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Abstract: A comprehensive understanding of the relationship between public transportation supply
and demand is crucial for the construction and sustainable development of urban transportation. Due
to the spatial and networked nature of public transportation, revealing the spatial configuration and
structural disparities between public transportation supply and demand networks (TSN and TDN)
can provide significant insights into complex urban systems. In this study, we explored the spatial
configuration and structural disparities between TSN and TDN in the complex urban environment of
Beijing. By constructing subdistrict-scale TSN and TDN using urban public transportation operation
data and mobile phone data, we analyzed the spatial characteristics and structural disparities of these
networks from various dimensions, including global indicators, three centralities, and community
structure, and measured the current public transportation supply and demand matching pattern in
Beijing. Our findings revealed strong structural and geographic heterogeneities of TSN and TDN,
with significant traffic supply–demand mismatch being observed in urban areas within the Sixth
Ring Road. Moreover, based on the percentage results of supply–demand matching patterns, we
identified that the current public transportation supply–demand balance in Beijing is approximately
64%, with around 18% of both excess and shortage of traffic supply. These results provide valuable
insights into the structure and functioning of public transportation supply–demand networks for
policymakers and urban planners; these can be used to facilitate the development of a sustainable
urban transportation system.

Keywords: public transportation network; supply–demand structure; spatial network; Beijing

1. Introduction

Transportation plays a vital role in urban development and spatial evolution. It pro-
vides the necessary support system for the movement of people, goods, and information,
all of which are critical elements of a city’s growth and sustainability. Changes in trans-
portation modes and improvements in traffic accessibility have a profound effect on the
spatial evolution and structural adjustment of cities [1–3]. Given the significant impact of
transportation on urban development and spatial evolution, it is essential to explore and
understand the patterns and trends of urban transportation. Researchers from multiple
disciplines such as geography, urban planning, and transportation have carried out a series
of scientific explorations around urban transportation over the past few decades [4,5].
Some of these explorations have been effectively applied in urban management [6–8]. For
example, optimizing the urban spatial structure and improving operational efficiency can
be achieved by rationally and efficiently planning public transportation infrastructure
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construction based on supply–demand relationships [9,10]. This initiative is recognized
by urban planners and policymakers. Although the relationship between public trans-
portation supply and demand is essential for urban traffic planning and management,
the complexity and variability of traffic flow make it difficult to grasp the urban public
transportation supply and demand [11]. Traditional traffic surveys are time-consuming and
expensive, providing limited information to reflect actual traffic demand for large cities.
Consequently, early urban transportation studies had a relatively limited understanding of
the relationship between public transportation supply and demand.

Recently, globalization and informatization have led to a dramatic increase in the mo-
bility of urban elements, including the population, traffic, and goods, profoundly impacting
urban development and spatial structures [12]. The traditional research perspective based
on the static “space of place” has been challenged, and the dynamic view of the “space of
flow” has become increasingly crucial in human mobility and urban studies [13–15]. Under
the paradigm of the “space of flow”, a city is regarded as a complex system composed of
networks and flows [14]. As the primary component of the urban complex system, urban
traffic promotes interactions between different urban spaces and affects the flow of various
elements, contributing to the formation of a complex network with spaces as nodes and
to the flow of elements as connections [16–18]. In this context, the traditional study of
urban traffic structure based on a static perspective inevitably has certain limitations in the
current complex urban environment, with increasingly rapid dynamic changes underway.

The big data era offers an excellent opportunity to overcome the above challenges of
studying urban traffic. Advances in “flow” data acquisition and processing technologies
provide a rich database and technical methods for use in dynamic network analysis of
urban traffic [19,20]. Traffic flow reflects the mobility status and interaction characteristics of
traffic elements and is vital to understanding the network structure of urban spaces [21,22].
By leveraging traffic flow data and complex network analytics, we can construct a spatial
interaction network of urban public transportation. This network perspective facilitates a
better understanding of the global and local properties of the network, providing insights
into complex urban systems [23]. Thus, analyzing the spatial structure of urban traffic from
a network perspective can lead to the development of a more scientific understanding of
urban systems.

As an affordable and effective method, network analysis has been widely used to
examine the structures and functions of urban traffic networks (UTNs) and aid urban
and transportation planners [24]. By applying network science to UTNs, we can better
understand the reasons for urban form variation and identify potential areas for future
development [25]. Determining the static and dynamic structural characteristics of UTNs
can also provide relevant information for urban transportation planning, design, optimiza-
tion, and sustainable development and maintenance [15,26]. Despite the widespread use of
graph theory and complex network methods to analyze real-world complex traffic systems,
there has been limited attention paid to the structural characteristics and disparities be-
tween public transportation supply and demand networks within cities. The importance of
applying TSN and TDN to urban economic and social development is self-evident. Given
the stability of urban development and the difficulty of changing land use patterns, more
attention should be given to research and demonstrate the structural characteristics and
spatial disparities between TSN and TDN [24,27].

In this study, we conducted a comprehensive comparative analysis of TSN and TDN in
Beijing, China, using complex network analysis and spatial analysis methods. We collected
urban public transportation operation data and mobile phone data to construct weighted,
directed, and geospatially embedded TSN and TDN, and analyzed their macroscopic char-
acteristics. We also analyzed the spatial distribution of node centrality from the perspective
of individual nodes, i.e., subdistrict units, to assess their connectivity, accessibility, and
impact, and to reveal public transportation supply and demand matching patterns. Addi-
tionally, we explored the spatial characteristics of different communities in TSN and TDN
from the view of community structure. Ultimately, the study aims to reveal the spatial
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characteristics and structural disparities between TSN and TDN and measure the matching
patterns of the urban traffic supply–demand structure. The findings can be used to optimize
the spatial configuration of the urban public transportation infrastructure, mitigate the
contradiction between traffic supply and demand, and promote the performance of the
urban spatial structure.

The remainder of this paper is organized as follows. Related and previous studies
are described in detail in Section 2. Section 3 describes the study area and data, including
urban public transportation data and mobile phone signaling data. Section 4 explains
the methodological framework, and the corresponding methods are described in detail.
In Section 5, we present the results of our analyses, which is followed by a comparison
between TSN and TDN. The final section discusses the implications of this study results
and concludes this work.

2. Related Work

Public transportation systems form a vital part of our infrastructure that permits
the movement of large numbers of people within and between cities. As urban mobility
increases, public transportation networks have to keep up with the demand to reduce
travel time and expand coverage. However, public transportation networks are facing
numerous challenges, including accommodating growing passenger volumes, achieving
long-term sustainability, and improving service quality. These challenges are encountered
at various operational levels, from infrastructure deployment to optimal route planning.
To address these issues, diverse methodologies have been adopted in various disciplines
to represent, perceive and analyze the complex dynamics of transport systems, including
geographic information systems, complex network theory, mathematical programming,
and agent-based modeling [23].

Complex network theory is a multidisciplinary branch of complexity science. Moti-
vated by the notable contributions of network theory [28,29], the application of complex
network analytics in modern urban and transportation science has attracted significant at-
tention. By representing urban traffic systems as complex networks and adopting concepts
from statistical physics, nonlinear and dynamic urban traffic structures can be modeled
and analyzed more effectively [14,23,24,30]. Today, this approach has become one of the
most widely used to understand the nature of UTNs. The related studies are abundant
and mainly concentrate on the following aspects: the representation methods of traffic
networks [31,32]; traffic hub and center detection [33]; structural characteristics and dynam-
ics [34,35]; mining of traffic communities and groups [36,37]; robustness and vulnerability
of traffic network [38,39]; and multilayer or multi-modal traffic network [40,41].

These studies mentioned above can be categorized into two main groups based on their
research perspectives. The first group explores the spatial configuration of transportation
infrastructure networks from the supply perspective. Many studies have investigated the
relationships between network shape and the layout of transportation systems, including
road networks [42,43], bus networks [36], and metro networks [44,45] within cities. Some
of these studies have examined the connections between the structural topology of traffic
networks and performance. For example, Wang et al. (2020) proposed a methodological
framework for geospatial network analysis that combines spatial and network analysis to
analyze the spatial configuration of urban bus networks in Hangzhou [36]. Other studies
have explored the structural properties of UTNs based on actual urban road connections or
traffic operation routes and schedule data to seek reasonable traffic planning strategies and
spatial structure improvement solutions [46–48]. These studies have shown that rational
planning and efficient management of urban public transportation systems can effectively
alleviate many urban problems such as traffic congestion, environmental pollution, and
over-commuting. They also provide meaningful insights for policy makers and planners
seeking to optimize transportation infrastructure configuration [36,49,50].

Recently, researchers have taken a novel approach to studying UTNs by leveraging
traffic flow datasets and spatial interaction network methods. Unlike previous studies that
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focused on the relationship between network topology and performance, this approach
considers UTNs and travel structure from the perspective of traffic demand. With the
increasing availability of urban mobility data, obtained through the development of infor-
mation and communication and mobile positioning technologies, researchers can gain rich
and detailed real-time information on various traffic flows, such as population, cars, and
goods [51–53]. Using various traffic flow data and spatial network approaches, researchers
have extensively explored urban travel patterns and traffic networks from the perspective
of traffic demand [54–56]. By leveraging big data, including mobile phone, smart card,
floating vehicle, and social media data, researchers can analyze user movement data as
traffic flows on networks, thereby creating weighted networks that reveal the structure
and related properties of UTNs [57–59]. Some studies have shown that complex network
analysis based on various types of emerging traffic flow data can effectively reveal urban
traffic demand and its dynamics [11,60]. For instance, Zhong et al. (2014) constructed a
weighted directed network of Singapore based on smart card datasets and identified the
spatial structure of urban hubs, centers, and boundaries by integrating network and spatial
analysis methods [33]. With the combination of complex network methods and various
types of emerging traffic big data, studies of UTNs have been further developed. As a
result, big data-based research has become an important paradigm among researchers
investigating urban transportation system [24].

Overall, the studies discussed above offer valuable insights into the characteristics
and patterns of urban public transportation networks from both the supply and demand
perspectives. These findings demonstrate that the development of public transportation
networks is essential for sustained urban economic growth, and that optimizing traffic
supply–demand structure can facilitate the continuation of urban activities [61]. Despite the
multitude of studies examining different aspects of public transportation supply or demand
structure, there remains a lack of a comprehensive and integrated approach that considers
the public transportation supply–demand structure from a network perspective. Addition-
ally, the current literature overlooks the structural disparities between public transportation
supply and demand networks. Therefore, this study aims to provide a comprehensive
methodological framework and empirical evidence to enhance our understanding of these
issues and improve urban public transportation supply–demand structures.

3. Study Area and Data
3.1. Study Area

Beijing, the political and cultural center of China, is one of the largest cities globally,
comprising 16 districts, 327 subdistricts, and a permanent population of 21.87 million
in 2021 [62]. However, the city’s high population density and limited spatial resources
pose a significant challenge to its development as a bustling international metropolis. To
tackle this issue, the Beijing Municipal Government is decentralizing the population and
non-capital functions of the central urban district in order to optimize the urban spatial
structure and reduce the humanity–land conflict [63]. Transportation is essential for the
smooth functioning and orderly development of cities, and it profoundly impacts urban
development and spatial evolution. Therefore, examining Beijing’s urban structure through
the lens of traffic supply–demand network is crucial, both theoretically and practically.
Additionally, as subdistricts are the fundamental administrative units in Chinese cities and
play a vital role in implementing urban planning and management policies, this study
focuses on 327 subdistricts as the primary research units (Figure 1).
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Figure 1. Study area: Beijing, China. Note: R.D: Ring Road.

3.2. Data

In this study, public transportation operation data and residents’ travel data, both
extracted from mobile phone data, were utilized to represent traffic supply and demand in
Beijing. Specifically, the public transportation operation data used in this study referred
to the information related to the functioning and management of public transportation
systems such as buses and metros, including information on bus and metro stations, codes
of bus and metro routes, schedules, and the direction of operation. The original data were
obtained from the Beijing Municipal Commission of Transport (http://jtw.beijing.gov.cn/
(accessed on 13 August 2022)), and the data were dated December 2019 for 1134 bus lines,
8059 bus stops, 24 subway lines and 342 metro stations in Beijing. According to the Beijing
Transport Development Annual Report 2020 [64], public transportation accounted for
nearly 90% of the total urban passengers in 2019, making it an appropriate proxy for the
characterization urban traffic supply.

The residents’ travel data were obtained from mobile phone data provided by Unicom
Smartsteps (http://www.smartsteps.com (accessed on 24 July 2022)), the second largest
telecom operator in China with 300 million daily active users. With the high density of its
base stations in Beijing, user location data can be generated in a 100 m grid. The mobile
phone data used in this study covered approximately 7.89 million mobile phone users
within a span of one month (May 2019). This data for each user included the following: a
user ID, the grid’s longitude and latitude, timestamp of stay, and personal information
that correlates with the user’s ID (e.g., gender and age, the longitude and latitude of their
residential and workplace locations). Notably, the stay data included the location data
of the first location in the morning and the last location in the evening, and stay data for
the rest of the time were recorded when multiple signals were triggered at the same grid.
Additionally, the starting and ending intervals were more than 30 min. Changes from one
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stay location to another were considered travel or movement [65]. Moreover, the validity
of the mobile phone dataset was verified by counting the identified homes of local users
in each subdistrict and comparing them with the populations of each subdistrict in the
Gazette of the Seventh National Population Census for the Beijing Municipality. The highly
representative nature of the mobile phone dataset used in the study was confirmed by the
Pearson correlation coefficient between the mobile phone data and statistics, which was
0.873 (R2 = 0.763, p < 0.001).

The combination of these two datasets provides a comprehensive representation of
traffic supply and demand in urban areas. By using proxy datasets, it is possible to analyze
and understand public transportation supply–demand patterns, identify problems, and
improve transportation systems.

4. Methodology

Our study is based on an analytical framework consisting of three parts: dataset
collection and preprocessing, traffic supply–demand flow extraction and network con-
struction, and network structure analysis (Figure 2). Specifically, we first collected public
transportation data and mobile phone data through various platforms and approaches, and
pre-processed them to eliminate noise and outliers. Next, the traffic connections between
stations were mapped into subdistricts by spatial join, and the travel flows were linked into
subdistricts as well. With these steps, we established TSN and TDN, where 327 subdistricts
served as nodes and traffic supply and demand flows functioned as edges. Finally, we
applied spatial analysis and complex network analytics to compare the two networks based
on macroscopic characteristics, node centrality, and community structure.
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unit, not the actual subdistrict).

4.1. Network Construction

Generally, there are two prevalent approaches for the construction of public traffic
networks: the L-space model and the P-space model [26,36]. The L-space model only
recognizes the direct connections between traffic stations. Thus, only nearby stations for a
single traffic route line are considered to have edge connections. In contrast, the P-space
model is a new abstract rule which states that if any two traffic stations in the public traffic
network can be connected by a single traffic route, those two stations are considered to
have an edge connection. The degree k of each node and the distance between nodes based
on the P-space model have definite physical meanings, in which the degree represents
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the number of traffic stations reachable from this station without having to transfer traffic
routes. The distance between traffic stations can be explained by the line distance or the
number of traffic routes from one station to another. Thus, the P-space model is more
suitable and scalable for use building connections between traffic stations in a traffic route
for geospatial network research. Therefore, the P-space model was chosen to construct the
traffic supply network in our study. Figure 3 illustrates the network construction process.
First, we integrated public transportation route data and station data and added spatial
unit attributes to each station. Second, the links between stations were transformed into
connections between spatial units. Finally, we constructed the TSN by regarding spatial
units as network nodes, connections between spatial units as edges, and the number of
connections as edge weights. Similarly, by integrating the travel flows between spatial units,
TDN was constructed. Notably, when aggregating the trip flow data, since the original
mobile phone data was generated based on a 100 m grid, we conducted a spatial join
between the 100 m grid cells and the subdistrict boundaries and calculated the proportion
of each subdistrict covered by the grid cells. We then aggregated the grid cells at the
subdistrict level using these proportions. The detailed network construction process is
illustrated in Figure 3.
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Figure 3. An illustration of the network construction: (a) three bus/metro routes, (b) bus/metro
station connections under the P-space model, (c) superposition of the bus/metro station connections
and spatial units, (d) public traffic network (traffic supply network) construction based on spatial
units. (e) travel flows extraction based on cellular base stations, (f) superposition of the travel flows
and spatial units and (g) urban travel network (traffic demand network) construction based on
spatial units.

4.2. Macroscopic Properties

We constructed the TSN and TDN of Beijing using the geospatial network construction
method described above. Both networks are complex networks with spatial embedding,
meaning that they exhibit complex network characteristics as well as general spatial con-
straint characteristics [36]. By analyzing the macroscopic statistical properties of the net-
works, we can gain insights into their spatial interactions and overall structure. Therefore,
we analyzed the TSN and TDN from a macroscopic statistical perspective using three
indicators: network density, average path length, and clustering coefficient.
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The network density represents the overall connectivity within the network and is
defined as the ratio of the actual number of edges to the maximum number of possible edges.

D =
l

n(n− 1)
(1)

where l is the actual number of edges, and n is the number of nodes in the network.
The average path length is defined as the average number of steps along the shortest

paths for all possible pairs of network nodes [66], which can be used to describe the degree
of separation between nodes in a network.

AL =
1

n(n− 1) ∑
i,j∈N

dist(i, j) (2)

where dist(i, j) denotes the shortest distance between i and j and N is the node set of
the network.

The clustering coefficient quantitatively measures the degree to which nodes in the
networks tend to cluster together and shows how well the neighbors of a node are connected
to each other. The local clustering coefficient of node i for a directed network is defined as
follows [67]:

Ci =
1

2
[
ki(ki − 1)− 2k↔i

]∑
h

∑
j

(
aij + aji

)(
ajh + ahj

)
(ahi + aih) (3)

where ki is the degree of node i and k↔i = ∑i 6=j aijaji. aij is a binary variable which denotes
the state of connection between node i and node j, aij is equal to 1 if node i and node j
connect to each other; otherwise, it is equal to 0. The average clustering coefficient is defined
as follows:

ACC =
1
n∑

i
Ci (4)

4.3. Centrality Metrics: Betweenness, Closeness and PageRank Centrality

Centrality is one of the main measurements of network modeling and can reflect the
influence and importance of every node in a network [68]. By measuring centrality, we can
identify critical traffic nodes in both human mobility networks and UTNs that can help
describe the urban structure [40]. In this study, we adopted three kinds of centrality: be-
tweenness centrality (BC), closeness centrality (CC), and PageRank centrality (PC).

First, BC is a metric that measures a node’s information transfer capability in a network,
quantifying the extent to which a node acts as a bridge between any other nodes in a
network [33]. The shorter the paths that traverse a node, the higher its BC. Therefore, we
used BC as the connectivity index for traffic nodes in our study. The equation is shown
as follows:

BCi = ∑
s 6=j 6=t

δst(i)
δst
∀s, tεN (5)

where δst is the total number of shortest paths between s and t, and δst(i) denotes the
number of such paths which pass through i.

Second, CC is an index used to describe the nearness of a node to all other nodes in a
network. It is calculated as the inverse of the sum of the distances from a node to all the
other nodes in the network [36]. Nodes with higher CC have better accessibility and are
easier to reach, making it a useful accessibility index. The equation of CC is shown below:

CCi =
1

∑jεN dist(i, j)
(6)
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Third, PC measures a node’s impact on attracting flows from all nodes in the network,
taking into account all direct and indirect links, weights, and directions [33]. It simulates
the behavior of random surfers within a webpage network connected by hyperlinks and
assumes that node importance is determined by both the quantity and quality of the nodes
linked to it. In the urban traffic context, this metric reflects how a location attracts outbound
interactions with other locations, which can then be used to identify the key nodes in a
transportation system and to simulate traffic to find important nodes that have a high
impact on transportation efficiency [40]. In our study, PC was regarded as an impact index.
The PC of node i is defined by:

PCi = (1− d)
1
n
+ d ∑

j∈M
aij

PCj

k j
(7)

where PCi reflects the contribution of node i to the mutual connection. The parameter d is a
damping factor, which can be set between 0 and 1; it is generally assumed that the damping
factor should be set around 0.85, which we use in this application [69]. If a node does not
connect to any other nodes, its PC value would be (1−d)

n [70].

4.4. Traffic Supply and Demand Matching Patterns

To assess the degree of coordination between public transportation supply and demand
in different regions, we compared the structural disparity and spatial heterogeneity between
TSN and TDN. This comparison helped us to take targeted measures to optimize the public
transportation supply–demand structure and alleviate the imbalance of traffic supply
and demand. To begin, we classified the connectivity, accessibility, and impact of each
node in TSN and TDN into three levels: low, medium, and high, using the natural breaks
classification scheme. Then, we combined these three indicators for each node in TSN and
TDN to form three supply and demand matching patterns: excess, balance, and shortage,
as shown in Figure 4. For instance, if the connectivity level of area A in TSN was low, and
the corresponding connectivity level of area A in TDN was high, we defined area A as
a traffic supply shortage pattern, and vice versa as an excess pattern. Conversely, if the
connectivity level of area A was at the same level in TSN and TDN, we considered the
traffic supply and demand levels in the area to be approximately equal and categorized it
as a balanced pattern. Finally, we mapped the supply and demand matching patterns of
each node onto the geographic space to explore the spatial heterogeneity characteristics of
public transportation supply and demand coordination.
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4.5. Community Detection

Community structures reflect an organizational pattern of nodes clustered into tight
groups (with a high density of within-group edges and a low density of between-group
edges) [36]. Detecting community structures in UTNs is crucial for revealing well-connected
groups and their spatial patterns, which can help us to understand the connectivity level of
spatial units and their similarity to the administrative spatial divisions of a city. This infor-
mation can indicate whether each community forms an independent functional area [71].
In the context of public transportation networks, community detection can help to identify
groups of subdistricts that have similar transportation supply and demand characteris-
tics. By identifying these groups, researchers can gain insights into the spatial structure
and characteristics of the public transportation network and potentially develop more
targeted and effective transportation planning and management strategies. In our study,
we used the ‘Fast Unfolding algorithm’, based on modularity optimization proposed by
Blondel et al. (2008), to reveal the community structures and geospatial patterns of TSN
and TDN [72]. This algorithm uses a bottom-up hierarchical clustering approach to aggre-
gate and determine the community structure of neighboring nodes with the objective of
maximizing network modularity. It has good accuracy and efficiency and has been widely
used in relevant studies [73]. Thus, this algorithm was introduced in this study to detect
the community structures of TSN and TDN.

5. Results
5.1. Macroscopic Characteristics of TSN and TDN

As shown in Figure 5, we constructed the TSN and TDN of Beijing using the net-
work construction method from our proposed methodological framework. The edges
between subdistricts represent network connections between corresponding spatial units.
The thickness of the edges corresponds to the weights of connectivity level, and the edge
gradient from thin to coarse represents a change in weight from weak to strong. Figure 5
visually demonstrates the heterogeneous spatial distribution of edges in the TSN and TDN,
with the presence of spatial hotspots. The overall structure of the TSN and TDN exhibits
certain hierarchical distribution characteristics, with higher traffic connections present
in the central city and lower connections in the suburbs. In contrast, the TDN has more
network connections distributed in urban centers, whereas the TSN has network connec-
tions distributed in both urban and suburban centers. According to the Beijing Transport
Development Annual Report 2020 [64], the urban areas within the Sixth Ring Road account
for 79% and 78% of the residential population and jobs in Beijing, respectively, in 2019.
As a result, the urban center area has a richer and more complete public transportation
infrastructure configuration and a higher demand for traffic travel, leading to high-intensity
spatial connections in both the TSN and TDN in the city center area. Conversely, some
suburban areas far from urban centers have relatively small populations and traffic travel
demand. Nevertheless, public transportation facilities between suburban areas are still
well-developed enough to guarantee inter-regional connectivity and meet basic public
transportation needs. Consequently, there are some relatively strong spatial connections
between some suburbs seen in TSN.

Table 1 provides an overview of the global indicators of TSN and TDN, highlighting
significant differences between the two networks. Firstly, all spatial units are included in
TDN, whereas TSN excludes 23 spatial units, indicating that TDN has greater completeness.
Secondly, TDN has over five times more edges and a higher network density than TSN,
implying that TDN has a greater degree of connectivity. Additionally, both TSN and TDN
show high clustering coefficients and low characteristic path lengths, suggesting small-
world behavior. However, TDN exhibits higher clustering coefficients and shorter average
path lengths than TSN, indicating that TDN has greater connectivity and closeness.
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Table 1. Global indicators of TSN and TDN.

Parameters TSN TDN

Node number 304 327
Edges number 16,082 94,180

Network density 0.175 0.883
Average path length 2.009 1.12

Average clustering coefficient 0.61 0.902

5.2. Comparison of the Spatial Distribution Characteristics of Various Centrality of Nodes in TSN
and TDN

Node centrality in complex networks represents the heterogeneous nature of indi-
vidual nodes that play roles in structure and function [36]. In geospatial networks, the
spatial distribution of node centrality also presents spatially heterogeneous and special
characteristics. Therefore, this study employed three centralities (BC, CC, PC) to analyze
their spatial distribution and physical significance (connectivity, accessibility, and impact),
as described in the methodology section. We conducted a spatial analysis using standard
deviation classification to visualize the results on maps, and Figures 6–8 presents the
various centrality levels of subdistricts in TSN and TDN.
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5.2.1. Comparison of the Spatial Distribution of Node Connectivity in TSN and TDN

Figure 6 illustrates the connectivity levels of subdistricts in TSN and TDN. Both net-
works exhibit a similar spatial distribution of node connectivity, with high-connectivity
subdistricts located in urban centers and lower-connectivity subdistricts in suburban ar-
eas. Moreover, subdistricts situated along major roads or intersections also tend to have
higher connectivity. However, there are differences between the two networks in terms of
statistical and spatial disparities. TSN displays a more pronounced hierarchical and hetero-
geneous structure, with only a few high-connectivity nodes mainly located in urban areas
between the Second and Fifth ring roads, as well as in some suburban centers. Most other
nodes have a low level of connectivity. On the other hand, TDN shows less pronounced
hierarchical features, with a higher number of nodes with relatively high connectivity levels
being mainly located between the Fifth and Sixth ring roads, and with relatively average
connectivity levels in other areas.
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5.2.2. Comparison of the Spatial Distribution of Node Accessibility in TSN and TDN

Figure 7 shows the accessibility levels of subdistricts in TSN and TDN, with a clear
concentric zone structure observed in both networks. This pattern is more pronounced in
TDN, where accessibility gradually decreases from the city center towards the periphery.
Within TSN, subdistricts with high accessibility are mostly concentrated in the city center
within the Fourth Ring Road, with suburban centers and subdistricts located along major
roads also exhibiting higher accessibility levels. In contrast, within TDN, subdistricts
within the Sixth Ring Road and along its roads have high accessibility levels, while areas
outside of the Sixth Ring Road experience a decrease in accessibility with distance from
the city center. Overall, the spatial distribution patterns of accessibility in both TSN and
TDN conform to the traditional Beijing urban spatial structure and are closely linked to the
spatial distribution of urban location advantages, population density, and transportation
resource allocation.

5.2.3. Comparison of the Spatial Distribution of Node Impact in TSN and TDN

Figure 8 illustrates the spatial distribution of PC in TSN and TDN, reflecting the impact
of traffic nodes in the two networks. Specifically, TSN has a relatively large number of
subdistricts with high impact. These are more widely dispersed and include urban and
suburban centers and major roads. Conversely, TDN has fewer subdistricts with high
impact, and these are instead mainly concentrated in the central urban areas within the
Fifth Ring Road. Moreover, the hierarchical distribution of node impact is more pronounced
in TDN, with a clear bifurcation where the number of high-level nodes is small, and most of
them have low impact. In contrast, the distribution of node impact is relatively balanced in
TSN. It is worth noting that the distribution patterns of node impact differ significantly from
those of connectivity and accessibility. For instance, while the accessibility and connectivity
of subdistricts in the central urban areas are high, their impact is relatively low. Conversely,
subdistricts in certain suburban areas have relatively low accessibility and connectivity,
but their impact is relatively high. This result indicates that even though some areas may
lack apparent location advantages or public transportation resources, they are in crucial
positions in TSN or TDN, their status in the networks is high, and they exert significant
influence on the entire network. Therefore, such influential areas deserve greater attention
in actual UTN management, as their disruption (due to traffic accidents or congestion) can
cause significant damage to the entire UTN.

5.3. Traffic Supply–Demand Matching Patterns from Various Centrality Perspectives

Table 2 presents the statistical results of public transportation supply and demand
matching patterns based on three centrality metrics. Matching patterns were categorized
into three types: excess, balance, and shortage. Figure 9 provides a visual representation
of the geographic distribution of matching patterns across subdistricts. Specifically, the
results indicate that public transportation supply–demand matching patterns are similar
across the three centrality measures. From the perspective of connectivity, 208 subdistricts
demonstrated a balanced traffic supply–demand pattern, accounting for 63.61% of the
analyzed subdistricts. Excess and shortage were found in 17.43% and 18.96% of subdistricts,
respectively. From the accessibility perspective, 204 subdistricts displayed a balanced traffic
supply–demand pattern, accounting for 62.39% of the analyzed subdistricts. Excess and
shortage were found in 19.27% and 18.35% of subdistricts, respectively. From the impact
perspective, 215 subdistricts demonstrated a balanced traffic supply–demand pattern,
accounting for 65.75% of the analyzed subdistricts. Excess and shortage were found in
16.21% and 18.04% of subdistricts, respectively. Overall, the results suggest that the current
public transportation supply–demand is balanced in Beijing in approximately 64% of
subdistricts, while the degree of excess and shortage of traffic supply is considerable in
around 18% of areas both cases.
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Table 2. Statistical results of traffic supply–demand matching patterns.

Patterns

Index Connectivity Accessibility Impact

Number Ratio Number Ratio Number Ratio
Supply > demand (Excess) 57 17.43% 63 19.27% 53 16.21%

Supply ≈ demand (Balance) 208 63.61% 204 62.39% 215 65.75%
Supply < demand (Shortage) 62 18.96% 60 18.35% 59 18.04%
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Furthermore, the matching patterns showed consistent spatial characteristics across
the three indicators. The areas with a shortage of traffic supply were mainly concentrated
between the Fifth and Sixth ring roads and certain suburbs, while the areas with excess
supply were primarily located within the inner-city areas enclosed by the Second Ring Road
and in some suburbs intersected by major roads outside the Sixth Ring Road, particularly
in the northern suburbs. Most of the central city between the Second and Fifth rings, as
well as the majority of areas outside the Sixth ring, exhibited a balanced pattern of supply
and demand.

To identify regions with extreme public transportation supply imbalances, we utilized
the three indicators of connectivity, accessibility, and impact. Specifically, we defined a
subdistrict as having an extreme shortage of traffic supply if its levels of all three indicators
in TSN were lower than the corresponding levels in TDN. Conversely, a subdistrict was
deemed to have an extreme excess of traffic supply if its levels of all three indicators in TSN
were higher than the corresponding levels in TDN. A subdistrict was classified as traffic
supply–demand balanced if the levels of all three indicators in TSN were equal to the corre-
sponding levels in TDN. For subdistricts with no extreme imbalances between traffic supply
and demand, we defined them as a insignificant pattern. According to our analysis (Table 3),
nine subdistricts exhibited an extreme excess pattern, while eight subdistricts exhibited
an extreme shortage pattern. The spatial distribution of these subdistricts (Figure 10) indi-
cated that areas with an extreme shortage of traffic supply were mainly located between
the Fifth and Sixth ring roads, as well as along the Sixth Ring Road. In contrast, subdistricts
with an extreme excess of traffic supply were primarily located in the inner-city areas
within the Second Ring Road and some suburban areas. Overall, these 17 subdistricts with
extreme imbalances between supply and demand require key attention.

Table 3. Subdistricts with extreme imbalance between traffic supply and demand.

Subdistricts with Extreme Excess of Traffic Supply Subdistricts with Extreme Shortage of Traffic Supply

Guangming Street Chengnan Street
Maizidian Street Liqiao Town

Nancai Town Liangxiang District
Shenjiaying Town Sanmafang District

Gymnasium Road Street Taihu Town
Tianqiao Street Wangquan Street
Wulituo Street Wenquan District

Perfume Garden Street Youanmen Street
Changgou Town

5.4. Community Structure of TSN and TDN

We used a community detection algorithm to explore the community structures of
TSN and TDN, dividing both networks into nine communities. Since several community
boundaries overlap with Beijing’s administrative boundaries, we labelled these communi-
ties based on their administrative names, and the results are shown in Table 4. The size of
the communities varies, with the Shunyi–Miyun–Huairou, Changping–Haidian, Chaoyang–
Tongzhou, and Mentougou–Shijingshan–Fengtai communities being larger in size, while
the Pinggu, Fangshan, and Yanqing communities in the distant suburbs are relatively small.
In terms of community agglomeration, the average clustering coefficient (ACC) of TDN is
0.91, which is much higher than that of TSN (ACC of 0.55). In addition, TSN also forms a
larger community—the Inner City; conversely, the Shunyi–Miyun-Huairou community is
split into Shunyi and Miyun–Huairou communities in TDN.
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Table 4. Community detection statistics for TSN and TDN.

Communities ID
TSN TDN

PNN * PLS * ACC * PNN PLS ACC

Chaoyang–Tongzhou 1 13.82% 15.59% 0.57 16.21% 20.34% 0.89
Changping–Haidian 2 15.46% 18.49% 0.6 14.98% 23.70% 0.89

Daxing–Fengtai 3 12.17% 11.61% 0.63 8.56% 11.54% 0.89
Mentougou–Shijingshan–Fengtai 4 12.17% 13.04% 0.62 16.82% 22.01% 0.89

Fangshan 5 7.24% 4.49% 0.64 8.56% 4.69% 0.91
Yanqing 6 5.92% 10.11% 0.63 5.50% 1.18% 0.93
Pinggu 7 0.33% 0.0011% 0 5.50% 1.50% 0.93

Shunyi–Miyun–Huairou 8 19.74% 15.18% 0.62 / /
Inner City 9 13.16% 11.49% 0.61 / /

Shunyi 10 / / / 12.84% 11.42% 0.90
Miyun–Huairou 11 / / / 11.01% 3.63% 0.92

* Note: percentage of node counts: PNN; percentage of link strength: PLS; average clustering coefficient: ACC.

Figure 11 depicts the spatial distribution pattern of community structures in TSN and
TDN, indicating a notable trend of spatial agglomeration. Notably, the community detection
algorithm does not incorporate geospatial location as a parameter. However, the results
demonstrate a high degree of geographic proximity, with neighboring subdistricts tending
to belong to the same community. Moreover, in the suburban regions, several community
boundaries somewhat align with the administrative boundaries, particularly in TDN. For
example, the Yanqing, Fangshan, and Pinggu communities in TDN correspond to their
respective administrative districts, and the Yanqing community in TSN is identical to its
administrative district. Additionally, the Miyun–Huairou community used in TDN merges
these two administrative districts. Nonetheless, there are disparities in the distribution of
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communities between TSN and TDN. Specifically, upon comparing the communities of each
subdistrict in TSN and TDN, we identified that 179 subdistricts are in the same community
in both networks, while 148 subdistricts belong to inconsistent communities in TSN and
TDN. In TSN, the Inner City community comprises the eastern and western districts of
Beijing, whereas these two districts are combined with other communities in TDN. This
result reveals that the current configuration of public transportation infrastructure in the
central urban area of Beijing does not align with the actual traffic demand.
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6. Discussion and Conclusions
6.1. Discussion

Public transportation networks are critical components of modern urban systems and
play essential roles in the urban development process. However, the acceleration of the
spatiotemporal flow of urban elements through the development of high-speed transporta-
tion and communication technologies has made urban traffic management increasingly
complex. This has created a contradiction between the speed of urban spatial evolution
and transportation management capacity, which is becoming increasingly prominent. To
address this issue, it is essential to plan public transportation infrastructure construction
based on traffic supply and demand to achieve a balance between them, optimize the urban
spatial structure, and improve operational efficiency. However, we found upon reviewing
the previous literature that, although empirical evidence has been presented to understand
the urban traffic structure from supply or demand perspective, little attention has been
paid to the field of structural disparities between TSN and TDN. To fill this gap, we uti-
lized public transportation operation data and mobile phone data, along with geospatial
and network analytical approaches, to reveal the structural characteristics of and spatial
disparities between TSN and TDN. Our study contributes new insights into the public
transportation supply–demand network. In this section, we discuss several key findings
and policy implications that promote the supply–demand balance and sustainability of
urban transportation.

First, our visualizations and macroscopic characteristic parameters of TSN and TDN
reveal the strong structural and geographic heterogeneities of the two UTNs in Beijing.
These may be influenced by a range of factors including geographic location, public
transportation infrastructure, and economic and demographic factors. Specifically, owing
to the traditional urban structure and land use patterns, the central city of Beijing bears more
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important socioeconomic attributes, with a large population and urban activities being
concentrated in these areas [64]. Additionally, our findings are in line with the work of Liu
et al. (2021) [57]. These authors reported a high central concentration and uneven spatial
distribution of resident daily travel in Beijing, leading to significant spatial heterogeneity
and dependency characteristic in both TSN and TDN. The spatial distribution of network
centralities in TSN and TDN, as analyzed in Section 4.2, supports these observations.

Second, as reported in Section 4.3, based on the perspective of connectivity, accessibility
and impact, a significant public transportation supply–demand mismatch can be observed
in urban areas within the Sixth Ring Road. In particular, there is a significant traffic
supply shortage between the Fifth and Sixth ring roads and in some suburban areas. In
contrast, there is a more pronounced oversupply in inner-city areas within the Second
Ring Road and in certain suburban areas outside the Sixth ring road that are crossed by
major roads. This phenomenon is largely caused by multiple factors. Specifically, urban
centers are well known as critical regions for all urban transport infrastructure, and a
certain oversupply of transportation infrastructure configuration is expected. Indeed, the
UTN in an urban center should be optimized insofar as possible, and the supply–demand
relationship should be reasonably adjusted to maintain it within a relatively controllable
range. In addition, with the acceleration of suburbanization and urban construction, the
residential and working populations in the areas between the Fifth and Sixth ring roads
of Beijing have significantly increased. These factors play crucial roles in connecting
urban centers with smaller towns and the countryside. However, the traffic supply cannot
satisfy the growing traffic demand, presenting a challenge to the planning and operation
of public transportation services. To address this issue, there is a need for new public
transportation infrastructure or improvements to existing transportation structures [74].
Government and planning authorities should provide support to emerging suburban
centers to ensure equitable access to public transportation services. Furthermore, diversified
public transportation schemes should be implemented in order to effectively meet the needs
of different subdistricts while meeting the overall goals of urban development. In particular,
areas between the Fifth and Sixth ring roads should increase the coverage of traffic routes
and stations in order to satisfy the requirements of traffic demand and urban development.

Finally, we take a further step to explore the community structure of TSN and TDN,
which is a critical feature of real-world networks. Our study shows that most communi-
ties in TSN and TDN are geographically cohesive and densely connected by functional
interaction. Moreover, our findings are consistent with those obtained using other mobility
data sources (e.g., social media and smart card data), i.e., the detected communities in
the geographic space generally show some correspondence with top-down administrative
borders [33,75,76]. However, what is more common is the integration of multiple adminis-
trative districts into each other and the formation of more closely connected community
organizations. These empirical findings may suggest to policy makers that it is necessary to
rethink whether administrative planning during the wave of urban development is in fact
rooted in spatial interaction patterns or is only “a forced marriage” from the top down [76].

The major contributions of this study are twofold. Firstly, the contributions proposed
in this study are constructive for theoretical literature and associated with current practical
issues. This study extends the existing research on urban traffic structure to urban traffic
networks from a spatial network perspective, a topic which usefully complements the
current research gap in urban traffic supply–demand network studies and greatly improves
the scientific understanding of the urban traffic structure. This approach and perspective
make finding solutions to related public transportation problems more practical and realis-
tic. Secondly, from a spatial network perspective, in exploring the public transportation
supply–demand structure in a typical metropolitan area like Beijing, the empirical findings
could help to bridge the knowledge gap between existing theories and real-life applications
and provide a basis for the rational and efficient planning of traffic infrastructure construc-
tion. It can also inform policies related to urban traffic supply–demand balance and the
optimization of urban space structure.
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6.2. Limitations and Future Work

The study has several limitations that need to be addressed. First, due to data avail-
ability constraints, we used urban public transportation operation and mobile phone data
as proxies for traffic supply and demand flows, respectively. While these two datasets are
crucial components of public transportation supply and demand, we cannot guarantee
a perfect match between mobile phone data and public transportation data. Meanwhile,
we did not consider the carrying capacity of public transportation in supply assessment
due to our research emphasis. However, carrying capacity is an important consideration
in assessing supply, and it should be included in future studies using more refined and
dynamic traffic flow data to reveal the dynamic changes of urban traffic supply and demand
networks. Furthermore, while the mobile phone data we used covered approximately
7.89 million mobile phone users within a span of one month. Future researchers should
consider obtaining more comprehensive data from multiple communication operators for a
comprehensive analysis in order to reduce errors and increase the representativeness of
our results.

Second, although we used complex network theory and spatial analysis methods to
quantify the structural characteristics between TSN and TDN in different dimensions, the
analytical framework of this study is relatively simple and universal. The similarities and
disparities between the two networks were still discussed based on a qualitative analysis.
In the future, the analytical framework proposed in this study should be improved by
incorporating state-of-the-art methods such as graph convolutional neural networks or
generative adversarial networks to quantitatively measure the similarity and disparity
features of various networks.

Third, there is a significant potential to further extend our study by conducting a
comparative analysis of dynamic changes in traffic supply and demand structures between
different cities. The current study only conducted a static analysis in Beijing based on a
month’s aggregated data, a decision which may have limited the diversity of our findings.
Therefore, if more fine-grained relevant data could be collected for different time periods in
various cities (e.g., Shanghai, Guangzhou, or Shenzhen), it would be possible to conduct a
comparative analysis of dynamic changes of traffic supply and demand structures between
these cities by expanding our analytical framework further. This would provide a robust
methodological foundation in order to better understand the characteristics of traffic supply
and demand in different cities.

6.3. Conclusions

This study conducted a comprehensive comparative analysis of TSN and TDN using
complex network analysis and spatial analysis methods in Beijing. First, TSN and TDN
were constructed based on public transportation operation data and mobile phone data.
Next, we explored the spatial characteristics and structural disparities between these
networks from various dimensions, including global indicators, three centralities, and
community structure, and measured the current traffic supply and demand matching
pattern in Beijing. Finally, the aim of this work was to answer the question of how to
measure traffic supply–demand structure from a network perspective in the complex urban
environment. Our results reported that the current traffic supply–demand balance in
Beijing to be around 64%, with shortages and excess supply of approximately 18% each.
We found that he areas with supply shortages are mainly located between the Fifth and
Sixth ring roads and in certain suburbs, while the areas with excess supply are primarily
located within the inner-city areas inside the Second Ring Road and in certain suburbs
crossed by major roads outside the Sixth Ring Road. Overall, by examining the structural
disparities between TSN and TDN, this study offers valuable insights into the structure
and functioning of traffic supply–demand networks. These revelations have the capacity to
inform urban traffic management policies and facilitate the development of a sustainable
urban transportation system.
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