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Abstract: This paper proposes a model-less feedback system driven by tourist tracking data that
are automatically collected through mobile applications to visualize the gap between geomedia
recommendations and the actual routes selected by tourists. High-frequency GPS data essentially
make it difficult to interpret the semantic importance of hot spots and the presence of street-level
features on a density map. Our mobile collaborative framework reorganizes tourist trajectories.
This processing comprises (1) extracting the location of the user-generated content (UGC) recording,
(2) abstracting the locations where tourists stay, (3) discarding locations where users remain stationary,
and (4) simplifying the remaining points of location. Then, our heatmapping system visualizes
heatmaps for hot streets, UGC-oriented hot spots, and indoor-oriented hot spots. According to
our experimental study, this method can generate a trajectory that is more adaptable for hot street
visualization than the raw trajectory and a simplified trajectory according to its geometry. This paper
extends our previous work at the 2022 IEEE International Conference on Big Data, providing deeper
discussions on application for local tourism. The framework allows us to derive insights for the
development of guide content from mobile sensor data.

Keywords: walking tourism; digital feedback; geographic heatmaps; mobile sensing; semi-ready trajectory

1. Introduction

Walking tourism is a fascinating aspect of tourism businesses, offering visitors au-
thentic and unique local experiences [1]. Well-designed guide content including regional
resources with interesting stories, such as history and nature, can play an important role
in promoting destinations through guidebooks and tour events. In recent years, the de-
velopment of location-based services (LBSs) has not only replaced printed guidebooks
with geomedia delivery via mobile applications and web browsers but also enhanced
immersive self-guided walking tours [2,3]. For example, the authors of this paper, Lu and
Arikawa, developed a framework to enable the integration of illustrated maps with basic
LBS functions, such as positioning current user locations without distorting their original
appearance [4]. While mobile environments are becoming powerful tools for building
local storytelling for organizers of walking tours, there needs to be more discussion on
methods to evaluate the attractiveness and appropriateness of the story itself and to justify
or improve their businesses. The recent digitalization in the field of tourism can acceler-
ate local community-led and urban-scale analytics based on mobile device data [5,6]. In
particular, tourists’ mobility data, such as GPS data, have the potential to provide a richer
understanding of destination marketing [7]. Our research contributes to a mobile-driven
feedback system for the development of local tourism businesses.

As one of the essential indices for understanding the user preferences of the geomedia
of self-guided walking tours, this paper proposes an approach that visualizes trends in
tourists’ access to geographic features, such as spots and streets. If the similarity between
the recommended routes and the routes that the actual users select is low, this could
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indicate that the content of the walking guide has some unattractive or inappropriate
recommendations for users. Participants in self-guided walking tourism continually input
interpretations of regions using two sources before and during their walk: geomedia
and the real world. At the same time, they employ an algorithm depending on various
factors, such as their character (e.g., hasty, optimistic) and situation (e.g., time to get
home), to decide their destinations and the paths they will use [8]. A walking tourism
report illustrates good walking route characterizations as insights for the policy of their
algorithm—attractiveness, safety, level of difficulty, and access [1]. Based on this decision-
making process, tourists’ actual movement can imply their acceptance or refusal of tourism
organizers’ recommendations.

While many studies recognize that explorations of meaningful spots in destinations are
a primary task in itinerary planning and intelligent transportation [9–11], movement as a
tour experience and pedestrian mobility based on qualitative factors, except for the shortest
route principle, tend to be underestimated [12]. Some research on the automatic generation
of a tour itinerary has proposed movement routes based on time saving or querying Google
Maps [13–16]. From the perspective of walking tours, they only take access into account,
not all factors in the policy of route selection. Some people may be willing to stroll along a
road brimming with cherry blossoms on the way to their destination. Others may take a
detour to avoid streets without many pedestrians. Our research highlights the necessity of
feedback not only on tourists’ preferred spots but also on streets—namely, the inference of
hot spots and hot streets.

A variety of visualization methods that infer the amount of access to each spot and
street in a city using GPS log data with and without logic models have been proposed
(Table 1). Thanks to the recent availability of crowdsourced road networks and region-
of-interest models via online services, model-based methods have become popular and
reasonable solutions [17,18]. Utilizing geometry data assuming candidates of a hot spot,
spatial intersections with point data of user trajectories would present staying at each spot
in a city [19,20]. Road networks are also used to detect urban hot spots [21]. Furthermore, a
map-matching algorithm with road network data, one of the most important and useful
approaches in urban analysis, can capture street-level congestion based on geometry,
topology, probability, and other advanced algorithms, such as a hidden Markov model
and a particle filter [22,23]. However, they still have problems with uncertainty and
mismatching due to the noise of GPS trajectory logs [24]. Community streets tend to
mistakenly map GPS point data into wrong road segments because their structures are
more complicated and denser than arterial roads [25]. Additionally, the coverage and
completeness of road maps can be challenging for inclusive urban analysis [26]. Model-
based approaches always offer stability under strictly defined conditions and technical
limitations. Even without a pre-defined model, some researchers attempt to extract points
of staying based on proximity of time and space [27]; grid clustering [28]; density-based
clustering, such as K-means and DBSCAN [29,30]; and others [31]. However, such model-
less methods for hot spots may not fully consider application-dependent definitions of hot
spots—that is, kinds of user behavior regarded as hot spots—and may extract undesirable
results for analysts [32] (refer to Section 2.2 for details). In contrast with hot spot analysis,
there seem to be few model-less methods on hot streets due to the irregularity of GPS log
data (refer to Section 2.3 for details).

Table 1. Related work on estimating pedestrians’ access to city spots and streets.

Hot Spots Hot Streets

Model-Driven
Approach

Regions of interest [19,20]
Road networks [21] Map matching [22,23]

Model-Less
Approach

Proximity [27]
Clustering [28–30]

Others [31]

It does not seem that this area
has been discussed enough
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This paper proposes a coordinated model-less solution—that is, a spatial density-based
visualization of hot spots and hot streets—for the following reasons: (1) walking tourists
have a higher degree of freedom of movement that is not necessarily limited by the road
network, such as parks and off-streets; (2) recognizing potential attractive spots and streets
can also be useful feedback for the improvement of tourism media; and (3) model-less
methods for hot streets have not been discussed sufficiently and can be a novel option in
the field of urban analytics. The remainder of this paper is organized as follows. Section 2
explains the fundamental heatmapping approach for visualizing tourists’ movements using
GPS location data that smartphones can collect to clarify the difficulties of density-based
visualization. To overcome these challenges, Section 3 illustrates a novel framework that
reconstructs GPS log data together with other mobile sensor data and an adaptable client
system for visualization, which allows for inferring hot spots and hot streets. Section 4
evaluates the reliability and robustness of hot street inference. Using metrics of distance
errors and ground truth data will verify that our advanced trajectory can draw a walker’s
movement with the road segment as a unit. Finally, we apply the framework to the actual
geomedia to demonstrate how it depicts tourists’ movements. This paper extends and
refines our previous work presented at the 2022 IEEE International Conference Big Data [33],
providing deeper discussions on applications and insights for actual local tourism with
more tourist data and another user experiment, especially in Section 5.

2. Difficulty in Heatmapping with High-Frequency GPS Trajectories

This section highlights some difficulties in inferring tourists’ preferred spots and
streets from simple heatmaps using only raw GPS data and clarifies the importance of the
breakthrough proposed in Section 3.

2.1. Preliminaries of Heatmapping

We examined heatmap generation using raw GPS trajectory data collected from mobile
devices to visualize the extent to which tourists access each local resource as a model-less
approach. Heatmaps are useful for intuitive understanding by visualizing the distribution
of GPS locations and their association with environmental features. For example, they
have been used to capture human activity for planning urban green spaces [34] and to
analyze the distribution of bus travel demand [35]. We assumed that more GPS points
would be concentrated in the areas that more users visit, which could be an evaluation
index of the tourist’s attention. The density value was calculated using kernel density
estimation (KDE), a common method for spatial interpolation [36]. To visually represent
the density gradient in each position from the minimum to the maximum value, we employ
a continuous color map known as jet, transitioning from blue to green, yellow, and red.
Additionally, this paper introduces a threshold, denoted as Thc.r., to constrain the gradation
range’s maximum to specific values. A higher Thc.r. allows the visualization of clusters in
sparser areas. Let λ̂

(
uj
)

be the density value at position uj in two-dimensional space; the
gradation range is defined as follows:

0 ≤ λ̂(uj) ≤ maxλ̂(uj)
/

Thc.r.
(1)

2.2. From the Perspective of Hot Spot Inferences

Heatmaps with raw GPS tracking data are semantically ambiguous. Although Figure 1
depicts some scattered high-density areas, these are not necessarily pure reflections of
tourists’ intrinsic motivations. For example, areas with a large number of traffic lights and
heavy traffic are relatively dense because pedestrians cannot walk without interruption.
Furthermore, walking speeds depend on the user’s age, body size, and other conditions,
leading to different degrees of density in the trajectory data. In other words, heatmapping
with GPS data reflects a variety of technical, environmental, and user factors in outputs,
making it impossible to interpret the backgrounds of hot spots on the map explicitly.
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Figure 1. Example of a heatmap with high-frequency GPS trajectories. There are too many factors
that cause locally dense areas to properly judge their semantic importance. As the research subject
area is Akita City in Japan, all background maps are in Japanese in this paper.

2.3. From the Perspective of Hot Street Inferences

GPS logs are discretely recorded with random noises, and tourists’ moving distance
per unit of time is irregular. This prevents basic heatmaps from forming clusters describing
each road segment. In other words, it may be impossible to find hot streets from raw
GPS trajectories. As shown in Figure 2, dense sections of a city appear in small areas
that overshadow polyline-shaped features. Even if the color range changes, the problem
remains difficult to solve because a GPS trajectory contains various degrees of locally
dense areas.
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Figure 2. Density maps using raw trajectories based on three values of Thc.r.. These maps are not
compatible with hot street visualizations, as the topology of streets is not visible even after adjusting
the color range.

3. Methodology: Heatmapping Framework with Data from Multiple Mobile Sensors
3.1. Structure of Proposed Framework

This section presents a visualization system for walking tourism by introducing a
method to generate multiple heatmaps representing detailed tourist contexts. In particu-
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lar, tourists’ choices and characteristics concerning travel routes, indoor stays, and UGC
recordings can be extracted from the varied heatmaps. The system architecture’s generation
of heatmaps follows a number of steps. First, we take advantage of the mobile environ-
ments in the walking tour to detect detailed and concise user behavior using smartphone
sensors. Then, our algorithm integrates the results of the context extraction with a raw
GPS trajectory through simplification and characterization of the geometry data, which
generates semi-ready GPS trajectories for heatmapping on a user’s smartphone. Next, the
visualization system gathers semi-ready GPS data from users’ smartphone applications into
a heatmapping server and constructs a data warehouse. A sub-system of analysts calculates
geodensity values, which measure the concentration of user location data in the area, using
the dataset stored in the data warehouse and generates thematic heatmaps according to
weight rules corresponding to the analytical requests. Integrating edge computing with
mobile applications can allow for the implementation of a practical and ubiquitous data
mining framework that encompasses data collection and visualization (Figure 3).
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Figure 3. Structure realizing the feedback system on the basis of current mobile environments
for walking tourism businesses. Our proposal for a novel heatmapping framework focuses on
two sub-systems: (1) semi-ready data construction on the user side and (2) thematic heatmap genera-
tion to visualize hot spots and hot streets on the analyst side.

3.2. Semi-Ready Data Construction

We introduce a method for building semi-ready GPS trajectory data used to generate
tourist analysis heatmaps through selective simplification and characterization based on
the tourist context, which has the potential to save computational costs. Table 2 shows the
target actions of a user, available data types obtained from mobile sensors to extract them,
and ways to reflect them on a trajectory. To clearly visualize hot streets, the approach is to
try to remove locally dense areas and over-scattering in each trajectory by rearranging the
reference points of a trajectory so they are exactly enough to represent the areas where the
users actually walked and stayed.
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Table 2. Target actions of a user, data types used for detecting the action, and how to reflect the
actions on a semi-ready trajectory.

Target Data Type Processing

Taking a photo and a note Operation logs Extract the location of generating and add the
ugc tag

Staying in an indoor
location

GPS horizontal
accuracy data

Abstract data into a point of staying and add the
indoor tag

Remaining stationary Acceleration data Discard them
Rest of the points Location data Smoothing based on the geometry skeleton

3.2.1. Extract the Location of UGC Recording

With the spread of smartphones, it has become natural for tourists to take photos and
post comments on social networking services [37,38]. We assumed that recoding UGC
would originate from tourist interest and decided to include the location data tagged as
ugc in the trajectory data. This paper realized the extraction by monitoring the operations
of a mobile application with built-in camera and note-taking functions. Additionally, recent
mobile operating systems, such as iOS and Android, support APIs that allow easy access
to media files on user devices. These APIs provide a feasible way to obtain the location
information of UGC recordings via geotags.

3.2.2. Abstract the Locations of Staying

Many tourists enter indoor facilities, such as restaurants or aquariums, and stay
there for a while during a tour. The number of users of each facility in the city is beneficial
information for tourism analytics. We attempted not to visualize the total duration of
tourists’ stays, which tends to be affected by the characteristics of buildings, but to tally
the number of visitors. When a user is indoors, GPS accuracy data values decrease
because of ceilings and walls [39,40]. Our framework detects a set of locations of staying
using GPS horizontal accuracy data and Thindoor and abstracts them by calculating a
center point of the minimum bounding box. We set Thindoor to 10.0 m on the basis of our
previous experiments [41].

3.2.3. Discard Locations That Remain Stationary

Stopping outdoors for a while can also cause locally tangled trajectory lines due to
random GPS noise. Additionally, it is doubtful that the behavior always comes from user
interest, as discussed in Section 1. Therefore, our framework stops recording locations
while the user remains stationary. Walking and stopping are judged by the variation of
acceleration values and a threshold Thstationary. Thstationary was set to 0.1 G on the basis of
our previous experiments [41].

3.2.4. Simplify the Rest Points of a Location

While walking on the street, people do not necessarily move in a straight line at a
constant speed. Furthermore, random noise makes a GPS trajectory line redundant and
messy. In addition to the above three processing steps, the framework applies one of the
most popular line simplifications—the Douglas–Peucker algorithm [42]—to finalize the
semi-ready data. The algorithm needs to set a tolerance parameter, ε. The first point ps
and the last point pe are selected, and pm(ps.timestamp < pm.timestamp < pe.timestamp),
which has the largest perpendicular Euclidean distance from the line ps pe, is detected. If the
distance is larger than ε, pm will be kept as a point of a simplified trajectory, and the same
processing is recursively executed with two sub-trajectories, T1[ps : pm] and T2[pm : pe].
In other words, a larger ε would give a more simplified output. Section 4 discusses an
appropriate parameter ε for our framework.
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3.3. Thematic Heatmap Generation

The framework proposes geo-density map generation using datasets of semi-ready data
for a more detailed and concise analysis of walking tourists. The generation process refers to a
tag in each data point of the trajectory and applies specific weight rules to satisfy the analyst’s
demand for heatmapping. The paper introduces three fundamental heatmaps below.

3.3.1. Hot Street Heatmap

Owing to the simplification process of the semi-ready data construction module,
locally dense areas in each trajectory are removed. Then, polyline-shaped features are
visualized by applying the same weight wk to each point pk in the trajectories (Equation (2)).
For hot street heatmapping, we apply the line-based kernel density estimation, which first
rasterizes line segments drawn by the points and then calculates the values of KDE [42].

wk = 1(k = 1, . . . , l) (2)

3.3.2. UGC-Oriented Hot Spot Heatmap

The process of semi-ready trajectory generation employs operation logs from the
application or geotags of media files to detect the location of UGC recordings, such as
taking photos and making notes, by users and record the location data with a ugc tag. Then,
UGC-oriented hot spot heatmaps are created by assigning a different weight wk to each
point pk based on the weight rule given in Equation (3). Dense areas on the maps present
where attractive photo spots and places that are worth sharing exist in a city.{

wk = 1, when pk.tag = ugc
wk = 0, when pk.tag ∈ {indoor, none}(k = 1, . . . , l) (3)

3.3.3. Indoor-Oriented Hot Spot Heatmap

In the proposed trajectory generation, a series of indoor location points are abstracted
into a representative point with an indoor tag by monitoring the variation in GPS horizontal
accuracy values. Then, the weight rule, defined as Equation (4), assigns a different weight
wk to each point pk and realizes indoor-oriented hot spot heatmaps. Analysts can compare
the degrees of attractiveness among buildings that tourists visit by browsing through them.{

wk = 1, when pk.tag = indoor
wk = 0, when pk.tag ∈ {ugc, none}(k = 1, . . . , l) (4)

4. Distance Error Analysis of Semi-Ready Data

As raw GPS trajectories tend to have low reliability and high complexity due to distur-
bances such as random noise, heatmaps highlight the wrong areas and overestimate ranges
of locally dense areas. Thus, this section measures distance errors between GPS trajectories
and actual user walking trajectories—that is, it evaluates how much raw trajectory data,
trajectory data only with a line simplification approach, and proposed trajectory data can
truly depict the walking routes of tourists. Applying GPS trajectories with the minimum
effects of random noise leads to feasible and robust visualizations, especially for hot streets.
We used synchronous Euclidean distances (SEDs) as a metric of the error analysis.

4.1. Ground Truth

Generally, existing studies on line simplification algorithms have evaluated distance
errors between raw GPS trajectories and simplified trajectories using their proposed algo-
rithms [32,43]. However, we assume in our study that raw GPS trajectory data are originally
inaccurate and present the difficulties in our research target. Then, our evaluation prepares
ground truth data—that is, a model representing actual user walking. The preparation
follows the steps below.
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1. Set a walking route and points (Figure 4).
2. Trace at a constant walking speed as far as possible using a metronome and a timer.
3. Record timestamps at points right before/after stops and turns.
4. Link the route model with the timestamps and resample at one-second intervals.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 4. A walking route in the experiments. A walker traced the blue line at a constant speed and 

stopped at each red point A, B, C, and D for one or two minutes. Gray rectangles depict indoor areas. 

At the same time, a mobile device records latitude, longitude, timestamp, accelera-

tion values, and GPS horizontal accuracy values automatically. We prepared three kinds 

of target data: (1) raw trajectory data 𝑇𝑟𝑎𝑤, (2) trajectory data simplified only using Doug-

las–Peucker algorithms 𝑇𝐷𝑃, and (3) the semi-ready trajectory data through the proposed 

framework 𝑇𝑆𝑅. 

4.2. Evaluation Metrics 

Synchronous Euclidean distance (SED) was employed to quantify the distance errors 

between 𝑇𝐺𝑇 and each target trajectory (𝑇𝑟𝑎𝑤, 𝑇𝐷𝑃, and 𝑇𝑆𝑅). The calculation of SED in-

volves two main steps—resampling and distance calculation. First, if the number of points 

in 𝑇1 = (𝑝1, … , 𝑝𝑛) exceeds that of 𝑇2 = (𝑞1, … , 𝑞𝑚), where 𝑛 > 𝑚, it becomes necessary to 

perform interpolated synchronization between 𝑇1 and 𝑇2, and vice versa. Figure 5 illus-

trates how the trajectory segment 𝑆2 = 𝑇2[𝑞𝑗 , 𝑞𝑗+1] (1 ≤ 𝑗 < 𝑚) is synchronized with the 

timestamps of 𝑆1 = 𝑇1[𝑝𝑖 , 𝑝𝑘](1 ≤ 𝑖 < 𝑘 ≤ 𝑛). In cases where the timestamps of 𝑝𝑖  and 𝑞𝑗 

as well as 𝑝𝑘  and 𝑞𝑗+1  are matched, and 𝑝𝑘  is not next to 𝑝𝑖   (𝑘 − 𝑖 > 1 ), (𝑘 − 𝑖 + 1) , 

synchronized points (𝑝′
𝑠
 in Figure 5) are added to ensure that the time ratios of 𝑝

𝑖
, … , 𝑝

𝑘
 

and 𝑞
𝑗
, … , 𝑞

𝑗+1
  are maintained. After the resampling process, the distances between 

points with matching timestamps are summed, yielding the total SED. 

 

Figure 5. Diagram of resampling process for calculating synchronous Euclidean distances between 

the ground truth and a target trajectory. A point 𝑝𝑠
′  is added to maintain time ratio. 

4.3. Results and Discussion 

First, we walked along the preset route and recorded the timestamps of the ground 

truth and raw GPS trajectory data. Simplified trajectory data only with the Douglas–

Peucker algorithm (ε = 0.1, 2.0, 5.0, 10.0, 12.0, 30.0 [m]) and the semi-ready trajectory data 

Figure 4. A walking route in the experiments. A walker traced the blue line at a constant speed and
stopped at each red point A, B, C, and D for one or two minutes. Gray rectangles depict indoor areas.

At the same time, a mobile device records latitude, longitude, timestamp, acceleration
values, and GPS horizontal accuracy values automatically. We prepared three kinds of
target data: (1) raw trajectory data Traw, (2) trajectory data simplified only using Douglas–
Peucker algorithms TDP, and (3) the semi-ready trajectory data through the proposed
framework TSR.

4.2. Evaluation Metrics

Synchronous Euclidean distance (SED) was employed to quantify the distance errors
between TGT and each target trajectory (Traw, TDP, and TSR). The calculation of SED
involves two main steps—resampling and distance calculation. First, if the number of points
in T1 = (p1, . . . , pn) exceeds that of T2 = (q1, . . . , qm), where n > m, it becomes necessary
to perform interpolated synchronization between T1 and T2, and vice versa. Figure 5
illustrates how the trajectory segment S2 = T2

[
qj, qj+1

]
(1 ≤ j < m) is synchronized with

the timestamps of S1 = T1[pi, pk](1 ≤ i < k ≤ n). In cases where the timestamps of pi
and qj as well as pk and qj+1 are matched, and pk is not next to pi (k− i > 1), (k− i + 1),
synchronized points (p′s in Figure 5) are added to ensure that the time ratios of pi, . . . , pk
and qj, . . . , qj+1 are maintained. After the resampling process, the distances between points
with matching timestamps are summed, yielding the total SED.
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4.3. Results and Discussion

First, we walked along the preset route and recorded the timestamps of the ground
truth and raw GPS trajectory data. Simplified trajectory data only with the Douglas–
Peucker algorithm (ε = 0.1, 2.0, 5.0, 10.0, 12.0, 30.0 [m]) and the semi-ready trajectory
data (ε = 0.0, 1.0, 3.0, 10.0, 15.0, 50.0 [m]) were generated from the raw data. In the
two algorithms, ε is a parameter that represents the maximum tolerant distance between
the original curve and the simplified one.

Figure 6 shows the total SED of each target trajectory dataset. Compared with the
actual user walking route (ground truth data), raw GPS trajectories Traw clearly contain
complicated errors. As the total SED of TDP can be lower than Traw, the line simplification
algorithms have the potential to have their data size reduced by compression and also be
denoised. Focusing on the smallest SED of each type of trajectory data (ε = 12.0 m for TDP
and ε = 1.0 m for TSR), it was concluded that TSR can describe the actual trajectory more
accurately than Traw and TDP. Moreover, the time series changes in SED and trajectory shape
of TDP and TSR illustrate that staying indoors significantly increases SED (Figures 7 and 8).
That is because GPS accuracy decreases due to obstacles, such as walls and ceilings. Data
processing that attempts to simplify trajectory shapes based on the extraction of specific
contexts, such as user actions and surrounding environments, seems effective in mitigating
such situation-dependent problems (Figure 9).
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Figure 6. Total SED of the target trajectory data (red line: Traw ; brown dashed line: TDP ; blue
dashed line TSR ). This implies that the proposed method can decrease total SED with a small
tolerance parameter.
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Figure 7. Trajectory shape (left) and time series changes in the SED (right) of Traw. Orange areas
in the graph of time series changes represent the periods when the user is stationary outdoor and
indoor, as indicated by the red points in Figure 4 (A, B, C, and D, in order).
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Figure 8. Trajectory shape (left) and time series changes in the SED (right) of TDP. The tolerance
parameter ε is set to 12.0 m. Orange areas in the graph of time series changes represent the periods
when the user is stationary outdoor and indoor, as indicated by the red points in Figure 4 (A, B, C,
and D, in order).
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Figure 9. Trajectory shape (left) and time series changes in the SED (right) of TSR. The tolerance
parameter ε is set to 1.0 m. Orange areas in the graph of time series changes represent the periods
when the user is stationary outdoor and indoor, as indicated by the red points in Figure 4 (A, B, C,
and D, in order).

It should be noted that the larger tolerance parameter ε can generally oversimplify
and lose the selected path information in the original skeleton (refer to Section 3.2.4). In the
results of this experiment, the difficulty was not sufficiently visible from the measurements
of TDP, partly because the walker did not take winding roads and curves frequently. The
fact that the proposed method decreased the SED of the raw trajectory Traw the most with a
smaller ε implies that our framework has the ability to mitigate the unreliability of GPS
data without losing trajectory shapes, even if the city has more complicated footpaths.

5. Demonstration—Example of Akita City’s Walking Tourism
5.1. Application of the Framework for Local Tourism

In this section, we apply the heatmapping framework to actual tourism in Akita City,
Japan, and construct a dataset of tourist tracking data to demonstrate the feasibility of the
proposed feedback system. Geomedia, such as the illustrated maps and photos that we
used for the LBS module (refer to Figure 3), were imported from an officially published
guidebook of Akita City for Japanese tourists. As shown in Figure 10, it introduces walking
routes which are based on Akita’s historically significant paths and points of cultural
interest such as heritage sites and facilities along the routes. During the walking tour,
users can access two main location-based services: positioning the current location on the
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illustrated maps (Figure 11a) and location-based push services that automatically display
geomedia on the screen when the user gets close to the registered spots (Figure 11b).
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Figure 10. Recommended spots with IDs from one to nine and walking routes in the walking
guidebook that is available on [44] for Japanese tourists. Red pins are facilities where tourists can
stay, and green pins are monuments or viewpoints they can look at.
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Figure 11. Location-based services: (a) positioning the current location on the illustrated maps which
is provided in a Japanese tourist guidebook published by Akita City; (b) location-based push services
that automatically display geomedia, such as Japanese guide scripts and pictures, on the screen when
the user gets close to the registered spots.
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The mobile application also has functions that generate semi-ready trajectory data
from users’ walks, as described in Section 3. The sampling rate must be large enough
to prevent a significant loss of correspondence between the trajectory and the base map.
The LBS module and the semi-ready data construction module were developed into an
application for Apple iOS devices.

5.2. Dataset Derived from Actual Tourist Experiences

We asked 21 subjects to explore Akita City while utilizing the application detailed in
Section 5.1, and the demonstration in this paper was performed. The participants were
granted the freedom to select their walking routes within the area illustrated in Figure 10.
Throughout their excursions, mobile sensor data required to generate the semi-ready data
(refer to Section 2) were collected at 15-second intervals. It is crucial to sample them
frequently, ideally at intervals of less than a minute, to capture detailed movements. Fur-
thermore, this study employed Apple Inc.’s iPhone 11, a prevalent smartphone model,
which sufficiently supports the implementation of our proposal. We utilized the kCLLoca-
tionAccuracyBest setting, an iPhone sensor API configuration that dictates the precision
level of GPS data. This setting allows us to obtain location reference points, predominantly
with an error margin of approximately 4–7 m outdoors and approximately 10–40 m indoors
(Figure 12). Finally, the study resulted in a total of 5577 accumulated location reference
points, representing 21 unique trajectories.
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Figure 12. Example of the distribution of horizontal GPS accuracy values, obtained by monitoring
twelve subjects within the dataset The device used was iPhone 11, manufactured by Apple Inc., based
in Cupertino, California, USA. The kCLLocationAccuracyBest setting was applied, which is specified
when very high accuracy is required in Core Location framework. The left-side graph represents an
outdoor condition, i.e., street between spots 7 and 9 in Figure 10, and the right-side graph represents
an indoor condition, i.e., spot 7 in Figure 10.

5.3. Demonstration

Figure 13 shows a hot street map using the semi-ready trajectory data. It seems that
the framework did not completely rearrange location points, causing locally dense areas
not to disappear in each trajectory. However, this is not critical for a hot street visualization
compared to that of the raw trajectory data; thus, the presence of polyline-level features
was successfully visualized on the heatmap. Figures 14 and 15 showcase the UGC-oriented
hot spot heatmap and the indoor-oriented hot spot heatmap, respectively. Generally, a
place at which a user stays for a longer period tends to be visualized as a hot spot with
raw trajectory data. There are situations in which tourists may be forced to stay at a given
place for a longer period, regardless of their interests, depending on the scale and character
of each destination. This is why heatmapping prevents us from comparing hot spots
quantitatively—for example, by the number of visitors. In the proposed method, indoor



ISPRS Int. J. Geo-Inf. 2023, 12, 283 13 of 18

staying is treated as single location point data with an indoor tag, regardless of the period
of stay, so that the target data can be analyzed in terms of the number of accesses.
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Figure 15. An example of an indoor-oriented hot spot heatmap that considers point data drawn only
from indoor tags. Dense areas represent attractive buildings and facilities visited by many tourists.

Finally, examples of insights into the tourists’ behavior that can be obtained from
the heatmaps in the experiments are described as follows (regarding the spot numbers,
refer to Figure 10):

• The next route selections appear to be dispersed at spots 2 and 4 in Figure 13. Thus,
some tourists may avoid taking a street that they have already walked through once
during their tour.

• Few tourists stayed at spot 8 in Figure 15. Tourists may have felt tired of taking
detours to get there and prioritized reaching the goal because spot 8 is in the latter half
of the tour.

• A few people walked through streets that deviated from the recommended walking
routes on the middle left in Figure 13. They may have had interests in shrines and
temples that the current guidebook does not cover.

• Since the experiment was conducted in the summer, it is apparent in Figure 15 that
people stopped at convenience stores to buy cold beverages. This can contribute to
reports on the extent to which walking tourism has economic effects, not only for the
recommended facilities but also for surrounding stores and restaurants.

• As shown in Figure 14, there seem to be more places and knowledge to share with
tourists than the tourism organizers expected in Akita City.

5.4. User Experiment for the Design of a Suitable Heatmap Generator

This section presents a user experiment conducted with the dataset to identify the most
effective method, i.e., a data type and a Thc.r. parameter, for a model-less visualization that
enables inference of hot streets. The experiment involved the generation of heatmaps from
raw data and semi-ready data using different values for Thc.r., a parameter constraining
the maximum value of the heatmap’s gradation range. We generated eight heatmaps with
Thc.r. = 4, 8, 16, 32 from raw data and Thc.r. = 1, 2, 4, 8 from semi-ready data, as shown
in Figure 16. Situating the analysis of route selection of walking tourists, 14 subjects were
asked to rank the heatmaps in order of suitability—that is, which is better to visually
understand and compare the traffic volume on each road.
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Figure 16. Heatmaps that were used for a user experiment. The experiment involved the generation
of heatmaps from raw data and semi-ready data using different values for Thc.r..

The stacked bar chart in Figure 17 illustrates the selection distribution of heatmaps
ranked as the top three. The heatmaps generated with Thc.r. = 16, 32 from raw data, as well
as Thc.r. = 2, 4, 8 from semi-ready data, were frequently chosen by subjects. Heatmaps
based on the semi-ready data were predominantly favored for the top ranking. However, a
subset of subjects selected heatmaps generated from raw data with a higher Thc.r. value.
The experimental results highlight the conflicting requirements of traffic volume analysts:
(1) the focus on differences in traffic volume on main routes, and (2) clearer visualization of
sub-routes. Thc.r. plays an essential role in creating heatmaps at different levels. Specifically,
setting a higher Thc.r. makes the gradient of sub-routes, areas with low estimated density
values, clearly visible. However, this causes the estimated density values of the main route
to easily exceed the maximum value, rendering the differences less visible. If the focus is
on differences in traffic volume on the main route, a lower value should be set for Thc.r..
The degree of importance of these two demands varied from subject to subject, leading to
differences in the chosen visualization method. A visualization system accommodating
both demands would cater to a wider range of analysts and offer diverse insights into
pedestrian patterns. However, a critical problem arises when creating heatmaps from raw
data, particularly with a low Thc.r. value. As mentioned in Section 2.3, this process does not
allow for the identification of clusters that preserve the shape of the road segment, making
it unsuitable for model-less traffic volume analysis. In this experiment, heatmaps from
raw data with Thc.r. less than 16 were never among the top three selections. According
to the subjects, the visualization most clearly representing differences in traffic volume
on the main route was generated with Thc.r. = 2 from semi-ready data, confirming the
aforementioned problem. Therefore, the ideal solution for analysts would be a heatmap
generator that employs the proposed method and can adjust Thc.r. values between 2 and
8 as required.
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6. Conclusions

This paper has proposed a model-less visualization framework for the inference of hot
spots and streets. Considering that locally dense areas in high-frequency GPS trajectories
can appear due to various factors, regardless of the degrees of user interest, hot spots
simply visualized by raw GPS data are too rough to clearly identify the amount of access to
each spot in a city. Additionally, it is difficult to visualize and compare polyline-shaped
clusters describing road segments on a density map for the same reason, which makes it
impossible to infer tourists’ preferred streets. Thematic heatmaps, the output of our analytic
system, concisely describe tourists’ behaviors, such as staying indoors and generating user-
generated content (UGC), instead of simply using abstract expressions such as “hot spot”.
According to our distance error analysis and demonstration, compared to raw trajectories
and trajectories simplified on the basis of their geometry, our semi-ready data could draw
actual tourists’ trajectories and yield useful insights for the improvement of tour route
recommendations. In future work, investigations of the framework’s scalability using
larger datasets are required to implement a promising feedback solution for long-term
tourism businesses aiming at the sustainable development of local economies and cultures
with mobile data.
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