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Abstract: The effective extraction of impervious surfaces is critical to monitor their expansion and
ensure the sustainable development of cities. Open geographic data can provide a large number of
training samples for machine learning methods based on remote-sensed images to extract impervious
surfaces due to their advantages of low acquisition cost and large coverage. However, training
samples generated from open geographic data suffer from severe sample imbalance. Although one-
class methods can effectively extract an impervious surface based on imbalanced samples, most of
the current one-class methods ignore the fact that an impervious surface comprises varied geographic
objects, such as roads and buildings. Therefore, this paper proposes an object-oriented deep multi-
sphere support vector data description (OODMSVDD) method, which takes into account the diversity
of impervious surfaces and incorporates a variety of open geographic data involving OpenStreetMap
(OSM), Points of Interest (POIs), and trajectory GPS points to automatically generate massive samples
for model learning, thereby improving the extraction of impervious surfaces with varied types. The
feasibility of the proposed method is experimentally verified with an overall accuracy of 87.43%, and
its superior impervious surface classification performance is shown via comparative experiments.
This provides a new, accurate, and more suitable extraction method for complex impervious surfaces.

Keywords: impervious surface; open geographic data; support vector data description; satellite
image; vehicle trajectory

1. Introduction

Global urbanization is rapidly accelerating, and the urban population is growing
at an astonishing rate. As of 2022, 56% of the world’s population live in urban areas,
and the urban population of the world has surged from 751 million in 1950 to 4.4 billion
in 2022 [1]. The urban population boom has led to a significant demand for urban land
space, which results in the continued expansion of urban impervious surfaces. Impervious
surfaces, such as building roofs, parking lots, and roads, are earth surfaces that prevent
water from penetrating into the ground [2,3]. Their physical imperviousness brings a great
challenge to the urban ecological environment. The transformation of permeable surfaces
to impervious surfaces can negatively impact the urban thermal [4,5] and hydrological
environments [6–8]. Therefore, the effective extraction of impervious surfaces is critical to
monitor their expansion and ensure the sustainable development of cities.

Remote-sensed images are becoming increasingly important as a data source for
impervious surface extraction, owing to their advantages of large-area simultaneous ob-
servation, increasingly convenient access, and high spatial resolution. Shao et al. [9] and
Cao et al. [10] extracted impervious surfaces by constructing time series of Landsat images.
Liu et al. [11] and Misra et al. [12] used Sentinel-2 satellite images to generate the higher-
spatial-resolution impervious surface products. Attarchi [13] demonstrated the potential
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of Advanced Land Observing Satellite/Phased Array L-band Synthetic Aperture Radar
images in impervious surface detection in different urban areas. These studies utilized
a single type of optical remote sensing images or radar images and can quickly extract
impervious surfaces. However, optical images are susceptible to light and clouds, and radar
images are susceptible to speckle noise and geometric deformation, which will affect the
accuracy of the model.

The methods integrating multiple remote sensing data sources are proposed to im-
prove impervious surface extraction accuracy. Shao et al. [14] fused Gaofen-1 and Sentinel-
1A images to achieve urban impervious surfaces. Guo et al. [15] constructed a multi-feature-
based urban impervious surface extraction method based on Sentinel-2 multispectral
data and Luojia 1-01 images. Sun et al. [16] extracted impervious surfaces based on the
WorldView-2 and airborne LiDAR datasets. These multiple remote sensing data can well
compensate for the use of a single image. Impervious surface extraction based on remote
sensing is usually combined with machine learning algorithms, such as support vector
machines (SVM), random forest, neural networks, and decision tree [17–19]. Despite their
effectiveness, most of these machine-learning-based methods require massive training
samples, which need to be manually labeled in remote sensing images.

To alleviate the manual workload of labeling impervious surface samples, researchers
proposed auto-labeling methods for impervious surface extraction using open geographic
data shared by ordinary people or organizations [20]. Mao et al. [21] employed OSM data
to eliminate the shading effect of vegetation and improve impervious surface extraction
accuracy. Huang et al. [22] used OSM data to assist in the selection of training samples
for model training and generated a global artificial impervious surface area dataset at
10 m resolution. Points of Interest (POIs) are also often employed in impervious surface
extraction applications [23–25]. In addition, social media data with geographic and human
activity characteristics have emerged as another promising source of impervious surface
information. Miao et al. [26] generated samples from Twitter and OSM and verified their
feasibility for extracting impervious surfaces. Wu et al. [27] integrated Twitter, Weibo, POIs,
and OSM data to propose a new impervious surface extraction scheme from synthetic
aperture radar images. Vehicle trajectory GPS data have been successfully utilized to
generate massive impervious surface samples of road types, which can be used for the
automatic extraction of impervious surfaces [28].

Although open geographic data can be important auxiliary data for impervious sur-
face extraction, most of the data are generated on impervious surfaces, resulting in strongly
biased samples that only contain impervious surface samples. There exists a serious data
imbalance issue where there is only one class of target data in the training sample [29,30].
To address this issue, one-class algorithms, such as one-class support vector machine
(OCSVM) and support vector data description (SVDD), have been proposed and applied
to impervious surface extraction based on open geographic data and remote-sensed im-
ages [26,28,31]. However, these one-class classification methods assume that impervious
surface objects comes from a single cluster, which ignores the fact that an impervious
surface comprises varied geographic objects, such as roads and buildings. These different
types of impervious surfaces present different characteristics involving spectral and texture
in remote sensed images.

To overcome the challenge of data multimodality, the concept of multiple hyperspheres
is introduced into one-class methods in the field of anomaly detection. Hu et al. [32]
proposed a multimodal deep support vector data description (DSVDD) method. This
approach constructs multiple hyperspheres to provide a better description for the target
class of data for text classification. Zahra et al. [33] proposed a deep multi-sphere support
vector data description (DMSVDD) method, which embeds normal data with multimodal
distributions into multiple data-packed hyperspheres with minimal volume to generate
useful and differentiated features. These methods provide valuable insights for overcoming
the limitations of traditional one-class classification methods in handling impervious
surface extraction based on open geographic data and remote-sensed images.
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Given the difficulty of acquiring massive impervious surface samples with labels
and the problem that the traditional one-class classification algorithm is not applicable
to multimodal sample data, an object-oriented deep multi-sphere support vector data
description (OODMSVDD) method is proposed in this paper. The study aims to integrate
multiple open geographic data sources involving OSM, POIs, and vehicle trajectory GPS
points to generate impervious surface samples automatically, which will manually reduce
the workload of labeling samples. Furthermore, a new one-class classification approach
with multiple hyperspheres is explored to improve impervious surface extraction accuracy.
The remainder of the paper is organized as follows: The study materials and methods
involved in this paper are elaborated in Section 2. Sections 3 and 4 present the experiment
setup and experimental results, respectively. The discussion and conclusion are described
in Sections 5 and 6.

2. Materials and Methods
2.1. Study Area

For our study, a portion of Shenzhen City was selected as our study area. Shenzhen
City is one of the world’s most rapidly urbanizing cities and has been ranked as an
“Alpha-” city by GaWC 2020 [34]. The study area includes an area of 113.90◦ E–114.09◦ E
and 22.60◦ N–22.78◦ N, mostly belonging to Longhua, Longgang, Nanshan, Baoan, and
Guangming districts, as shown in Figure 1.

Figure 1. Natural color synthesis of the Gaofen-1 remote sensing image and the location of the study
area in Shenzhen City.

2.2. Data Sources

As shown in Figure 1, the experiments in this paper use one panchromatic multi-
spectral image from the Gaofen-1 satellite launched by China. The image was taken on
2 October 2018, and consists of one panchromatic band and four multispectral bands



ISPRS Int. J. Geo-Inf. 2023, 12, 219 4 of 17

that were preprocessed and fused into a multispectral image with a 2-meter resolution.
The dataset contains 10,000 × 10,000 pixels, covering varied land types, such as water
bodies, grasslands, woodlands, artificial buildings, and roads.

Multiple sources of open geographic data, including POIs from Amap (Figure 2a),
vehicle trajectory GPS data [35] (Figure 2b), and roads and buildings data from OSM
(Figure 2c,d), were collected for this study. These open geographic data are used to auto-
matically generate impervious surface samples. In order to minimize the errors caused by
the temporal differences in the data, all the open geographic data were collected in 2018
(Table 1). The POIs were obtained through the Amap API, with a cut-off time of 31 De-
cember 2018. The vehicle trajectory GPS data were provided by the Shenzhen Municipal
Government Data Open Platform, with a time range from 8 October to 14 October 2018.
The road and building data were extracted from OSM data, with a time of 31 December
2018. To verify the accuracy of the proposed method, we manually labeled the impervious
and pervious land patches, including roads, buildings, vegetation, and water, etc., based
on Google History images in 2018. Furthermore, 10,000 pixel patches consisting of 14 × 14
are selected as the test samples (Figure 2e).

(a)

(a)

(b) (c)

(d) (e)

Figure 2. The maps of the datasets in this study. (a) POIs from Amap; (b) vehicle trajectory GPS
points from Shenzhen Municipal Government Data Open Platform; (c) roads from OpenStreetMap;
(d) buildings from OpenStreetMap; (e) impervious surface (IS) samples and pervious surface (PS)
samples labeled from Google historical images for model validation and testing, which contain
various surface coverage types, such as vegetation, water, roads, and buildings.

Table 1. An overview of the collected open geographic datasets.

Data Time Source

POIs 31/12/2018 Amap
Vehicle trajectory GPS data 8/10/2018–14/10/2018 Shenzhen Municipal Government Data Open Platform

Roads data 31/12/2018 OpenStreetMap (OSM)
Buildings data 31/12/2018 OpenStreetMap (OSM)
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2.3. Methods
2.3.1. Framework

In this paper, an object-oriented automatic extraction method of impervious surface
based on DMSVDD is proposed. The technical flow chart of the proposed method is shown
in Figure 3. The method consists of five parts: (1) automatic generation of impervious
surface samples, which integrates multiple open geographic datasets to generate impervi-
ous surface samples; (2) object-oriented training sample processing based on multi-scale
segmentation results; (3) construction and training of DSVDD based on single sphere for
impervious surface extraction; (4) modeling DMSVDD algorithm for impervious surface
extraction that takes into account the diversity of impervious surface types; (5) optimization
of impervious surface extraction results based on object blocks.

Multiresolution 
segmentation

Classification

POI

Trajectory

Road

Building

Multi-source 

datasets

Automatic generation of impervious surface 

samples

Gaofen-1

Train 

samples

Gaofen-1

Object blocks

Object-oriented processing of training samples

Impervious surface extraction with DSVDD Impervious surface extraction with DMSVDD

Train samples after 

object-oriented analysis

Object-oriented analysis

Automatic 
generation

);( Wx


);( Wx 

Coarse classification of 

impervious surface

Final classification of 

impervious surface

Result optimization based on object blocks

DSVDD DMSVDD

Result optimization

Classification

Figure 3. Flowchart of the proposed method.

2.3.2. Automatic Generation of Impervious Surface Samples

Multi-sourced open geographic data are utilized to generate the impervious surface
samples with various land cover categories. To ensure consistency with the study area,
the datasets are cropped based on the fused GF-1 image and projected to UTM projection
with WGS-1984 datum. The data used to generate impervious surface samples include
POIs, vehicle trajectory GPS points, and roads and buildings from OpenStreetMap (OSM).
To generate impervious surface raster sample data, all the open geographic datasets are
classified into two types, including points and polylines or polygons. Two different sample
generation methods are developed for these two types of data, respectively (Figure 4).
(1) The point datasets including POIs and vehicle trajectory are converted into raster data,
the raster image pixel values are computed based on the frequencies of points falling
within the pixel, and while there is no point falling in a pixel, the pixel value is set as zero.
(2) The roads and buildings data are converted into rasters. We assign a value of “1” for
areas with data (i.e., covered by roads or buildings), and areas without data are assigned a
value of “0”.
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Figure 4. The automatic generation process of training samples from multi-source data.

The more open geographic data generated on impervious surfaces in a certain area,
the higher the probability that the area is covered by impervious surfaces. However, due to
the users’ opportunistic observation efforts, it is inevitable that there exists spatial bias in
open geographic data, especially in data shared by ordinary people [36–38]. To address this
issue, a threshold method is used to filter the generation of impervious surface samples
(Figure 4). Firstly, maximum–minimum normalization is implemented to compress the
frequencies of various multi-sourced open geographical data to the interval [0, 1]. Secondly,
a sliding window is used to crop the normalized frequency data and remote sensing data.
The size of the cropped block is determined based on the network structure of the model.
In our paper, the cropped block size is 14 × 14 pixels, and the coverage area is 28 m × 28 m.
Thirdly, for each cropped block, its total pixel values are computed and noted as Y, and then
a threshold y is set. If Y is not less than the threshold y, then this block has a high probability
of being an impervious surface. All pixel blocks that meet the threshold requirements will
be used as impervious surface samples to train the impervious surface model.
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2.3.3. Object-Oriented Processing of Training Samples

Due to the difference between sample blocks and geographical objects, it is possible
that the filtered training samples still contain a small fraction of permeable materials, which
are noise samples. In order to eliminate the permeable surface data from the training
samples, the object-oriented analysis technique is adopted to process each filtered sample
individually. This can make the final training samples as ”pure” as possible to reduce the
uncertainty brought by noise samples.

Object-oriented analysis techniques can segment remote sensing images into geograph-
ical objects as the basic processing unit. In our experiments, we used eCogition software
(version 9.0, Trimble Germany GmbH, Munich, Germany, 2014) to segment remote sens-
ing images. The eCogition software is currently one of the most popular tools for image
segmentation [39]. For each filtered sample, we performed an object-oriented process, as
follows (Figure 5): (1) If the sample block contains only one object block, the sample is used
directly for model training; (2) if the sample contains more than one object block, only the
image spectral data of the largest object block are retained, while the other regions within
the sample are filled with zero values. These samples processed by the object-oriented
method are used to train the model.

GF-1 image

Result of 

segmentation

Figure 5. Processing of object-oriented analysis.

2.3.4. Impervious Surface Extraction Based on DSVDD

The DSVDD approach couples SVDD and neural network approaches [40]. One-class
classification objective function as in Equation (1) is used by DSVDD to learn the feature
representation of an impervious surface, which in turn is used for classification. As shown
in Figure 6a, the positive class samples are mapped into an optimal hypersphere during the
training process of DSVDD. The hypersphere should be as small as possible and contains as
many positive sample points as possible. The sample points falling outside the hypersphere
are considered negative classes.

min
R,W

R2 +
1

vn

n

∑
i=1

max
{

0, ‖φ(xi;W)− c‖2 − R2
}

+
λ

2

L

∑
l=1

∥∥∥W l
∥∥∥2

F

(1)

where R denotes the radius of the hypersphere; c is the center of the hypersphere; and the
number of samples to be taken is n. φ(·;W) : x → F represents the neural network, and for
sample data xi ∈ X in network φ using theW weight parameter the feature is represented as
φ(·;W), andW =

{
W1, . . . , WL} is the weight matrix of the network with L hidden layers.

Parameter v ∈ [0, 1] is used to control the trade-off between the sphere volume and the bound-
ary. The first part of the formula, minR,W R2 + 1

vn ∑n
i=1 max

{
0, ‖φ(xi;W)− c‖2 − R2

}
,

represents a constraint on the hypersphere. The second part minR,W
λ
2 ∑L

l=1

∥∥∥W l
∥∥∥2

F
of the

equation is a constraint on the network that is used to prevent the network from overfitting.
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To determine whether a test sample xi belongs to the positive or negative class,
the DSVDD approach calculates the anomaly score of the sample using Equation (2),
where W∗ is the weight matrix of the trained neural network.

S(xi) = ||φ(xi; W∗)− c||2 − R∗2 (2)

);( Wx


(a)

);( Wx


(b)

Figure 6. Algorithm diagrams. (a) Schematic diagram of DSVDD; (b) schematic diagram of DMSVDD.

2.3.5. Impervious Surface Extraction Based on DMSVDD

DMSVDD [33] is an improvement of DSVDD that addresses the tendency of positive
class data to exhibit a multimodal distribution (Figure 6b). The idea of DMSVDD lies in em-
bedding the mapping of positive class data with multimodal distribution into multiple data
hyperspheres with minimal volume to generate useful data representations. The objective
function of DMSVDD is defined as follows.

min
R,W

1
K

K

∑
k=1

R2
k +

1
vn

n

∑
i=1

max
{

0,
∥∥φ(xi;W)− cj

∥∥2 − R2
j

}
+

λ

2

L

∑
l=1

∥∥∥W l
∥∥∥2

F

(3)

where R, K, and c represent the radius of the hypersphere, the number of hyperspheres,
and the center of the hypersphere, respectively. For each sample xi, assuming that its corre-
sponding hypersphere center is cj, all hyperspheres are constrained using minR,W

1
K ∑K

k=1 R2
k +

1
vn ∑n

i=1 max
{

0,
∥∥φ(xi;W)− cj

∥∥2 − R2
j

}
, such that the data are reasonably distributed among

multiple hyperspheres, i.e., as many samples as possible fall into multiple spheres and the

total volume of all spheres is minimized. The second part minR,W
λ
2 ∑L

l=1

∥∥∥W l
∥∥∥2

F
serves the

same purpose as the previous section and is used to prevent the network from overfitting.
In the DMSVDD method, the anomaly scores of all the samples also are compared

with the trained hypersphere radius to determine the class of the samples. The formula
for determining the sample class in DMSVDD is shown in Equation (4), where ck is the
center of the hypersphere to which sample xi belongs, which is determined according to
the nearest neighbor principle. W∗ and R∗, respectively, refer to the trained neural network
weight matrix and radius.

S(xi) = ||φ(xi; W∗)− ck||2 − R∗2k (4)

2.3.6. Result Optimization Based on Object Blocks

The images to be predicted are fed into the trained model to obtain a classification map,
which is considered as the rough impervious surface classification results of OODSVDD
or OODMSVDD. A segmented object block as a whole has theoretically consistent clas-
sification results. However, due to the network input block size of 14 × 14, which is
sometimes smaller than an object block size, and the prediction errors of the neural net-
work model, an object block may be classified as multiple results. To ensure the overall
consistency of the object block, object-oriented methods can be applied to optimize the
coarse classification results.



ISPRS Int. J. Geo-Inf. 2023, 12, 219 9 of 17

To finely correct the classification results using object-oriented methods, we adopt
a spatial statistical analysis method. If multiple predicted values occur within a block of
objects, the predicted results (impervious surface/permeable surface) covering a larger area
of the block are given higher priority. Thus, the predicted labels within an object block are
counted and the final labels of that object block are taken according to the predicted label
with the largest area within that object block. The resulting classification map represents
the final fine classification results of OODSVDD or OODMSVDD after processing as above.

2.3.7. Assessment of Results

In order to verify the feasibility of the proposed method, five metrics commonly
used for classification studies are calculated: Overall Accuracy (OA), Precision, Recall,
F1-score and Area Under The Curve (AUC). True positive, true negative, false positive, false
negative, false positive rate, and true positive rate are denoted as TP, TN, FP, FN, FPR,
and TPR, respectively. AUC represents the area under the receiver operating characteristic
curve, which is formed by connecting the (FPR, TPR) values of the samples in Cartesian
coordinate system. The other metrics are calculated as follows.

OA =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− score =
2TP

2TP + FP + FN
(8)

FPR =
FP

FP + TN
(9)

TPR =
TP

TP + FN
(10)

3. Experimental Setup and Scenarios
3.1. Experimental Setup

(1) Filtering threshold for training samples To determine a reasonable threshold
setting range for training sample filtering, the experiments were conducted to count the
number of automatically generated training samples under different threshold screening
criteria, as shown in Figure 7. It can be found that the number of filtered training samples
decreases sharply as the threshold value is set higher. These training samples are obtained
by cropping the remote sensing images through sliding windows (Figure 4), and the step
of each sliding is set to one half of the sample edge length, so that there is a 50% overlap
between two consecutive samples. Therefore, the threshold should not be set too high
to ensure that the model training has an adequate number of samples distributed over
different geographical locations. If the threshold is set too high, the filtered samples will
be overly concentrated in the central, core business district of the city, lacking impervious
surface training samples that are slightly out of the central area. Finally, considering the
adequacy of the number of samples and the homogeneity of the geographic distribution of
samples, five experimental scenarios with thresholds y (y ∈ {10, 20, 30, 40, 50}) were set,
and 30,000 training samples were randomly selected from the set of samples after threshold
screening for model training.
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Figure 7. Number of training samples under different threshold values.

(2) Structure of neural network According to the basic convolutional network struc-
ture, a convolutional neural structure applicable to impervious surface feature extraction
is constructed for the DSVDD, DMSVDD, OODSVDD, and OODMSVDD methods in this
paper (Figure 8). The input to the network is a three-band block of impervious surface
images, with a size of 14 × 14 pixels. The network is made up of a convolutional layer,
a pooling layer, and a fully connected layer connection. A convolution kernel of size 5 × 5
is used to extract the local features of the input image, and a filter of size 2 × 2 is used to
compute the maximum pooling. Then, these features are flattened to a fully connected layer
of 98 nodes. Finally, these features are described by the methods to achieve the classification
of samples. The objective functions of the OODSVDD and OODMSVDD networks are
shown in Equations (1) and (3), respectively. To achieve the best results, the values of the
parameters v and λ are determined by the network parameter tuning.

3*14*14

Convolutions

Input Feature Extraction

32*14*14

Max-pooling

5*5

32*7*7

 2*2

Full 

connection

98

DSVDD & OODSVDD



DMSVDD & OODMSVDD



Figure 8. Structure diagram of neural network.

3.2. Experimental Scenarios

In order to test the performance of the proposed method under different conditions,
the following three sets of comparison experiments are set up. The performances of all
scenarios are evaluated using the average performance of five random seeds and using the
same test samples.

(1) Filtering threshold for training samples To determine a reasonable threshold
setting range for training sample filtering, the experiments are conducted to compute
the number of automatically generated training samples under the different thresholds
(Figure 7). It can be found that the number of filtered training samples decreases sharply
as the threshold value increases. These training samples are obtained by cropping the
remote sensing images with a 14 × 14 sliding window (Figure 4), and the step of each
sliding is set to one half of the sample edge length. It means that there exists a 50% overlap
between two adjacent samples. To train the models, 30,000 samples are randomly selected
from the generated impervious surface samples in this study. The sample size will be
below 60,000 when the threshold value is greater than 50 at the intervals of 10. Therefore,
considering the number and the spatial homogeneity of the samples, five experimental
scenarios with thresholds y (y ∈ {10, 20, 30, 40, 50}) are set.
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(2) Different methods A set of control experiments are set up to verify the effectiveness
of the object-oriented models involving DSVDD, DMSVDD, and OODMSVDD. For the
above three methods, the samples are generated based on the same datasets and from the
same region. The only difference is that the training samples of OODMSVDD adopt an
object-oriented process (see Section 2.3.3), while the training samples for the DSVDD and
DMSVDD methods are generated directly from the multi-sourced geographic data.

(3) Different data sources The OODMSVDD model is trained based on samples
from five different data sources, and they are combined in this scenario to compare the
performances of sample generation from different sources. These datasets include: (a) POIs,
(b) buildings from OSM, (c) vehicle trajectory GPS points, (d) roads from OSM, (e) OSM,
(f) OSM and vehicle trajectory GPS points, (g) OSM and POIs, (h) POIs and vehicle trajectory
GPS points, and (i) all of the above.

4. Results and Analysis
4.1. Experiment 1: Comparison between OODMSVDD and OODSVDD

As shown in Table 2, it can be observed that the OODMSVDD method achieved the
best overall results for impervious surface extraction when the threshold value was set to
30 (the map of impervious surface extraction results is shown in Figure 9). The method
obtained the highest OA value of 87.43%, while the Precision and Recall values were
84.68% and 91.42%, respectively. Typically, it is challenging to achieve high performance
in both the Precision and Recall of a model, so F1-score, the harmonic mean of these two
metrics is usually used to evaluate the model’s accuracy and recall . The OODMSVDD
method achieved the maximum F1-score and AUC values in the experiment, at 87.91% and
92.40%, respectively, when a threshold of 30 was used. This once again demonstrates the
excellent performance of the OODMSVDD method for impervious surface extraction when
a threshold of 30 is used.

(a) (b)

Figure 9. Impervious surface extraction results. (a) Coarse impervious surface extraction results for
the study area; (b) final impervious surface extraction results after object-oriented correction for the
study area.

The horizontal comparison of the performance of OODMSVDD and OODSVDD
highlights the importance of the number of multi-spheres for the model. A typical demon-
stration area was selected for the experiment to show the classification results in order
to increase the intuitiveness of the model performance at different thresholds, as shown
in Figure 10. The experiments show that the Precision and OA of OODMSVDD exceed
the corresponding OODSVDD method when the filtering thresholds are 10, 20, 30, and 40,
respectively. This indicates that multi-sphere method can improve the Precision and OA
of the model in most cases. However, the results differ from the above conclusions when
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the threshold value is 50. By analyzing the distribution of training samples at different
threshold values, it is found that the samples are mainly concentrated in building types,
and the road types cover less when the threshold value is 50. This can affect the accuracy
of the model because the roads cover fewer samples. Moreover, most of the building
roofs have more consistent surface materials, resulting in a more homogeneous sample
data type that is more suitable for single-sphere models. Nevertheless, even in this case,
the OA of the multi-sphere model is only 0.62% lower than that of the single-sphere model.
Therefore, the OODMSVDD method is more effective for the extraction of impervious
surfaces, especially when the impervious surfaces include many different types.

（a） （b） （c） （d） （e） （f）

（g） （h） （i） （j） （k）

Figure 10. Impervious surface extraction results at different thresholds: (a) is the original remote
sensed image; (b–f) are the impervious surface extraction results of OODSVDD thresholds at 10,
20, 30, 40, and 50, respectively; (g–k) are the impervious surface extraction results of OODMSVDD
thresholds at 10, 20, 30, 40, and 50, respectively.

Table 2. Performance in % of impervious surface extraction of OODMSVDD and OODSVDD.
The experimental cases with the best comprehensive performance are marked in bold.

Threshold
OODMSVDD OODSVDD

Recall Precision OA F1-Score AUC Recall Precision OA F1-Score AUC

10 93.13 81.63 85.75 86.82 91.19 94.60 79.73 85.19 86.45 90.85
20 90.90 82.75 85.68 86.36 92.15 92.28 81.10 84.93 86.07 91.99
30 91.42 84.68 87.43 87.91 92.40 92.66 81.81 85.90 86.84 91.53
40 89.53 81.34 84.21 85.04 90.07 94.00 78.32 83.73 85.29 89.25
50 93.42 79.37 84.16 85.58 90.40 92.70 80.14 84.78 85.93 90.81

4.2. Experiment 2: Comparison between OODMSVDD and DSVDD/DMSVDD

As shown in Table 3, the optimal OA performance of the DSVDD method is 86.95%.
Meanwhile, the best OA result for the DMSVDD method is 86.96%. The OA results based
on DSVDD and DMSVDD are 0.48% and 0.47% below the optimal OA of 87.43% for the
OODMSVDD method, respectively. This indicates that OODMSVDD has better impervious
surface extraction performance than DSVDD and DMSVDD, with suitable sample selection.
In particular, the best OA results of the multi-sphere methods, including DMSVDD and
OODMSVDD, are reached at the sample filtering threshold of 30, while the DSVDD method
achieved the highest OA at the threshold of 20. This result proves that the selection of the
sample filtering threshold is crucial for the impervious surface extraction, and there exists
different optimal thresholds in the multi-sphere SVDD methods and the DSVDD method.

In terms of multi-sphere methods, the results based on the DMSVDD method and
the proposed OODMSVDD method are analyzed. The worst classification performance of
the DMSVDD method is obtained at a threshold value of 40, and the worst classification
OA is 83.68%, which is 0.48% lower than the worst OA of the OODMSVDD method of
84.21%. We observed that the differences between the maximum and minimum results
of the five metrics in the OODMSVDD method are smaller than those of the DMSVDD
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method. This indicates that the object-oriented analysis method can improve the robustness
of the multi-sphere algorithms. Furthermore, the corresponding Recall of the OODMSVDD
method is higher than that of the DMSVDD method when the threshold values are 10,
30, and 50. This shows that the object-oriented analysis method can improve the Recall of
the model in most cases.

Table 3. Performance in % of impervious surface extraction of OODMSVDD, DMSVDD, and DSVDD.
The experimental cases with the best comprehensive performance are marked in bold.

Method Metrics
Threshold

10 20 30 40 50

DSVDD

Recall 89.83 91.03 89.68 89.86 93.42
Precision 81.52 84.22 84.36 83.91 82.53

OA 84.61 86.95 86.33 86.00 86.66
F1-Score 85.39 87.45 86.80 86.59 87.57

AUC 90.95 92.90 92.39 91.79 91.92

DMSVDD

Recall 88.67 92.35 88.11 91.00 89.10
Precision 84.22 82.80 86.56 79.60 83.91

OA 85.76 86.54 86.96 83.68 85.94
F1-Score 86.16 87.30 87.14 84.83 86.33

AUC 91.66 92.35 93.84 89.58 91.92

OODMSVDD

Recall 93.13 90.90 91.42 89.53 93.42
Precision 81.63 82.75 84.68 81.34 79.37

OA 85.75 85.68 87.43 84.21 84.16
F1-Score 86.82 86.36 87.91 85.04 85.58

AUC 91.19 92.15 92.40 90.07 90.40

4.3. Experiment 3: Evaluation of OODMSVDD Based on Different Data Sources

Table 4 presents the classification performance based on different data sources. It
reveals that combining multiple sources of data to automatically generate training samples
yields the best results for impervious surface extraction. When considering using only one
type of data, the POI-data-based impervious surface classification results have the highest
Precision, OA, F1-Score, and AUC scores. However, the Recall is the lowest in this case,
differing from the highest by 7.55%. On the other hand, the extraction results based on
building data rank low in all metrics except Recall. This is because the roofs of buildings
are covered with various objects, including impervious surfaces, such as concrete and
asphalt, in addition to permeable surface constituents, such as natural moss and artificially
planted greenery on some old residential buildings. This leads to the inclusion of permeable
surface features in the training samples. This will make the model inaccurately learn the
features for impervious surfaces, ultimately resulting in the low accuracy and high recall of
the model.

Compared to the road dataset, the model trained based on the vehicle trajectory
GPS points shows better performance for all metrics. Meanwhile, the model trained
with the road data has poorer overall performance for the impervious surface extraction.
The Precision and Recall of the models based on the trajectory GPS data samples are
relatively balanced, achieving higher scores for both F1-Score and AUC compared to the
road data. This is because the trajectory GPS data cover a wider range of roads than the
OSM road data. The trajectory data are collected by vehicle GPS, which can provide more
comprehensive, realistic, and timely road data. Therefore, although both training samples
can be used to generate road samples, the model based on trajectory GPS data achieves
better results in impervious surface extraction than road data from OSM.
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Table 4. The performance in % of impervious surfaces is extracted with samples generated using
different open geographic data. The experimental cases with the best comprehensive performance
are marked in bold.

Data Recall Precision OA F1-Score AUC

POI 85.31 87.44 86.52 86.34 93.18
Building 91.20 78.73 83.03 84.38 88.69

Trajectory GPS 90.07 81.40 84.63 85.42 89.76
Road 92.86 77.16 82.49 84.22 87.40
OSM 88.76 83.90 85.39 85.93 91.46

OSM+Trajectory GPS 91.78 79.27 83.62 84.99 89.06
OSM+POI 89.69 85.71 87.23 87.53 93.08

POI+Trajectory GPS 91.70 83.48 86.74 87.38 93.14
All of the above 91.42 84.68 87.43 87.91 92.40

When two or three data types are used to generate samples to train the model, the im-
pervious surface extraction results are comprehensively better than using a single data
source. When POI is overlaid with any kind of data, the model achieves better impervious
surface extraction performance. The reason for this may be that POI data cover more
types of impervious surface samples than other data and therefore can improve the model
results for other data. When the four data types mentioned above are combined to generate
samples, the impervious surface extraction achieves the best overall performance with an
OA of 87.43%, and the Recall and Precision are well balanced. This demonstrates that each
type of the datasets can produce different kinds of information on impervious surfaces
and complement each other to improve the results. In addition, samples generated from
multiple data sources are more suitable for the multi-sphere algorithm.

5. Discussion

To investigate the performance of the proposed method for impervious surface extrac-
tion with different training sample sizes, we vary the sample size between 10,000 and 40,000,
with an interval of 10,000. The top-ranked result of each threshold has been bolded. The re-
sults in Table 5 demonstrate that the model consistently achieves the best classification
performance when the threshold value is set to 30, regardless of the sample size variation.
Conversely, when the threshold is set to 10 or 50, the classification performance of the
proposed method suffers. This is attributed to the presence of noisy data in the impervious
surface samples generated from the multi-sourced open geographic data. A low threshold
fails to effectively filter out irrelevant training samples, which in turn reduces the accuracy
of impervious surface extraction. On the other hand, a high threshold filters out training
samples with high impervious surface probability. This can result in a reduction in the
diversity of impervious surface samples and consequently affect the model results. Hence,
it is essential to determine an appropriate threshold for filtering the training samples.

The overall performance of the model is stable for a fixed threshold, with similar
overall accuracies (OA) observed at sample sizes of 20,000, 30,000, and 40,000. The best
classification accuracy is usually achieved with sample sizes of 20,000 or 30,000, while
the worst is achieved with a sample size of 10,000. The metrics scores of the model show
that the lack of information leads to a low precision due to small sample size. However,
when the sample size is large enough and contains enough information, the accuracy
of the proposed model does not change significantly with the increase in the number of
samples. This feature facilitates the extension of the proposed method for impervious
surface extraction in areas with few training samples generated from multiple sources
of data.
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Table 5. Classification performance in % of OODMSVDD with different training sample sizes and
thresholds. The experimental cases with the best comprehensive performance are marked in bold.

Threshold Metrics
Sample Size (×103 blocks)

10 20 30 40

10

Recall 90.44 93.26 93.13 91.12
Precision 68.40 78.91 81.63 77.23

OA 74.10 83.95 85.75 81.05
F1-Score 77.78 85.38 86.82 82.85

AUC 77.32 89.64 91.19 87.69

20

Recall 92.05 94.65 90.90 90.93
Precision 72.08 80.68 82.75 81.09

OA 77.94 85.78 85.68 84.63
F1-Score 80.75 87.01 86.36 85.60

AUC 85.16 91.80 92.15 91.77

30

Recall 92.72 91.92 91.42 91.50
Precision 71.70 83.12 84.68 81.74

OA 78.00 86.58 87.43 85.31
F1-Score 80.84 87.25 87.91 86.23

AUC 85.93 91.81 92.40 91.27

40

Recall 91.81 91.31 89.53 91.33
Precision 68.90 82.22 81.34 80.79

OA 75.00 85.71 84.21 84.46
F1-Score 78.66 86.49 85.04 85.57

AUC 80.68 91.44 90.07 90.20

50

Recall 90.71 89.40 93.42 89.44
Precision 67.73 80.78 79.37 81.06

OA 73.71 83.00 84.16 84.13
F1-Score 77.54 84.14 85.58 84.93

AUC 79.65 91.61 90.40 89.73

6. Conclusions

In the context of rapid urbanization, it is crucial to develop an effective impervious
surface extraction method for monitoring changes in urban ground cover materials. The in-
crease in impervious surfaces poses significant challenges to the health of cities. In this
paper, we propose an object-oriented deep multi-sphere support vector data description
(OODMSVDD) method that considers multiple types of impervious surfaces. Our approach
uses multiple sources of data, such as vehicle trajectories and OSM, to automatically gener-
ate single-class impervious surface samples. This greatly reduces the burden of the manual
labeling of training samples. We employ object-oriented analysis techniques and extend
the number of support vector data description (SVDD) spheres to improve the accuracy
and robustness of the impervious surface extraction model. Our improved model is better
suited to extract impervious surfaces consisting of diverse geographic objects.

The use of multi-source data to address the challenge of acquiring labeled samples in
impervious surface extraction has yielded promising results. They show that it is essential
to filter the training samples using a suitable method, such as a threshold method employed
in this study. Furthermore, selecting a moderate number of training samples can strike
a balance between sample size and better classification results. Even in situations where
data sources are insufficient, the proposed method can still achieve relatively good results
for impervious surface extraction. However, there is a need for further research on the
impact of data uncertainty, such as position drift in trajectory data, POI localization errors,
and other issues. Additionally, exploring a precise method to filter the automatically
generated training samples and reduce the impact of data uncertainty on the results will be
a focus of future researches.
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