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Abstract: Predicting house prices is a challenging task that many researchers have attempted to
address. As accurate house prices allow better informing parties in the real estate market, improving
housing policies and real estate appraisal, a comprehensive overview of house price prediction strate-
gies is valuable for both research and society. In this work, we present a systematic literature review
in order to provide insights with regard to the data types and modeling approaches that have been
utilized in the current body of research. As such, we identified 93 articles published between 1992 and
2021 presenting a particular technique for house price prediction. Subsequently, we scrutinized these
works and scored them according to model and data novelty. A cluster analysis allowed mapping of
the property valuation domain and identification of trends. Although conventional methods and
traditional input data remain predominant, house price prediction research is slowly adopting more
advanced techniques and innovative data sources. In addition, we identify opportunities to include
more advanced input data types such as unstructured data and complex spatial data and to introduce
deep learning and tailored methods, which could guide further research.

Keywords: house price prediction; property valuation; real estate appraisal; machine learning; spatial
data; systematic literature review

1. Introduction

House price prediction, or residential property valuation, is a difficult problem, as real
estate valuations do not depend on only physical characteristics of the building itself but
also its location, the neighborhood, and people’s perception of these factors. Moreover,
as for any market, price is driven by willingness to pay, which increases the complexity
of determining an objective price for a residential property. Experts such as real estate
agents, notaries, and property investors rely on years of experience for the valuation of
residential properties. Hence, automating this valuation is a challenging task. Nevertheless,
Automated Valuation Models (AVMs) can benefit all parties in the real estate market such
as buyers, sellers, notaries, banks, and also policy makers by improving the accuracy of
valuations. The large discrepancy in methods and input data types used for house price
prediction hinders access to accurate valuation. Researchers appear to have reached a
consensus on adopting a hedonic approach to predict house prices [1]. Hedonic modeling
entails using variables that describe the physical characteristics of the house. In addition,
researchers recognize the importance of incorporating the effect of location due to spatial
effects such as spatial dependence and spatial heterogeneity [2,3]. Prices of houses that
are close to each other are generally spatially correlated, and a similar spatial relationship
can be discovered between house price variables. Nevertheless, prices and other variables
vary across space, i.e., spatial heterogeneity. In [4], the first law of geography is quoted:
“Everything is related to everything else, but near things are more related than distant
things” [5]. However, accounting for spatial effects remains a critical challenge in house

ISPRS Int. J. Geo-Inf. 2023, 12, 200. https://doi.org/10.3390/ijgi12050200 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12050200
https://doi.org/10.3390/ijgi12050200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi12050200
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12050200?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2023, 12, 200 2 of 31

price prediction, as the exact implementation is still a subject of disagreement. Some
researchers use proxies such as submarkets, distance to the central business district, public
transport stations and highways, while other researchers use location-aware models such as
kriging, spatial econometrics and spatially varying coefficient models. Yet another research
stream incorporates location data directly into the model using longitude and latitude as
features while relying on machine learning algorithms to discover spatial patterns. Another
challenge that characterizes house price prediction is temporal dependence between house
prices [6,7]. Most researchers address this issue from a modeling perspective. Another
subject of agreement in house price prediction research is to approach the valuation task
with a supervised learning paradigm; however, semisupervised learning has also been
considered [8].

To address this discrepancy in residential property valuation, we synthesize the
current body of literature. In this systematic literature study, the methods and input data
types for house price prediction are investigated with a particular focus on the geospatial
component. In the following, we use ‘method’ and ‘model type’ interchangeably. In
addition to mapping out the field, a second contribution of this study is the identification
of trends in the use of data-driven house price prediction. Based on a cluster analysis of
the articles with regard to the method proposed and types of input data used, we found
that the combination of conventional model types and traditional input data types is over-
represented. Nonetheless, more advanced techniques and innovative data sources have
been explored recently, including advanced machine learning and deep learning techniques,
e.g., in combination with graph data, image data and textual data. This trend analysis
enables us to describe important gaps and research opportunities in the field, which we
consider the third and final contribution of this work.

This paper is structured as follows. In Section 2, related research on property valuation
is discussed. Section 3 introduces the methodology based on the PSALSAR framework [9]
before the results are presented in Section 4. The paper concludes with an in-depth discus-
sion in Section 5 and our conclusions in Section 6.

2. Related Work

Few reviews on the topic of residential property valuation have been published, al-
though the domain has experienced advances in terms of both applied methods and input
data types used. In [10], the existing property valuation literature is analyzed, similarly
to this work, and three trends are identified. The first trend is the use of spatial methods,
driven by the mantra ‘location, location, location’, addressing both spatial dependence
and spatial heterogeneity. The former refers to the fact that house prices of properties
located close to each other are related and possibly similar, while the latter refers to the
issue that the relationship between the dependent variable, the property value, and the
independent variables is different from location to location. The authors discuss spatial
econometric models and local regression models such as geographically weighted regres-
sion as advanced spatial methods to address these issues. This is in line with an earlier
review paper [11], which also categorizes these methods as third-generation methods,
next to first- and second-generation methods, that mainly involve manual calculation,
described as market segmentation, which involves fitting stratified models based on sub-
markets, methods using neighborhood delineation, accessibility measures and coordinates
as variables. A third review [12] adds artificial neural networks (ANNs), fuzzy logic and
autoregressive integrated moving average (ARIMA) models to the advanced valuation
method list. The increased adoption of advanced learning methods has triggered the most
recent review papers, where artificial intelligence (AI) and geographic information system
(GIS)-based methods were reviewed [13], while another review particularly focuses on
ANNs in property valuation [14].

Next to advances in terms of modeling techniques, other trends detected in [10] are
increased research on land values, the decomposition of property values into a land value
component and a structural value component, and sustainability policies, such as green
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building premiums. However, land values and real estate policies are considered out of
scope in this literature study. In summary, where previous work focused only on methods
used for house price prediction, this paper proposes a two-dimensional analysis, extending
the model perspective, which we tackle more comprehensively compared to earlier reviews,
with a particular focus on the data dimension. In line with earlier reviews, the inclusion
of spatial information is emphasized, given the importance of location for the house price
prediction task.

3. Methods

This paper follows the systematic literature review guidelines in the PSALSAR frame-
work [9]. The Protocol step is addressed in Section 3.1, the Search and Appraisal steps
are addressed in Section 3.2, and the Synthesis step is addressed in Section 3.3. The final
Analysis step is covered in Sections 4 and 5.

3.1. Research Questions

The first step in the PSALSAR framework, Protocol, consists of defining the research
scope and research questions. The scope of this literature study comprises model- and
data-driven residential property valuation with a spatial component. This entails that either
the model type or the input data type should address the spatial effects that house prices
are subject to. ‘Residential property’ is limited to (single-family) homes and apartments.
Research papers are considered only if they present a method to estimate the values of
individual properties.

The focus of this literature study is dual, namely, to analyze the methods and the input
data types used for property valuation. This raises the following research questions (RQs):

RQ 1. Which methods are used for property valuation that can handle the spatial
dimension?

RQ 2. Which types of input data are employed for property valuation?
RQ 3. Which trends and further research opportunities can be identified for data-driven

property valuation?

3.2. Search Strategy

In a second step, the search strategy and inclusion/exclusion criteria are defined in line
with the research scope and questions. Figure 1 gives an overview of the implementation
of the Search and Appraisal steps in this study, which are organized in four phases.

Phase 1: Identification

First, relevant scientific works are identified. To obtain a representative set of literature,
the Scopus database and the Web of Science (WoS) Core Collection were searched with
the same query. Table 1 lists the Scopus and WoS variants of the search string. The title or
abstract should contain three components. The first is ‘house’ or a synonym such as ‘real
estate’, ‘dwelling’ or ‘residential property’. The second component is ‘valuation’, ‘price
prediction’, ‘price determination’ or ‘appraisal’. Lastly, the title or abstract should contain
the keywords ‘spatial’ or ‘geospatial’. This query resulted in 412 papers from Scopus
and 600 from WoS. Due to the overlap in the obtained results, 213 duplicate papers were
excluded, resulting in a final set of 799 distinct papers.

Phase 2: Screening

Second, the screening of the literature list consists of an English language filter and
a document type filter. The English language filter resulted in a further 46 discarded
papers. Additionally, 164 papers that were published as conference proceedings, book
chapters or reviews were omitted. Consequently, the screening phase excluded a total of
210 publications, retaining a list of 589 relevant articles. The corresponding source data
from the end of this phase until the end of the last phase is published as [15].
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Phase 1: 
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•Title/abstract search query
•Search query results on Scopus
N = 412

•Search query results on Web of Science
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•Combination of query results and removal of duplicates
N = 799

Phase 2: 
Screening

•English language filter
N = 753
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•Full body reading
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N2 = 589 
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Figure 1. Flow diagram depicting the Search and Appraisal steps consisting of four phases to identify
all relevant scientific works.

Table 1. Search query.

Data-Base Search String
No. of Date of
Articles Acquisition

Scopus

TITLE-ABS (((real AND estate) OR house OR housing
OR dwelling OR (residential AND property)) AND (val-
uation OR (price W/1 predict*) OR appraisal OR (price
W/1 determin*)) AND (geospatial OR spatial))

412 11 October 2021

WoS

TI = (((real AND estate) OR house OR housing OR dwelling
OR (residential AND property)) AND (valuation OR (price
AND predict*) OR appraisal OR (price AND determin*))
AND (geospatial OR spatial)) OR AB = (((real AND estate)
OR house OR housing OR dwelling OR (residential AND
property)) AND (valuation OR (price AND predict*) OR
appraisal OR (price AND determin*)) AND (geospatial OR
spatial))

600 11 October 2021

Phase 3: Eligibility

In the third phase, eligibility criteria were formulated to narrow the list of publications
based on the titles and abstracts. Two main inclusion criteria were used in this phase:
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1. The article should predict the prices of individual houses or apartments.
2. The article should describe a prediction method.

In addition, three more specific exclusion criteria are used:

1. The article analyzes correlations between house prices and other variables.
2. The article uses cadastral values instead of prices.
3. The article predicts land values unrelated to the value of homes.

The first step was reading the titles with regard to the criteria. Titles were translated
into the absence or presence of certain words to infer the content of the paper. For example,
the second inclusion criterion is checked if the title contains ‘model’, ‘approach’, ‘technique’,
or ‘analytics’. The first exclusion criterion is checked if the title contains ‘correlation’,
‘estimation’ or ‘analysis’ without any indication of the method used. Articles are excluded if
the title includes the keywords ‘cadastral value’ and ‘land value’ based on the second
and third exclusion criteria, respectively. The title reading step subsequently retains
142 papers. Then, a similar exercise was conducted based on the abstracts with the same
inclusion/exclusion criteria. Dubious cases could be solved with this additional step. In
addition, three review papers were identified and removed from the list; however, they
were discussed in Section 2. The total number of papers excluded in this phase amounts to
474, resulting in a list of 115 publications.

Phase 4: Literature Study

In the last phase, the full papers were obtained (via our university’s subscription)
and categorized with respect to the model type described in the article on the one hand
and the input data type used on the other hand. During this more in-depth analysis of
the papers, another set of irrelevant articles was identified. Four articles did not describe
the prediction of house prices, eleven articles described the prediction of average house
prices per zone or neighborhood, and one duplicate article was identified. Additionally,
one further review paper was identified and excluded. Five articles described a comparison
of models without proposing a property valuation method. This resulted in a final set of
93 relevant research papers.

3.3. Categorization and Analysis of Papers

In the Synthesis step, we categorized and analyzed the retrieved set of papers along
their publication year and outlet, method, and input data types.

3.3.1. Publication Year and Outlet

Figure 2 shows the distribution of the papers based on the year they were published.
This graph reflects the recent increase in research interest in the spatial valuation of res-
idential property. Moreover, Table 2 contains the journals that have published the most
articles considered in this study: The Journal of Real Estate Finance and Economics published
8 articles that are considered in this literature study. All journals listed in the table relate to
the domain of either real estate or geography.

3.3.2. Methods

The list of publications can be categorized into 14 different types of models: multiple
regression analysis (MRA), kriging, spatial econometric models (SEM), spatially varying
coefficient models (SVC), time series models, fuzzy logic models (FL), nearest-neighbor
models (NN), decision/regression trees (DT), support vector machine (SVM), artificial
neural networks or multilayer perceptron (ANN), random forest (RF), gradient boosted
trees (GBT), other ensembles and deep learning (DL) (see also Table A1 in Appendix A). A
large proportion of articles considers different methods, mostly to benchmark the proposed
method. Consequently, only the proposed method for each paper is analyzed further and
indicated in Table A1.
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Figure 2. Number of articles published per year.

Table 2. Most popular publication outlets.

Source Title Number of Articles

Journal of Real Estate Finance and Economics 8
International Journal of Housing Markets and Analysis 4
ISPRS International Journal of Geo-Information 4
Transportation Research Part D: Transport and Environment 3
Journal of Geographical Systems 3
Journal of Property Research 3

3.3.3. Input Data Types

In addition, the list of publications is categorized according to types of input data
used in Table A2 in Appendix A. As for the categorization according to type of model,
most articles use a combination of input data types. The input data types considered are
features related to the property itself, namely, structural, socioeconomic and environmental
features, which constitute the traditional features in property valuation, in addition to
point of interest (POI) data. The second category is standard spatial data, consisting of
coordinates and the Euclidean distance between locations. Third, advanced spatial data are
considered as topographical data and alternative distances, such as road or public transport
network distances. Another input data type considered is data structured as graphs. Lastly,
unstructured data, such as textual data and images are considered.

3.3.4. Novelty Assessment

A novelty score was assigned to each publication for both model type and input data
type. The model novelty score is structured as follows. First, the main method is identified
for each paper. This is either the only method used in the article or the method that was
proposed by the authors. Then, the novelty of the main technique is quantified as outlined
in Table 3. The model novelty is based on the assumption that newly proposed methods in
general perform better in prediction tasks than methods proposed early on. For example,
the literature suggests that MLP outperforms MRA, RF outperforms MRA and GWR, and



ISPRS Int. J. Geo-Inf. 2023, 12, 200 7 of 31

gradient boosted trees perform better than kriging in house price prediction [16–19]. In
addition, DL is considered to perform better than other methods as it is simply the only
method that efficiently handles unstructured input data such as images and text [20]. The
model novelty score ranges from 1 to 8. The most conventional methods, MRA, kriging,
SEM and SVC, are given the lowest model novelty score, because these methods were
proposed early in the study period. DL is the most novel model type considered, because
it was proposed last in the study period, and it is thus awarded the highest score. Lastly,
the publications are assigned the model novelty score of the main technique proposed by
the authors.

The data novelty score is assigned to the articles by first identifying each input data
type that is included in the data set of the article under observation. Similar to the model
novelty score, each input data type is assigned a novelty score as listed in Table 4. The most
common input data types are structural features of the house and temporal data. These
input data types are considered as standard and are therefore given a low score, similar to
socioeconomic, environmental and POI features, grouped under standard features. Spatial
data are given higher scores, depending on the complexity of the features, distinguishing
standard and advanced spatial data. Graph structured data are more novel and are given
the second-highest score. Unstructured data, such as textual and image data, are valued
the most, as this type of input data is considered novel. Finally, the data novelty score
of each publication is determined by the addition of the scores related to each input data
type that is used in the research. The data novelty score of publications ranges between
1 and 43. A publication would receive a data novelty score of 1 if it would solely use one of
the standard input data types, for example, structural features or temporal features. The
highest data novelty score of 43 could be attained if all input data types are included, and
thus, all the individual scores are summed. However, house price prediction research never
combines all input data types in practice. Therefore, the data novelty score can be expected
to range between 1 and 20.

Table 3. Model novelty score.

Model Type Score

Multiple regression analysis 1
Kriging 1
Spatial econometric models 1
Spatially varying coefficient models 1
Time series models 2
Fuzzy logic 2
Nearest neighbors 3
Decision trees 3
Support vector machine 4
Artificial neural network 4
Random forest 6
Gradient boosted trees 6
Ensembles (other) 6
Deep learning 8

3.3.5. Data Availability

While 96% of the publications use proprietary data, three articles indicate the pub-
lic availability of the data set, whereas five indicate that the data set can be requested.
In [21], a compressed file is provided with the data set and code base used (Down-
load link: https://static-content.springer.com/esm/art%3A10.1007%2Fs10109-017-025
7-y/MediaObjects/10109_2017_257_MOESM1_ESM.rar, accessed on 1 February 2022).
This data set includes standard features and standard spatial data, i.e., coordinates. In
contrast, two articles provide the source that published the data, CINP (Chambre Interdé-
partementale des Notaires de Paris) and Centadata, respectively, but they do not provide a
reference [22,23]. While both data sets include structural, temporal and standard spatial

https://static-content.springer.com/esm/art%3A10.1007%2Fs10109-017-0257-y/MediaObjects/10109_2017_257_MOESM1_ESM.rar
https://static-content.springer.com/esm/art%3A10.1007%2Fs10109-017-0257-y/MediaObjects/10109_2017_257_MOESM1_ESM.rar
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features, socioeconomic and POI data are also covered in [23]. Two data sets available
on request include basic features [24,25]. Two other data sets that can be requested also
contain advanced spatial data, that is, network distances [26,27]. Lastly, a data set with
textual features in addition to standard features, used in [28], is available on request.

Table 4. Data novelty score.

Input Data Type Score

Standard features
Structural 1
Temporal 1
Socioeconomic 1
Environmental 1
POI 1

Standard spatial data 4

Advanced spatial data 6

Graphs 8

Unstructured data
Images 10
Text 10

4. Results

Using the novelty assessment approach defined above for structuring the description,
this section discusses all relevant papers identified from the search procedure.

4.1. Model-Based Categorization

The categorization of the papers based on methods used is shown in Table 5, which
is supplemented with the count and range of publication year per method. In addition,
Figure 3 shows the model novelty scores of the publications over time. Based on Table 3,
the model novelty scores were determined for each article. The time dimension of the plot
is constructed by ordering the articles based on publication year and author name. Both
the table and the figure show that the most popular methods are MRA, kriging, SEM and
SVC models over the studied period. In general, papers have low model novelty scores,
most were even awarded the lowest score of one. Regarding more novel techniques, time
series and fuzzy logic models have been proposed by a few researchers. Moreover, more
advanced methods that can handle large amounts of data, such as ANNs and SVMs, have
gained importance recently. Along with these machine learning techniques, advanced
ML methods, including ensemble techniques such as RF and GBT, and deep learning are
currently emerging as a topic of research with a view to valuing residential properties.

Table 5. Model-based categorization of studies with count and the range of publication year
per technique.

Model Studies Count Range

MRA [29–44] 16 1996–2020

Kriging [45–54] 10 1995–2019

SEM [2,21–24,55–78] 29 1992–2021

SVC [4,8,26,79–93] 18 2012–2021

Time Series [94–97] 4 2004–2015
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Table 5. Cont.

Model Studies Count Range
Fuzzy Logic [98,99] 2 2006–2016
NN [100,101] 2 2017–2021
DT [25] 1 2021–2021
SVM [102] 1 2014–2014
ANN [16,103,104] 3 2011–2021
RF [17,18,105] 3 2020–2021
GBT [19] 1 2021–2021
Other Ensembles [27,106] 2 2020–2021
DL [28] 1 2021–2021

1992 2021
More Recent

1

2

3

4

5

6

7

8

Sc
or

e

Figure 3. Model novelty plot based on scores relative to study ID (sequence based on year). The color
of the data point relates to the publication year.

4.1.1. Multiple Regression Analysis

Hedonic price models for real estate have been used extensively to predict house
prices and mostly rely on multiple regression analysis (MRA). As hedonic models assume
prices are a linear combination of the values of a good’s components, hedonic real estate
prices are modeled as combinations of the values of the house’s characteristics. Typically,
property values are modeled as a function of structural, neighborhood and locational
characteristics [2,80]. Apart from linear regression, semi-log regression and double-log
regression are also considered under MRA using methods such as ordinary least squares
(OLS), generalized least squares (GLS), stepwise regression, least absolute shrinkage and
selection operator (LASSO) and least absolute deviation (LAD) [29,30,32–35,39,41,43,44].

The generalized additive model (GAM) is also used to learn hedonic price models
for real estate [21,38,102]. In [38], GAM is employed with a semi-logarithmic link function
including a smoothing function of the spatial coordinates and a function over the time of
sale. Newly proposed semiparametric models are benchmarked against a semiparametric
GAM in [21,102]. Similarly, research proposing new methods for property valuation often
compare performance against a hedonic multiple regression method [17].

A semiparametric hedonic model with a geospatial spline is used in [42] to obtain
property prices. The geospatial spline is a nonparametric function over the longitude
and latitude of the properties that constructs a topographical surface where price varies
by location.
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A multilevel hedonic regression is proposed in [31] to incorporate multiple spatial
levels. Additionally, in [40], the authors propose a multilevel approach so that in addition
to fixed effects, random effects can be included to allow for a random intercept to vary over
neighborhoods. In contrast, in [31], the variance of house prices is estimated at property
level, street level, area level and community level, while level-specific variables are added
to the model as fixed effects.

A combination of the semiparametric and multilevel approach is implemented in [37].
This multilevel structured additive regression model is estimated with the Markov Chain
Monte Carlo (MCMC) Bayesian approach. This approach is revisited in [36], where it is
implemented in a two-step procedure. The approach is first used to model a spatial index
based on a large data set that has few variables. Then, the predicted spatial index is used in
the second model as a neighborhood-level covariate to predict actual house prices based
on a small data set with many explanatory variables.

In general, MRA techniques have been used by many researchers, and this model type
appears to be one of the standard methods for residential property valuation (see Table 5).
The range of publication years covers the study period and 16 of 93 publications employed
this method.

4.1.2. Kriging

Kriging is another popular method for residential property valuation, as illustrated
in Table 5, with a total of 10 publications spanning the entire study period. Kriging is a
geostatistical method that can be used to predict house prices at unsampled locations based
on those at sampled locations. The approach assumes that the house prices at different
locations constitute a random process with a constant mean and a covariance between
two locations that depends on only the distance [46]. A kriging predictor is estimated by
empirically computing the variogram, which is the function that defines the covariance,
then fitting a parametric model to this variogram and computing the kriging weights by
minimizing the mean squared prediction error for the best linear unbiased predictor. This
predictor uses the kriging weights in a linear combination of the sampled locations to
predict house prices at unsampled locations [46,51].

Cokriging allows the mean of the price process to be polynomial, which means that
the house price does not depend on only location but also other independent variables [47].
This requires the estimation of the cross-variogram, which measures the spatial cross-
dependence between variables. Regression cokriging is used to model not only a more
complex mean but also more than one equation, which are related tasks [49,53]. This multi-
equational model allows the residuals, or disturbances, of the different equations to be au-
tocorrelated and cross-correlated. Another way to handle the incorrect assumption of a con-
stant mean is regression kriging. This approach first fits a regression model based on the prop-
erties’ characteristics and then applies the kriging method to the residuals [45,49,50,52,54].
The final predictions are obtained by summing the regression prediction and the spatial
variation captured by the kriging prediction. As the residuals, or disturbances, are autocor-
related, the GLS method is used instead of OLS [53]. Finally, another variation of kriging
is proposed, called area-to-point kriging with external drift (A2PKED), which enables
area-average house prices to be incorporated in addition to individual house prices [48].

4.1.3. Spatial Econometrics

Spatial econometrics techniques extend the standard hedonic model with spatial terms
to account for spatial effects. The spatial autoregressive (SAR) model assumes that house
prices are affected by a spatially weighted average of house prices implemented by a spatial
lag term of the weighted price [55,58]. The spatial error model handles spatial autocor-
relation by spatially weighting the error term [58,76,77]. Therefore, both terms require a
spatial weight matrix. The general spatial model combines both the spatial autoregressive
and the spatial error term [58,61,69–71]. The spatial matrix can be constructed in different
ways: the elements in the matrix can be set to 1 if the distance between the two properties
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is smaller than either a fixed, inverse or squared inverse distance [2]. This distance is
often calculated as the Euclidean distance [58]. A simultaneous autoregressive model is
proposed that estimates the log of the house price with a spatial error model in [60]. In
addition, anisotropic spatial dependence is assumed, requiring more advanced methods
than the distance between two properties to measure spatial dependence. Instead, the
local anisotropic method is used to transform the coordinates with the help of gradient
estimation. This method results in a more accurate spatial weight matrix. By extension, the
spatiotemporal autoregressive model accounts for spatial and temporal effects in house
prices [22,62]. This method requires spatial weight matrices, temporal weight matrices
and interaction matrices. The spatial weight matrix is based on neighboring houses that
were previously sold. The temporal weight matrix is constructed by equally weighting a
fixed number of previously sold houses. The general spatial model is also extended with a
temporal component in [66]. They propose a spatial panel model that includes the spatial
lag and spatial error term along with a temporal autocorrelation term.

Spatial quantile regression is implemented in [64] by estimating a general spatial model
for each quantile of the house price distribution to account for spatial heteroskedasticity,
spatial autocorrelation and non-normality. Furthermore, in [24,59], the authors only include
a spatial lag in the quantile regression approach.

The spatial Durbin model (SDM) includes spatially lagged independent variables in
addition to the spatial lag term of the dependent variable [23,65]. In [71], the four spatial
econometrics models are compared using different numbers of nearest neighbors, and
they find that the general spatial model performs best. The models can be estimated by
the maximum likelihood method, the generalized method of moments and the Bayesian
MCMC method [71].

Spatial autocorrelation is handled by the spatial expansion method proposed in [57,107].
The authors also include interactions between attributes and geographical components to
model spatial trends. In contrast, spatial autocorrelation can also be mitigated by modeling
it as a constant term in a stochastic model [56]. This approach allows neighborhood effects
to be separated from the random error.

Traditional spatial econometrics models can be transformed into semiparametric mod-
els to account for spatial autocorrelation, spatial heterogeneity and nonlinear relationships
between house prices and the explanatory variables [21]. A nonparametric spatial drift,
which is a function of longitude and latitude, with penalized splines is included in addition
to a GAM term that introduces nonparametric functions for some housing attributes.

The spatial autoregressive conditional heteroskedasticity model is based on the general
spatial model but specifies the variance of the error term as a linear spatial relationship [73,75].
This model accounts for the spatial heteroskedasticity that remains present in the residuals
after incorporating spatial lags.

A hierarchical–spatial approach is proposed in [63] by combining spatial econometrics
with a two-level approach for apartment price prediction: the first level relates to the
individual apartment characteristics, and the second level includes local neighborhood
characteristics. Similarly, a multilevel linear regression model is implemented in [78];
however, a conditional autoregressive term is added instead of the general spatial model
that forms the basis of the multilevel model used in [63].

Table 5 indicates the importance of spatial econometrics for house price prediction.
SEM is the most prevalent method, and even though it has been employed from the first
year of the study period until the most recent year, many modifications have been proposed.

4.1.4. Spatially Varying Coefficient Models

Geographically weighted regression (GWR) is proposed for the Belfast housing
market [79]. GWR allows parameter estimates to vary over space by estimating the coef-
ficients for each observation. Essentially, GWR estimates many weighted MRAs for each
property, as the regression coefficients can be different for each property based on location.
The coefficients are calculated using a distance matrix specific to each observation, requir-
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ing a distance function based on nearest-neighbor distances and a bandwidth. Different
weighting approaches exist: the bi-square function [79] and a Gaussian kernel function
with Euclidean distance [26]. In [80], they confirm the performance of the GWR method in
a comparison to SAR, conditional autoregressive and spatial filtering models. An extension
of the standard GWR with parameter-specific distance metrics is proposed to account for
varying spatial relationships between the dependent and each independent variable [85].
Therefore, each independent variable is included in the model with a specific distance
matrix and corresponding bandwidth. Addressing the importance of the distance matrix
in a different way, kernel functions and bandwidths are compared in [4] to conclude that
fixed and adaptive Gaussian kernel functions perform best. An adaptive kernel function
enables the bandwidth to adapt according to data density, increasing the bandwidth for
sparse data and decreasing the bandwidth for dense data. In addition to Gaussian kernel
functions, bi-square functions are considered for the comparison. The same four functions
are considered in [92], and similarly, the adaptive Gaussian kernel-based GWR is chosen to
predict house prices with bus accessibility features.

A temporal component can be included in the traditional GWR by employing the geo-
graphically temporally weighted regression model [83]. Coefficients therfore vary not only
over space but also over time, causing the distance matrix to differ from that in the original
approach. In addition to spatial distances between observations, temporal and spatiotem-
poral distances are included in the weighting function. Instead of Euclidean distances,
travel distances based on the road network constitute the basis of the distance functions.

Combining GWR with the co-training paradigm, a semisupervised regression ap-
proach, leads to co-training GWR, as proposed in [8]. This entails the iterative training
of two GWR models, one with a Gaussian kernel function and one with a bi-square
kernel function.

In [86], a mixed-scale hedonic model is proposed that combines local (GWR) and global
(MRA) regression. An adaptive Gaussian kernel function based on a network distance
matrix is used to implement the mixed model. Similarly, in [88], a mixed geographically
weighted regression model is proposed to account for the simultaneous occurrence of
spatial stationarity and spatial nonstationarity.

Conditional varying-coefficient models of house prices are estimated in [84] with an
isotropic Gaussian process (GP) prior. They find that multitask learning is appropriate for
the inference procedure of their isoVCM algorithm. In contrast, a maximum-likelihood
estimation approach is proposed in [93] for GP-based SVC models, and they find that
it outperforms other SVC models on a large dataset of house prices. In [68], low-level
covariates with GP coefficients are compared to high-level covariates with coefficients
modeled by a SAR model. This is a hierarchical varying-coefficient model where the low
level concerns individual houses and the high level concerns zip codes.

Eigenvector spatial filtering (ESF) is proposed in [82] using genetic algorithms to
select significant interactions between the eigenvectors (EVs) and independent variables.
The EVs are selected from a nearest-neighbor matrix based on criteria regarding Moran’s
I coefficient and spatial autocorrelation. They find that ESF captures localized spatial
variation better than GWR, MWR and SEM and is less liable to multicollinearity problems.
While the ESF model achieves the highest prediction accuracy on in-sample data, it appears
to overfit the data, as the out-of-sample prediction is significantly worse than that of
the other approaches. Other limitations of ESF are the comparatively high computation
cost, the need for approximations for large datasets because of intractability and the
requirement of advanced mathematical and coding knowledge. A simplified approach is
implemented in [87], where the interactions between EVs and explanatory variables are
not modeled, but the selection of the EVs follows the same method as described above. The
ESF approach is applied widely obtaining corresponding results to [82], although the EV
selection procedures differ [67,72,90]. Bayesian selection procedures are used in [67,72], that
is, a Bayesian adaptive sampling algorithm and adaptive MCMC algorithm. By contrast,
in [90], EVs are selected by removing EVs with small eigenvalues or eigenvalues of the
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wrong nature and using a stepwise selection method. Another difference with the approach
in [82] is that the significant interactions are identified in a parsimonious manner using the
Akaike information criterion (AIC) [90].

The ESF approach can also be extended by incorporating it into a multilevel model [89].
The multilevel model allows prices to differ among neighborhoods to capture intraneigh-
borhood effects, while the inclusion of ESF captures interneighborhood effects. In other
words, spatial autocorrelation within each neighborhood and between neighborhoods is
accounted for.

A Bayesian spatially varying coefficient process model is proposed in [81] to predict
house prices and create submarkets. This method outperforms linear regression and GWR
by implementing a hierarchical conditional model with well-chosen priors and Bayes
theorem for inference. The Bayesian approach is found to have several advantages, such
as the ability of complete inference on all model parameters, prediction intervals for new
observations and a specific way to handle sparse data. On the contrary, Bayesian SVC
process models require considerable computational resources.

In [91], spatial econometrics, kriging, and GWR are compared to vicinity-based resid-
ual tuning (VRT). The VRT method combines regression predictions with a residual that is
calculated based on a limited number of neighboring properties that were sold before the
property in question. However, they find that GWR is the best model.

Spatially varying coefficient models complete the list of model types that have been
used frequently since the beginning of the study period. Table 5 shows that although this
method is the second most prevalent, it has only become popular more recently than the
methods previously described. Nevertheless, SVC models together with MRA; kriging and
SEM account for a large portion of publications with a model novelty score of 1 near the
x-axis in Figure 3.

4.1.5. Time Series Models

A hierarchical trend model that combines the general price trend, cluster-level price
trends and house characteristics is proposed in [94] to predict property values. The cluster-
level trends consist of different trends for house types, districts and neighborhoods. In
this way, both spatial and temporal dependence are addressed. In [96], different time
series models are estimated for the different metropolitan statistical areas in southern
California. Vector autoregressive and vector error-correction models, Bayesian variants
of these models, and models including spatial and causality priors are the basis of the
study. The authors find that the best performing time series model specification is area-
dependent. The ARMAX model is used to forecast house prices in [95], combining OLS
regression with autoregressive moving average (ARMA) terms. Moreover, a combined
method for forecasting property values is developed in [97]. They combine GWR with
a simple exponential smoothed time series in a three-step procedure. First, the GWR
models are estimated for every year; then, a different time series model is estimated for
each coefficient to predict the value of this parameter in a future period. In the last step,
these new coefficients are used in a GWR model to predict house prices in a future period.
Time-series models have a low prevalence in property valuation studies; Table 5 shows that
four articles employed time series models between 2004 and 2015.

4.1.6. Fuzzy Logic Models

A methodology to value properties via fuzzy logic in combination with spatial analysis
and GIS tools is presented in [98]. They use real estate variables to make fuzzy sets, build
rules and define a knowledge-base operator between the fuzzy rules for inference. In [99],
a fuzzy Bayesian approach is proposed for property valuation consisting of a two-step
procedure. In the first step, a Bayesian regression analysis is conducted. In the second
step, the variables that are liable to deterministic variability, in contrast to parameters that
vary randomly, are fuzzified. This fuzzification results in fuzzy vectors of the regression
parameters that are based on fuzzy membership functions. As the regression coefficients
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are fuzzy Bayesian confidence intervals, the predictions are also obtained as confidence
intervals. Table 5 indicates that fuzzy logic models were used once in 2006 and once in
2016. In Figure 3, the observations with a model novelty score of 2 indicate time series and
fuzzy logic models that were used between 2004 and 2016.

4.1.7. Nearest Neighbors

In [100], the spatial autoregressive model is adjusted so that the property price de-
pends on an average of the prices of its geographic neighbors and the attribute differences
between the property and those of its neighbors. Another nearest-neighbor adjustment
of SAR implements a distance matrix in the characteristic space instead of proximity in
geographical space [101]. This weighting matrix is estimated via k-means clustering-based
distances between observations. The model providing the best results is based on proximity
in both the geographical and characteristic spaces. Nearest-neighbor models were used
in 2017 and 2021, more recently than the methods described above (see Table 5). The two
articles are represented in Figure 3 as the observations with a model novelty score of 3.

4.1.8. Decision Trees

The building blocks of more advanced tree-based methods are decision trees. In [25],
classification and regression trees (CART) and chi-square automatic interaction detector
(CHAID) trees are built to determine the effect of the independent variables on house prices
in Kraków. The popular CART method includes both regression and classification, while
the CHAID method implements classification via a chi-square test to determine the best
split. The trees confirm the MRA results and split on the districts of the city, indicating that
different districts have different pricing classes. Decision trees are also awarded a score of 3
for model novelty, similar to nearest-neighbor models. Therefore, the article that employs
DT is the third observation with a model novelty score of 3 in Figure 3.

4.1.9. Support Vector Machines

A semiparametric spatial effect least squares support vector machine (SSELS-SVM) is
proposed for valuing properties in [102]. This model is an extension of the least squares
support vector machine with a spatial effect term and a nonparametric term. The SVM
is based on a kernel to implement nonlinear transformations. The authors find that the
SSELS-SVM model predicts house prices more accurately than do semiparametric GAMs
and parametric models and has good generalization capability [102]. An SVM was used
once in 2014 (see Table 5) and is given a model novelty score of 4, as shown in Figure 3.

4.1.10. Artificial Neural Networks

The multilayer perceptron (MLP) is the simplest neural network with respect to
architecture, but it is very efficient in learning dependencies between input and output
data [16]. For details on ANNs and MLP, we refer to the reference work in [20]. In [16], they
find that the MLP outperforms MRA with respect to valuation in the Budapest real estate
market. An MLP for property valuation is proposed in [103], but the authors tailor it to
geographic data and develop a system that integrates the valuation into a GIS tool. In [104],
a spatial neural network is implemented with MLP to base predictions on neighborhood
features extracted from satellite images and detected areas of interest. The MLP neural
network is also used to compare performance and as a meta-model in a stacking ensemble,
as discussed below [105,106]. Table 5 shows that ANNs have been used since 2011; however,
they have only been used only in three articles in this literature study. As this method is
also awarded a model novelty score of 4, the observations in Figure 3 have either employed
SVM or ANN.

4.1.11. Random Forests

This tree-based method combines several trees into an ensemble and adds randomiza-
tion to achieve more robust results [17,18,105]. Random forest increases variance over the
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different trees by building each tree based on a random sample of variables and training
it with a bootstrapped sample, that is, a random subset of the data [17]. By averaging the
predictions of different trees, RF returns a final robust prediction of a house price. In [105],
the authors compare random forest and other ML approaches to hedonic multiple linear
regression and implement an explainability method based on Shapley values for the RF
model. Researchers also found that RF outperforms MRA and GWR [17,18]. Random
forests were used in the last two years of the study period, as shown in Table 5.

4.1.12. Gradient Boosted Trees

Gradient boosting, XGBoost, and LightGBM are three GBT methods used in [19],
where the authors find that gradient boosting is the best method for geospatial network
embeddings of housing and POI data. Tree boosting refers to the addition of trees, which
are each trained on the residuals of the previous tree in the sequence. In this way, the loss of
the final estimator is minimized. Gradient boosting is the implementation of this method,
while XGBoost and LightGBM modify the algorithm to improve performance. GBTs were
employed once in the publication list in the most recent year (see Table 5).

4.1.13. Other Ensembles

Stacking ensembles are used in [27,106]. Stacking regressors combine the predictions
of base models to train the final estimator. This ensemble learning technique confirms the
trade-off between accuracy and execution time, as it improves performance at the expense
of real-time performance [27]. Both articles select tree-based methods, such as RF, GBDT
and LightGBM, as base predictors, but in [27], linear regression is used as a meta-model,
while in [106], a neural network is trained. The performance of tacking ensembles is often
compared with that of the base estimators.

Similar to the two previously discussed tree-based ensembles, few researchers have
used other ensembles for property valuation; however, these methods were proposed in
the two most recent years of the study period (see Table 5). The three ensemble model
types are all awarded a model novelty score of 6. The six observations in Figure 3 with this
score are located on the right side of the plot, which indicates recency.

4.1.14. Deep Learning

The most advanced modeling technique considered in property valuation so far is
deep learning. In [19,104], the authors make embeddings with deep neural networks: the
former embeds graphs with a graph neural network, and the latter embeds satellite images
with convolutional neural networks. However, as these articles employ neural networks
for feature embeddings, deep learning is not considered as the main technique. The two
papers are categorized under GBT [19] and ANN [104]. Only a single publication in the
list predicts house prices with a deep learning technique. In [28], long short-term memory
(LSTM) networks are combined with with the self-attention mechanism to handle textual
property descriptions. The observation in the upper right corner in Figure 3 represents the
only article that employs deep learning. It is characterized by the highest model novelty
and recency in this literature study.

4.2. Data-Based Categorization

The categorization of the papers based on input data types used is shown in Table 6,
similar to the model-based categorization table, with the count and range of publication
years. Figure 4 shows the data novelty scores of the publications over time. These novelty
scores were calculated on the basis of Table 4. The time axis of the plot is constructed by
ordering the articles based on publication year and author name, as for the model novelty
plot. The table shows that structural, temporal, POI and basic spatial information is used
by the vast majority of papers. Socioeconomic and environmental information has been
used by few researchers but has been considered since the early years of the study period.
Advanced spatial data have also been included by some researchers both in the first half
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and more so in the second half of the period. Graphs, images and text are less prevalent
categories and occur in at most two articles, mostly in the last year of the study period. As
these different input data types are combined in many different ways across the entire time
period considered, the data novelty plot appears scattered.
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Figure 4. Data novelty plot based on scores relative to study ID (sequence based on year). The color
of the data point indicates the year of publication.

Table 6. Data type-based categorization of studies with count and the range of publication year
per technique.

Data Type Studies Count Range
Structural [2,4,8,16–19,21–50,52–95,97–106] 91 1992–2021
Temporal [4,8,18,19,21–23,25,28,29,31–34,36–49,51–57,59–63,65–77,79–100,102,104,105] 78 1995–2021
Socioeconomic [2,8,18,19,21,23,29,31,36,37,39–41,44,57,59,61,63–66,68–70,73,75,77,78,80–82,85,89,92,95,97,100,103–105] 40 1992–2021
Environmental [21,24,26,29,41,44,55,58,59,64,69,87,98] 13 1996–2020
POI [16–19,21,23–27,30–35,38,39,44,46,48,49,52–54,56–59,64–66,69,71,73,74,76–81,83,86–89,92,95,97,98,100–102,104,105] 56 2002–2021
Basic spatial [2,4,16–19,21–24,27–39,41–46,49–55,57–62,64–68,70–81,83–95,97,98,100–106] 81 1992–2021
Advanced spatial [26,27,30–32,39,44,51,55,57–59,61,65,66,86] 16 2002–2020
Graphs [19] 1 2021–2021
Images [104] 1 2021–2021
Text [28,106] 2 2021–2021

4.2.1. Structural Features

Most property valuation models include features related to the property. These are the
‘structural’ features that typically constitute an important building block of the covariates
included in a hedonic house price model. Table 6 shows that 91 of the 93 papers consid-
ered defining a valuation method that employs features related to the houses. Therefore,
structural information appears to function as the basis for property valuation data sets.
Nevertheless, the inclusion can be limited to one indicator of the living area, or it can be
very extensive, with a long list of structural values. Moreover, the area, or size, of a house
consistently ranks among the two most important features. In [27], the authors show that
four ML models assign a relative importance between 8% and 20% to the feature house
area, which is the largest feature importance. The number of bedrooms and total number
of floors in the building are also added, after area, to the top five in [106]. Lastly, the RF
model in [105] ranks area as the second most important feature.
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4.2.2. Temporal Data

Data related to age, construction year and transaction date are used as features related
to individual properties in valuation models. Most researchers therefore include temporal
data as a structural feature, usually as a numerical value or a dummy [45]. In [53], the
authors estimate different models per year, which is motivated by an incomplete data set.
Time-series models are the most obvious methods that require temporal data [94,96]. Another
simpler method based on historical data is the repeat sales method [91]. This method is
usually implemented by multiplying historical sales data with a market growth factor.
However, in [91], the repeat sales method is combined with other hedonic approaches.
Temporal data are the second most prevalent input data type over the whole study period,
which indicates that this input data type has a similar importance to real estate valuation
data sets as structural data. In addition, feature importance techniques rank building age
and construction year among the five most important features [105,106].

4.2.3. Socioeconomic Features

Socioeconomic features are often included in hedonic pricing methods as part of the
neighborhood features. These features can include demographic data about the population
level in the neighborhood or age-related ratios, in addition to economic data. In [29],
census variables such as population aged 16 and over, single-person households, owner
occupation, the ratio of managerial or professional workers and unemployment rate are
included for groups of properties. In [2], median household income is included as a
covariate. Furthermore, occupant-level socioeconomic features are included in the hedonic
regression model in [65]. Data such as annual household income, years of education and
working experience were collected per house via survey. Although socioeconomic features
are included in less than half of the publications, these features have been included from
the start until the end of the study period (see Table 6). Thus, this input data type can be
considered a standard property valuation feature. In [105], the authors find that income in
building is the third most important feature for the RF model.

4.2.4. Environmental Features

Environmental features can be considered part of the neighborhood features. In [31],
a street quality index and an index of nonresidential land use in the street is calculated
based on the data. Additionally, land use or cover variables for the neighborhood are
included in [55]. Census variables for environmental quality in general and more specific
variables related to air and noise pollution are often included as environmental features in
models [21,41,58,64,98]. In contrast to measured air pollution levels and similar features,
environmental quality is often a subjective measure: for example, the perception of the
presence of greenery [41] and perceived environmental conditions [21]. In [44,55], the
authors transform GIS data and a digital elevation model into land use/cover variables
including, in particular, visibility features. Furthermore, information about earthquakes can
be included as an explanatory variable [59], and in [69], the effect of water quality on house
prices is estimated. In total, 13 of the 93 property valuation articles include environmental
information, as shown in Table 6.

4.2.5. POI Data

POIs are typically used as indicators for the neighborhood of a house. Therefore, the
most common POIs are facilities such as schools, central business districts (CBDs), stations,
highways, hospitals and natural amenities [31,57,65]. Typically, POI data are included
in property valuation models as a distance feature, representing the distance from each
property to the POI location [31]. However, POIs can also be included as dummy variables
to denote the presence of a type of POI, such as a school, within a certain radius of the
house [21,74]. In addition, the number of POI types can be included, such as the number of
restaurants or schools nearby [23,88]. In [26], POI hotspots of green spaces and commercial
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and business facilities were constructed based on social media check-in data. POI data are
used by more than half of the studied publications (see Table 6).

4.2.6. Basic Spatial Data

This input data type considers location data as coordinates and distance features
calculated by standard measures such as Euclidean distance.

Coordinates. As the keywords ‘spatial’ and ‘geospatial’ were included in the search
query, most articles include some form of location data. Therefore, only geographic coordi-
nates are considered under this input data type. Still, 54 publications use coordinates as
variables in the model or employ this input data in another way. For example, spatial econo-
metric models base the spatial weights matrix on distances calculated with coordinates.
Moreover, the spatially varying coefficient models require coordinate data to estimate the
coefficients. The RF model in [106] ranked latitude as one of the most important features to
predict house prices.

Distance features. Actual distance or accessibility measures as model features are
considered under this input data type. Dummy variables that, for example, indicate
whether there is a school within 5 km, are not considered as distance features but as POI
data. Euclidean distance is often used for this type of feature [83]. The Haversine formula
of great-circle distance is used to approximate a straight-line distance on the surface of a
sphere, namely, the Earth, in [24]. In the literature, a variable that measures distance to the
CBD is the most common distance feature and has been used to include locational features
in hedonic models from early on in the hedonic property valuation history [31,46].

Basic spatial data are used by most articles, and their presence in property valuation
models covers the complete study period (see Table 6). However, the use of exact location
appears to have changed over the period. In the early years, the use of coordinates was
implied by the weight matrix that was determined for spatial econometric models and
kriging methods [2,45]. In contrast, a recent, more direct approach of including this spatial
information is characterized by the introduction of longitude and latitude variables in the
predictive models [104–106].

4.2.7. Advanced Spatial Data

This category considers advanced distance measures based on networks and topo-
graphical data.

Topographical data. Digital elevation models are often employed to construct visibility
features [44,55]. These topographical data enable information about which areas with
certain land uses are visible from each property to be included. In [39,51,58], on the other
hand, the authors focus on noise pollution that might affect properties. They incorporate
this information into their models by extracting noise levels from noise maps.

Advanced distance features. Distance based on road networks is a more advanced and
realistic way to include distance in a valuation model and often requires a GIS tool to
combine street networks and locations of properties and POIs [66]. Accessibility features
and travel time, including foot, bike, or car travel, are also regarded as distance features.
In [31], accessibility covariates were constructed using principal component analysis (PCA)
of a set of travel times and walking times to POIs based on a road network. Similarly,
in [57], two PCAs are performed: one for socioeconomic features and one for regional and
local variables of accessibility measures based on travel times. In [32], local and global
features were constructed to include accessibility measures; however, the features were
calculated manually. Different traffic accessibility indices are included in [27]: walking
accessibility in the road network, bus accessibility calculated based on bus stations and
road network data, and metro accessibility based on the subway line map and station data.
Moreover, they find that the traffic factors are among the most important features in their
ML models. Lastly, centrality and connectivity variables are calculated based on the street
network in [86].
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Contrary to basic spatial information, advanced spatial data are included in only
16 papers: seven published before 2010 and nine published after 2010. Except for one
publication, the presence of this input data type drives the data novelty score above 10 (see
Figure 4). In addition, of the 19 articles that scored above 10 on data novelty, 15 articles
incorporate advanced spatial information. The four articles that have a data novelty score
above 10 and do not include advanced spatial information are characterized by the input
data types described in the next sections and were all published in 2021. Figure 4 presents
these four articles in the upper-right corner of the plot. Notwithstanding, the vast majority
of the articles above the threshold of 10 in Figure 4 include advanced spatial information.
However, these articles are characterized by a combination of all or almost all input data
types described above. Nevertheless, Figure 4 shows that advanced spatial data indicate
high data novelty.

4.2.8. Graph Data

In one article, the authors construct a graph themselves. In [19], a network is created
connecting houses with POIs, regions, schools and train stations and their features in a
graph structure based on location. This graph is then embedded with a graph neural net-
work and used as a set of features in the prediction model. Graphs have been incorporated
sparsely and only recently, since 2021, in real estate valuation models (see Table 6). The
article that introduces graph data is characterized by high data novelty scores in Figure 4.
The article is situated near the end of the x-axis, as it was published in 2021.

4.2.9. Image Data

As visual features are usually an important factor for home buyers, they should be
included in property valuation methods. In [104], satellite imagery is used to extract these
visual features embedded in vectors with a CNN. These vectors are then combined as
neighborhood features with structural, socioeconomic, temporal, location and POI features
into the final prediction model. Therefore, this publication achieves a high data novelty
score and is situated in the upper-right corner of Figure 4, as it was published in 2021.

4.2.10. Textual Data

In [28,106], the authors base the property valuation models on textual descriptions of
houses in combination with standard features. While the former incorporates descriptions
as a document–word frequency matrix into the valuation model, the latter addresses the
textual data in the model dimension with an LSTM model. Place names, transportation,
facilities, and apartment qualities from the descriptions are given high importance by the
model. This input data type is also characterized by very high data novelty scores and two
of the most recent publications. Therefore, it represents the upper-right corner of Figure 4.

5. Discussion

In this section, we discuss the results in detail by looking at the model and data di-
mensions in combination and subsequently formulate an answer to the research questions.

5.1. Model and Data Novelty Clusters

Considering RQ 1 and RQ 2, Figure 5 depicts the model and data dimensions in
combination by showing the two novelty scores in one plot with the same color coding as
before. The 93 articles are represented by the respective model novelty score, data novelty
score and publication year. Given that many research papers overlap in terms of model
novelty and data novelty, jittering was applied to keep the scatterplot legible. In addition,
we annotated the plot with five inferred clusters. To name the clusters, we define three
categories of model types and two categories of input data types. Conventional hedonic
methods comprise model types with model novelty scores between 1 and 2, basic ML methods
denote model novelty scores between 3 and 4, and advanced ML methods have a model
novelty score of 5 or higher. Traditional input data types denote a data novelty score between
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1 and 9, and advanced (spatial) data comprise publications with a data novelty score of 10
and higher.

Figure 5. Combined novelty plot of data novelty score relative to model novelty score. Each data
point represents one article and is colored with respect to the publication year. Clusters of articles are
indicated with ellipses and identified with numbers 1–5.

Cluster 1, characterized by low data and model novelty, represents conventional hedonic
methods with traditional input data types. The data novelty range between one and
nine illustrates that the input data types used are structural, temporal, socioeconomic,
environmental, POI and/or basic spatial data. All classified articles propose a combination
of input data types, except for [96], which relies on only time series of house prices, i.e.,
temporal data. A model novelty of one or two indicates that the model types are limited to
MRA, kriging, SEM, SVC, time series and FL. With 65 observations (≈70%), this cluster is
the largest of the five clusters, indicating a strong dominance of conventional modeling
methods combined with traditional input data types. Overall, with publication dates
ranging from 1992 until 2021, we can safely conclude that these model types are still the
predominant method for house price prediction, despite the boom in research in ML and
AI in the past 5–10 years. Nonetheless, a closer look at this cluster reveals a few microlevel
patterns. First, listed methods with a model novelty score of two, i.e., time series and FL,
have been used only until 2016. The more recent works in the cluster tend to implement
SEM and SVC and, to a lesser extent, MRA and kriging. Second, in terms of data novelty,
using a wider range of input data types is a common denominator of the more recently
published works. With the exception of [21], all papers published in 2017 or later have a
score of at least six. Therefore, research on the conventional hedonic method has focused on
broadening the included input data types from structural to temporal and basic spatial data
while still mainly relying on established methods such as MRA, SEM, SVC and kriging.

Cluster 2 contains 14 observations with a model novelty score of 1 and a data novelty
score of 11 or higher. What distinguishes this cluster from cluster 1 is the addition of
advanced spatial information. Therefore, this cluster can be described as conventional hedonic
methods with advanced spatial data. The model score of 1 reflects the use of conventional
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model types, mainly MRA and SEM before 2015 and complemented with kriging and
SVC thereafter.

The third cluster comprises six articles introducing more advanced model types,
in particular basic ML methods, yet still relying on traditional input data types. What
is apparent is that model novelty decreases over time in this cluster. The three articles
published between 2011 and 2016 employ ANNs and SVMs, as indicated by a score of
four. In contrast, the three articles published in 2017 and 2021 employ NN and DT, which
contribute to lower model novelty. Regarding input data types used, only one article [25]
does not use basic spatial information, which causes its data novelty score to fall back to
three, although it is among the most recently published articles.

Cluster 4 is the smallest cluster, containing only three articles. While it is characterized
by low data novelty scores, the articles show high model novelty and recency. Cluster 4
can be described as advanced ML methods with traditional input data types. All articles in this
cluster use the RF method and were published in 2020 or 2021. The two most recent articles
combine structural, temporal, socioeconomic, POI and basic spatial information, whereas
the article from 2020 includes only structural, POI and basic spatial data.

Cluster 5 is the most novel cluster and contains five articles that show high data
novelty and model novelty published in the two most recent years of the study period. It
comprises advanced ML/DL methods with advanced input data types. However, this cluster is
characterized by some variation regarding both the use of input data and model types. In
contrast to the high data novelty scores of the other articles, the article [27] has a score of
only twelve because the most novel input data type used is advanced spatial information,
while the other articles employ images, graphs or textual data. The model novelty covers a
wider range than that of other clusters. The article that uses deep learning is the rightmost
observation in Figure 5, with the highest model novelty score. Three articles in the cluster,
which use GBT and other ensemble methods, have a score of six. However, the article [104]
is an outlier in this cluster with regard to model novelty score, as its score of 4 is below
the threshold of this cluster. Although the prediction model is an MLP, CNNs are used to
transform image data into features for the final prediction method; thus, this paper has
similar data and model novelty as the other observations in cluster 5.

5.2. Trends and Opportunities

As for RQ 3, in general, the residential property valuation domain focuses on model
and input data types that have proven their value. A large majority of the earlier and
recent articles show low data and model novelty. Nonetheless, a few articles distinguish
themselves from this majority by exhibiting high data novelty, model novelty, or both.
The articles that experiment with novel ML methods are very recent, indicating a trend
toward more advanced ML prediction models in the property valuation domain that has
been characterized by standard methods for a long time. A similar trend toward greater
novelty can be observed in the data dimension in the form of graphs and unstructured data.
Although the data dimension appears to have been the subject of much more experimen-
tation throughout the years, the standard features remain structural, temporal and basic
spatial information.

Several factors may explain the restriction of the residential property valuation do-
main to conventional hedonic methods and traditional input data types. The first is data
availability. With the emergence of big data and deep learning methods, researchers have
begun to collect large data sets. However, publicly available housing data sets of high
quality containing not only the transaction price but also hedonic data and spatial data are
quite rare. Data sets containing traditional input data of houses in the US and Australia
are available online [108–111]. The spatial extent of these datasets is limited to a city or
county: King County, USA [108], Melbourne, Australia [109], Ames, Iowa, USA [110], and
Boston, USA [111]. However, location and more advanced (spatial) data are often sourced
separately from the main housing data set. This entails difficulties such as merging the data
sets, handling missing data and most likely sparse data. In addition, graphs, images and
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text impose more data-related challenges, as the collection and preprocessing of these data
are resource- and time-intensive tasks. A second reason might be the discrepancy between
academia and industry. In industry, more novel methods and input data types might have
been explored without a reflection in academic research [108,112–116].

The gradual trends toward combining traditional input data types with more advanced
input data types and using more advanced predictive methods present new opportunities
for the property valuation field. First, there is opportunity in the use of unstructured
data, such as images and textual data [117]. Another opportunity related to advanced
data is the construction of advanced spatial data such as more complex distances between
properties and POIs. Furthermore, the introduction of more advanced data will require
tailored methods and deep learning. Deep learning methods become more important
when unstructured data are used because these methods can handle this type of data
more efficiently [117]. However, the combination of these advanced input data types with
traditional input data types introduces a distinctive variety of features, which might require
tailoring advanced ML methods to extract information more effectively from various
features [118,119]. Hence, future work could explore the combination of advanced input
data types, including unstructured and complex spatial data, and DL or tailored ML
methods that can handle the heterogeneity of the input data.

6. Conclusions

As residential property valuation is an important task for several real estate stake-
holders, a comprehensive overview of the literature approaching this problem is not only
valuable for research but also society. Accurate valuations improve the information flow
in the real estate market, the formation of housing policies and real estate appraisal in
general. Therefore, existing research that proposes predictive methods for house price
prediction with geospatial data was systematically reviewed. Following the PSALSAR
framework, the methodology of this literature study consisted of the Protocol step, where
the research scope and questions are discussed, the Search and Appraisal steps, which are
covered by the search strategy, the Synthesis step and the Analysis step. The latter steps
were implemented by categorizing the papers with regard to the method proposed and the
input data types used and analyzing the literature along these two dimensions. The papers
were categorized into MRA, kriging, SEM, SVC, time series, FL, NN, DT, SVM, ANN, RF,
GBT, (Other) ensembles or the DL method, on the one hand, and structural, temporal,
socioeconomic, environmental, POI, basic spatial, advanced spatial, graphs, images and
text data on the other hand. In addition, a model novelty score and data novelty score
were assigned to each article. The model novelty was determined by awarding a score
to each model type and then awarding the corresponding score to each paper based on
the method that was proposed in that paper. For data novelty, the input data types were
also scored first, but the final data novelty score for each paper was the sum of the scores
corresponding to each input data type used. These model and data novelty scores were
plotted with respect to time and analyzed on the basis of clusters of papers. Five clusters
grouped conventional methods with traditional input data types, conventional methods
with advanced spatial data, basic ML methods with traditional input data types, advanced
ML methods with traditional input data types and advanced ML methods with advanced
input data types. The first cluster contains almost 70% of the literature that was reviewed,
which indicates that the property valuation domain is characterized by low data and model
novelty. While most researchers stick to traditional methods and input data types, a few
have explored advanced spatial data, unstructured data and ML or DL methods in more
recent years [6,17,19,28,104]. These observations make it possible to identify opportunities
that are in line with the slowly starting trends toward advanced input data types and ad-
vanced model types. Research opportunities remain in the use of DL methods to leverage
unstructured data such as images and text as well as designing more advanced spatial
features. In addition, the combination of distinctive features might benefit from tailored
algorithms based on existing ML or DL methods.
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