporal perspec-
tive can be realized by using time as a cost in the measurement [27,28] or by accounting for
the temporal dynamics of attributes in the accessibility algorithm, such as varying traffic
conditions or population in an area of interest. Accessibility measurements from an individ-
ual perspective have long incorporated temporal dynamics and constraints [5,7,8]. Addi-
tionally, some researchers have attempted to stochastically aggregate individual temporal
dynamics. However, aggregating these individual-centered measures into place-centered
measures has proven to be challenging [29]. Conventional location-based measures are
static, but new data sources such as FCD offer researchers opportunities to capture the
dynamic nature of accessibility [30–32]. With these data, some researchers have embedded
static descriptive measurements of time series into accessibility time series [31], while
others have created multiple accessibility snapshots for place-centered evaluation [32].

The isochrone map is a classical visual analytic tool used for measuring place-centered
accessibility with temporal information and is widely employed in urban planning and
public transport management [32]. It displays travel time from a given origin point in
the area of interest through points, lines, or area isochrones [33–35]. As a passive ac-
cessibility measure [32], isochrone maps visualize time, which is often more relevant to
passengers than distance [27]. They are particularly useful in time-related accessibility
measurements [36] and can be readily integrated into spatiotemporal accessibility analy-
sis [37,38]. The isochrone area can be viewed as a horizontal slice on three-dimensional
space–time prisms, and its area can serve as a quantitative measure of accessibility at that
specific time window. Isochrones are classified into three categories: ideal isochrones,
free-flow isochrones, and actual isochrones [39].

The spatiotemporal analysis of place-centered accessibility, whether isochrone-based or
not, typically involves visual analysis of preselected time windows or descriptive statistics
of time series. However, the quantitative time series grouping method, which groups time
series into different categories based on the similarity of their temporal dynamic patterns,
has yet to be widely applied to place-centered accessibility analysis despite its prevalence
in time series analysis [40] and traffic flow analysis [41], as well as its recent application in
individual-centered accessibility analysis [42]. These methods differ from the latest time
grouping method of Park et al. [43] in accessibility studies as their focus was on grouping
within an accessibility time series rather than among different ones. Grouping time series
could provide insight into the patterns of accessibility dynamics and facilitate abnormality
detection. Dynamic time warping with nearest neighbor (DTW-NN) and rotation forest are
two strong baseline time series grouping methods [40]. In recent years, deep-learning-based
grouping methods such as multi-layer perceptron (MLP), convolutional neural network
(CNN), echo state network (ESN), and an efficient federated distillation learning system
for multitask time series classification have gained popularity [44,45]. To our knowledge,
few studies have applied these grouping algorithms to place-centered accessibility and
evaluated their applicability.

3. Methodology

Our place-centered accessibility time series grouping method with bus FCD contained
four steps: data preparation and bus network construction, actual isochrone time series
calculation, time series grouping, and validation (Figure 1).
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Figure 1. Steps of place-centered bus accessibility time series classification with bus floating car data.

3.1. Data Preparation and Bus Network Construction

The data preparation and bus network construction process involved three data sets:

• Road network data for the area of interest, which included the vertex, edge, and
direction of roads.

• Bus FCD for a period of interest, which included the location, record time, bus line,
and service condition of each bus vehicle, often recorded at preset intervals.

• Bus station data for the area of interest, which included the precise location and bus
lines of all bus stations.

Due to limitations in the global positioning system (GPS) tracking and the obstruction
of tall buildings in the city center, the precision of the bus FCD may have been compromised,
and outliers may have been created. Therefore, the first step of our processing process in-
volved snapping the bus FCD to the road network and removing outlier records. To achieve
this, we employed a state-of-the-art snapping method that chained a hidden Markov model
(HMM) and the Viterbi algorithm. Our method assumed that a bus vehicle moves at a
constant speed between consecutive GPS sampling points and that the distribution of
different bus speeds of a road segment within a short time window followed a Gaussian
distribution [14,46]. Using this approach, we created a time series of bus speeds for each
road edge by dividing the bus service hours into small time windows and calculating the
expected speed in each time window accordingly. By doing so, we created a road network
where each edge had a time series of bus speed. The original bus FCD may have introduced
uncertainties in the speed calculation, as the location accuracy and update frequency were
limited. However, since all of the FCD were processed by the same pipeline, the overall
time series patterns should have remained comparable.

The bus network was then derived from the road network, with the bus stations as
vertices and the edge representing either a bus traveling or the transit of passengers. The
bus traveling edge merged road edges between bus stations and calculated the time series
of travel time based on the time series of bus speed and length. There are two types of
bus transit: between-station transit and within-station transit. The former refers to the
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transit that requires passengers to walk a certain distance. If the shortest path between
two bus stations was shorter than a preset walking threshold, we established edges of
between-station transit of opposite directions. The travel time of the transit edge was
calculated based on its length and the pre-defined walking speed, for example 3.6 km/h.
We neglected the time that a bus spends at each station, as the mean speed calculated from
the FCD already accounts for the stopping delay. Within-station transit refers to the transit
that is made within the same bus stop.

Edges representing within-station transit were also created. The time of within-station
transit edge was set to half of the bus line interval at each time window, which could be
derived from the FCD. The final bus network, as presented in Figure 2, consisted of bus
station vertices, bus travel edges, within-station bus transit edges, and between-station bus
transit edges. The travel time of each edge was calculated from the original road network
and was dynamic.
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threshold.

3.2. Actual Isochrone Time Series Calculation

The dynamic travel time attribute of the bus network provided the basis for calcu-
lating dynamic actual isochrones, which reflected the actual traffic and service situation,
as opposed to ideal isochrones. This study used the actual isochrone area as a measure
of bus service accessibility and employed hexagonal geographical units for its calcula-
tion. Hexagonal units are preferred over square ones because they offer six spatially
contiguous directions and exhibit smaller distance deviations between their boundary and
centroid [47,48]. We calculated the origin destination (OD) matrix of travel time for each
time window using the centroid of each hexagonal unit as the origin and destination, and
we snapped the centroids to the nearest vertex of the bus network. If the nearest vertex
was within the unit boundary, we neglected walking time to or from the vertex. Otherwise,
we calculated walking time based on the distance from the nearest vertex to the hexagonal
unit boundary and the preset walking speed. Equation (1) illustrates the modeling of the
shortest bus travel time with one transfer between two hexagonal unit centroids.

T = O + W1 + B1 + S + W2 + B2 + D (1)
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where T denotes the time for one travel period with the bus; O denotes the time spent
walking from the origin point to a nearby bus stop; W1 denotes the time spent waiting for
the first bus; B1 denotes the time spent travelling on the first bus; S denotes the time for the
bus transfer; W2 denotes the time spent waiting for the second bus; B2 denotes the time
spent travelling on the second bus; D denotes the time spent walking from the last bus stop
to the destination.

With multiple bus traveling OD matrices calculated per day, we could use them to
calculate the actual isochrone area starting from each unit at each time window with a
preset travel time threshold of 30, 60, or 90 min. The isochrone area could be calculated by
their actual surface area or the count of geographical units. Using the isochrone area as a
measurement, we could then acquire the time series of accessibility for each unit.

3.3. Time Series Classification

We could then employ DTW to calculate the elastic distance between the whole
accessibility time series of each hexagonal unit pair. Given the two accessibility time
series X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, their DTW distance was calculated
using the following steps: First, we constructed a distance matrix D using the Euclidean
distance as the basis function for the metric distance matrix D. The distance between the
points xi and yj is denoted by D(i, j), where i = 1, 2, . . . , n and j = 1, 2, . . . , m. Next, we
calculated a warping path (W) subject to three conditions: the boundary condition, the
continuity condition, and the monotonicity condition. The boundary condition required
the calculation of the warping path to be performed from the first time point, i.e., from
(x1, y1), until the last time point, i.e., until the end of the point (xn, ym). The continuity
condition meant that only one time interval could be advanced at a time during matching,
and there could be no crossing in the regularization path. Finally, the monotonic condition
restricted the warping path to the next moment and not back. The warping path (W) is a
sequence of indices w1, w2, . . . , wK, where max(n, m) ≤ K ≤ n + m− 1.

We compared all of the dynamic regularization paths wi to find that with the smallest
cumulative distance and defined this warping path as the dynamic regularization distance
DTW(X, Y) between time series, see Equation (2):

DTW(X, Y) = min
{
∑K

1 D(wi)
}

(2)

To obtain Equation (2), we solved the recurrent Equation (3):

γ(i, j) = D(i, j) + min


γ(i− 1, j)
γ(i, j− 1)

γ(i− 1, j− 1)
(3)

where γ(0, 0) = ∞. Then, γ(i, j) can be viewed as the sum of the base distance value of the
current element and the minimum of the cumulative distance values of the 3 elements. The
final γ(n, m) is the minimum cumulative cost of the DTW distance measure X and Y, i.e.,
DTW(X, Y) = γ(n, m). The lower the DTW distance, the more similar the two accessibility
time series.

Based on the DTW distances, we employed the k-medoids clustering algorithm [49],
which consists of the following steps:

• Determine the number of clusters K.
• Randomly select K sample points from all data objects as the initial cluster center.
• Assign the data into clusters where the nearest cluster centers are located based on the

DTW distance of the time series.
• Find the median member in each cluster, i.e., the member with the smallest average

DTW distance from the remaining members and selecting that member as the new
cluster center.
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• Repeat steps (3) and (4) and recalculating the centers of K clusters until the cluster
centers remain unchanged or the maximum number of iterations set by the program is
reached; then, the optimal clusters K for multi-centroid clustering based on dynamic
time-wrapping distance are obtained.

Compared with k-means, the k-medoids method is more robust to outliers [50] and is
better suited to a non-Euclidean distance where there is no clear definition of mean. It has
already been employed in traffic flow [41] and urban planning research [50].

In this paper, a set of K was predefined, and the accessibility time-series classification
result according to each K setting was calculated. All preset K and their classification results
are also included in the next evaluation steps for K selection and result evaluation.

3.4. Evaluation

Since there were no predetermined class labels for the actual isochrone area time series,
we could only quantitatively evaluate the classification using internal evaluation methods
that were based only on the original data. To assess the quality of the classification results,
we employed two internal metrics: the elbow method by within sum of DTW distance [51]
and the Silhouette metric [52]. The silhouette metric is given by Equation (4):

Si =
bi − ai

max{ai, bi}
(4)

where, Si is the silhouette metric of data object i, ai is the average distance from data object
i to other data objects in the same cluster, and bi is the minimum value of the average
distance from object i to objects in other clusters. The average Si of all data objects, called the
silhouette score, provided an overall measure of the quality of clustering results, reflecting
the validity and rationality of clustering. It ranges from −1 to 1. A higher average Si
indicates better clustering results.

To further validate the clustering results, we manually examined the classification
of accessibility time series by comparing time series plots within each class and between
different classes. We also examined the size of each class and their statistical measurements
to discover any abnormalities. The spatial distribution of the accessibility class distribution
was also examined by categorically coloring the hexagonal units according to their class
and presenting them in a thematic map of the area of interest. The classification thematic
map provides a visual analytic tool for accessibility researchers to understand the spatial
distribution of different time series classes and identify possible outlier groups.

4. Case Study: Hefei Bus Service
4.1. Study Area and Period

The study area, shown in Figure 3, is the urban area of Hefei, the capital of Anhui
province in China, which is composed of four districts: Baohe, Shushan, Luyang, and
Yaohai. This study utilized bus FCD that included the GPS location and time-stamped
information of each bus vehicle, collected between 6 am and 11 pm for a week-long period
from 2 November, 2020, to 8 November, 2020. Each day, the data set contained approxi-
mately 1 million points. The location updates occurred every minute, with some delays
due to network connectivity issues. The Hefei metropolitan region spans over 1250 km2,
with 406 daily bus lines, considering the upper and lower directions as separate bus lines,
and around 3100 active vehicles. The bus network has over 2000 bus stations, with each stop
accommodating an average of four bus lines. The road network data used in this research
were derived from OpenStreetMap, while the bus station information was obtained from
the bus company’s website and validated. The bus station information included the precise
location and connected bus lines.
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4.2. Data Preparation and Bus Network Construction

To accurately analyze the bus FCD, we utilized a Markov model (HMM) and Viterbi
algorithm [53] to snap the data to Hefei’s road network and eliminate any outliers and
inactive vehicles. Due to the limited availability of computational resources and the
infrequent FCD updates, we set the time window to 20 min, resulting in 51 consecutive
phases per day. Using the snapped FCD, we calculated the average bus speed for each
road segment in each phase and reformed the road network with bus stations. The reform
involved replacing the original vertices, mainly road intersections, with the vertices of bus
stations. We constructed edges of the bus network representing the bus route between
consecutive bus stations along a bus line and the passenger transit route. We represented
within-station transit as edges connecting all possible transit bus lines passing a bus
station and between-station transit edges connecting two possible bus station vertices.
In accordance with the Urban Road Traffic Planning and Design Standards of China
(GB50220-95), we set the between-station walking transit distance threshold to 500 m.
Walking speed was set to 3.6 km/h based on analysis of mobile data from Anhui Mobile
Communication Co., Ltd. The waiting time for each transit was set to half the arrival



ISPRS Int. J. Geo-Inf. 2023, 12, 285 9 of 19

interval of each bus line at that bus station, derived by calculating possible bus arrival times
using the road network with bus speed information. To construct the bus network, we
employed OSMNX [54] and NetworkX [55] libraries and stored the resulting bus network
in GraphML files for further processing.

4.3. Actual Isochrone Time Series Calculation and Classification

Due to data and computational resource constraints, we employed a 250 m hexagonal-
based calculation scheme for the study. We calculated an origin destination (OD) matrix for
every time window, with each hexagonal unit serving as both the origin and destination.
We then aggregated the count of hexagonal units within 30, 60, and 90 min travel times
for each hexagonal unit to measure its accessibility. To classify each hexagonal unit into
different accessibility classes, we used a time series classification method based on dynamic
time warping (DTW) and k-medoids. We optimized the number of classes using both
the elbow method of within the sum of distance and silhouette score. The classification
results were plotted on thematic maps, which colored each unit according to their class, to
demonstrate whether there were spatial distribution patterns of time series classification.

4.4. Result

Figure 4 presents two isochrone maps, one for a weekday and another for a weekend,
starting from one hexagonal unit. The resulting time series of accessibility values for this
hexagonal unit is presented in Figure 5, which shows the 30, 60, and 90 min isochrone areas.
The isochrone-based accessibility time series displays a fluctuation pattern that cannot be
fully explained by peak and leisure times alone. While there were peak time windows in
the morning, at noon, and in the late afternoon when accessibility declines, accessibility
during most of the peak hours was not significantly lower than during leisure hours. An
analysis of the bus FCD indicated that there were more active bus vehicles and lower bus
arrival intervals during peak times compared to leisure times, which may explain why
accessibility was not significantly lower during peak hours. However, once those extra peak
hour buses arrived at their destination station, there was an immediate accessibility decline.
Additionally, the bus service interval increase could explain the accessibility decline at noon
when traffic conditions were not compromised. Weekend accessibility, with an average of
1435 units for the 90 min isochrone, was slightly lower than that of the weekday at 1493.
However, their time series patterns were significantly different, as shown in Figure 5.

Figure 6 displays the sum of distance within classes as the classification number K
increases. Figure 7 shows the silhouette score as K increases. The elbow method suggested
an optimized K of 5 or 6, despite the elbow point in the diagram being vague. On the
other hand, the silhouette score indicated 3 to be the best. The literature suggests that
the silhouette score often performs best when evaluating cluster metrics [56,57]. The
silhouette score for three class classifications was approximately 0.3, which is considered
fair. Furthermore, we manually compared the time series diagrams of different classes and
concluded that three classes were the best to account for the main time series classes and
largely prevented overlapping between classes. The result of four classes was also presented
as a reference, and Figure 8 shows two time series in each group with three and four classes
on both weekdays and weekends. The time series is vertically offset from its original
y-value in order to be presented together. Despite there being no dramatic time series shape
difference, the time series shape of different classes in the three class classifications was
distinguishable, but the shape differences in some patterns from different classes in the four
class classifications for weekdays were not as obvious. The mean and median accessibility
of each class were also significantly different, as shown in Table 1, which presents the
all-day average accessibility for each class in the three class classifications.
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Table 1. Values of all-day average accessibility for each class in the three class classifications, presented
as the mean and median of the number of hexagonal units within the 90 min isochrone area.

Class

Date
Weekday Weekend

Mean Median Mean Median
Class 1 2351 2403 2530 2573
Class 2 1134 1185 1794 1843
Class 3 824 745 836 810

Plotting hexagonal units with classes as different categories and with different colors
revealed clear spatial patterns (Figure 9). These patterns differed from those of the whole-
day median accessibility (Figure 10). The hexagonal units in class 1 compose a continuous
surface in the city center, which is encircled by the first and second circle freeways. More-
over, class 2 encircles class 1, and class 3 encircles class 2. This pattern clearly indicates
that the city center, suburbs, and outskirts have different accessibility time series features.
Class 1 in the city center generally had a higher average accessibility evaluated by 30, 60,
and 90 min isochrones, and it also presented different dynamic patterns, such as a clear
accessibility peak at noon, while the other two classes did not. The city center, suburbs,
and outskirts may exhibit distinct demographic characteristics, bus service provisions, and
network profiles. These factors collectively contribute to the variations in accessibility time
series features. Linear features were observed on the map, particularly towards the west
direction, coinciding with two main routes where many bus stations are located. Holes
within the continuous surface of class 1 can be explained by special ground situations,
such as mountains, parks, and industrial fields, where both bus stations and bus lines
are sparse. The four-class classification also presented some detailed spatial features of
the suburban region. A noteworthy finding of the four-class classification was that the
classification of weekdays and weekends differed significantly in the southwest part of
the city. During the weekend, classes 2 and 3 no longer followed circular patterns. Unlike
the continuous class 1, which remained in the city center during weekends, classes 2 and 3
were interwoven with both line and hole regions.

In summary, this study utilized an actual isochrone and dynamic time warping
distance-based k-medoids method to classify bus accessibility time series in Hefei, China.
The results of the case study, which yielded a fair silhouette score, demonstrated the
feasibility of applying such a method to bus accessibility spatiotemporal analysis. The
overall process was data-driven and provided valuable insights into the dynamic fea-
tures of bus accessibility in Hefei. The strong spatial patterns observed in the distribution
of different accessibility classes suggest a potential correlation between bus service and
ground conditions, such as the situation of road networks and bus stations. Overall, the
findings of this study contribute to a better understanding of Hefei’s bus service accessi-
bility and its underlying influential factors in urban areas with the consideration of their
temporal dynamics.
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5. Discussion

The present study demonstrated the feasibility of actual isochrones and DTW distance-
based k-medoid classification for analyzing the spatiotemporal accessibility of bus services.
In this section, we discuss the methodological choices that were made in the case study
of this study and their potential implications. The selection of the spatial and temporal
granularity is a crucial step in any analysis of spatiotemporal data. In our study, we chose
a geographical unit size of 250 m and constructed time series on a daily basis with each
time window being 20 min. These choices were based on the frequency of bus FCD and the
need to capture fine-grained spatiotemporal patterns. In our study, the upload frequency
of each vehicle GPS device was 1 min. On average, a bus can travel 250 m for 1 min, so
setting the geographical unit size to 250 m was reasonable. Park et al., made a similar
decision [43]. The bus speed of each road segment was statistically determined, and a
20 min time window was required to robustly calculate the speed expectation. However,
we acknowledge that different choices of unit size and time window may lead to different
results, as indicated in previous studies [30,58], and further investigation is needed to
understand the sensitivity of our method to these choices.

The selection of the number of classes (K) was another important parameter in our
classification analysis. We used both the silhouette score and elbow method to evaluate
the quality of clustering for different K values. In cases where the two methods produced
conflicting results, we manually inspected the results. Our evaluation favored the silhouette
score, which is consistent with previous benchmark studies [56,57]. Nonetheless, the choice
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of K is ultimately subjective and may require human intervention. Future studies could
explore fully automatic K optimization methods, like that of Bholowalia et al. [51], for
selecting the optimal K value. The k-medoid clustering method produces K classes at the
same level, but a hierarchical classification may be more suitable for time series classification
in the urban context, as some researchers have argued [42]. This could be an interesting
direction for future research.

The DTW distance metric is influenced by both the shape of the time series and their
Euclidean distance. Therefore, the accessibility time series of a given class should have
similar shapes and similar absolute accessibility values. This explains why the mean
accessibility of each class in our study was significantly different from each other. It
also explains why some units with a similar all-day mean accessibility were assigned to
different classes. Future work could focus on analyzing the dynamicity of accessibility time
series alone.

This study focused solely on the analysis of bus floating car data (FCD). Consequently,
the accessibility assessment was limited to the bus service alone. In reality, passengers
also have the option to utilize subway services, which often have precise schedules and
are not affected by road network traffic conditions. Exploring how to integrate subway
schedule data with bus FCD in place-centered accessibility analysis presents an interesting
avenue for future research. Additionally, in a multimodal public transit system like the one
described, incorporating individual-centered accessibility into place-centered accessibility
classification could offer valuable insights for future studies.

It is important to note that the case study conducted on the bus service in Hefei,
presented in this research, serves primarily as an illustration of the proposed methodology.
To the best of our knowledge, this methodology represents the first place-centered accessi-
bility time series classification method. This unsupervised clustering approach offers two
significant advantages for FCD-based and place-centered accessibility analysis. Firstly, it
is data-driven, allowing for seamless integration into automated analysis pipelines and
greatly reducing the need for manual intervention. This aspect is particularly beneficial in
an era characterized by the prevalence of big data applicable to FCD. Secondly, the method
enables spatiotemporal accessibility analysis based on features extracted from the entire
time series, as opposed to selected snapshots. This approach enhances the objectivity and
robustness of place-centered accessibility analysis. Furthermore, it enables the mapping of
accessibility time series into categories and facilitates visual analysis of spatial distribution
patterns. The findings from the case study conducted in Hefei, China, indicate that both
accessibility and its time series feature exhibit spatial distribution patterns. This discovery
suggests that the accessibility time series feature is a spatial phenomenon that may align
with Tobler’s geographic first law. While our results revealed intriguing spatiotemporal
patterns, we did not statistically investigate their correlations with the city’s geographical
features, such as demographics and road networks. Exploring these correlations would be
a fruitful avenue for future research.

The proposed accessibility time-series classification method also holds practical value
for bus service planners and urban planners. It can assist practitioners in swiftly identifying
abnormal zones, which may manifest as either temporal or spatial outliers. For instance, a
class with a significantly smaller quantity of hexagonal units could indicate an accessibility
time series outlier, while holes within the continuous class surface may suggest potential
spatial outliers. The classification results of spatial units can also be readily utilized as raster
data layers in subsequent spatial analysis processes. With access to longer periods of bus
FCD, researchers could further develop new paradigms for bus transportation planning,
location selection, urban planning, and policy evaluation.

6. Conclusions

This study has presented a novel method for bus accessibility time series classification
based on actual isochrones and DTW distance-based k-medoid clustering using bus FCD.
By constructing a bus service network with dynamic travel time using FCD and calculating
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the actual isochrones for each hexagonal geographical unit, the proposed method generates
the accessibility time series of each unit and measures the pairwise distance between time
series of different units using DTW. The results of the case study demonstrate the feasibility
of the proposed method, with all the units being classified into three distinct classes based
on their time series features. The classification result shows strong spatial cluster patterns
and is well aligned with the underlying conditions of the bus network. This research
has significant implications for place-centered accessibility research and provides a new
data-driven method for public transit and urban planning practitioners. The proposed
method has the potential to reveal the spatiotemporal dynamic patterns of bus accessibility
by providing a precise classification of accessibility time series. Overall, this study fills a
gap in the current literature and offers a valuable contribution to the field of time series
classification in the context of bus accessibility analysis.
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