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Abstract: The rapid development of remote sensing image sensor technology has led to exponential
increases in available image data. The real-time scheduling of gigabyte-level images and the storage
and management of massive image datasets are incredibly challenging for current hardware, net-
working and storage systems. This paper’s three novel strategies (ring caching, multi-threading and
tile-prefetching mechanisms) are designed to comprehensively optimize the remote sensing image
scheduling process from image retrieval, transmission and visualization perspectives. A novel remote
sensing image management and scheduling system (RSIMSS) is designed using these three strategies
as its core algorithm, the PostgreSQL database and HDFS distributed file system as its underlying
storage system, and the multilayer Hilbert spatial index and image tile pyramid to organize massive
remote sensing image datasets. Test results show that the RSIMSS provides efficient and stable image
storage performance and allows real-time image scheduling and view roaming.

Keywords: remote sensing; distributed storage system; big data; scheduling optimization

1. Introduction

The development of spatial information systems and demand for remote sensing
data have led to the rapid development of image sensor technology. Remote sensing data
resources are gradually being enriched and are widely used in military, disaster prevention,
environmental protection, earth navigation and other applications. These trends have
created challenges for current geographic information disciplines. On the one hand, the
large number of earth observation satellites means an increasingly apparent multi-source
heterogeneity among remote sensing images [1], while the scale of image data are gradually
increasing [2]. Managing massive amounts of multi-source heterogeneous remote sensing
image data poses extensive challenges to storage systems regarding capacity, performance
and cost [3]. On the other hand, the development of sensor technology has improved
image resolution, with the file size of a single image reaching the gigabyte level. Due to
networking and hardware technology limitations, it is difficult to achieve real-time reading
and visualization of such large amounts of data [4]. Slow data loading will affect the
efficiency of image use. Therefore, remote sensing databases urgently require improved
management and scheduling methods to adapt to current needs.

Currently, the storage architecture types of massive remote sensing image databases
can be divided into centralized server clusters, such as the Terra Server [5] and China
Resources Satellite Application Center [6], and distributed server clusters, such as EOS-
DIS [7], Google Earth [8] and Bing Maps [9]. Centralized storage has a simple deployment
structure, convenient post-maintenance requirements and high reliability. However, due
to the architecture design, there are inherent deficiencies in horizontal expansion, disaster
recovery mechanisms and fault recovery. Distributed storage has obvious advantages in
cost, compatibility and scalability. With the increasing amounts of data, its benefits are
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becoming more obvious. It is one of the most promising potential solutions for storing
massive amounts of remote sensing image data. Currently, the mainstream distributed file
systems mainly include HDFS [10], Lustre [11], FastDFS [12], GridFS [13], MooseFS [14],
GlusterFS [15] and CEPH [16]. FastDFS, GridFS and GlusterFS are suitable for file-based
online services, such as video and still images. Lustre requires the support of special
devices typically used in high-performance computing. Remote sensing image files are
very large—a single file can reach the gigabyte size—and once stored without modification,
in line with the design concept of HDFS and MooseFS [17]. However, MooseFS is typically
applied to single-cluster deployments. As the cluster scale expands, it is prone to uneven
loads, and a greater risk of instability [18]. However, distributed file systems still have
some limitations in storing and managing massive remote sensing images. Metadata-based
attribute retrieval and location-based spatial retrieval are issues that must be considered
when managing remote sensing images. Although distributed file systems can efficiently
store massive remote sensing images, their retrieval performance is insufficient to sup-
port the complex retrieval conditions necessary for multi-source heterogeneous remote
sensing images.

Remote sensing image scheduling is an interdisciplinary research field which scholars
in geographic information and computer science have ignored. Therefore, there are few
or one-sided studies in this field. The two most commonly used methods to improve
the efficiency of remote sensing image data scheduling are spatial indexes [19–22] and
tile pyramids [23–25]. In a spatial index, the two-dimensional plane is reduced to one-
dimensional coding by an index algorithm. The complex spatial intersection operation is
converted into simple coding matching, shortening the image retrieval time. Tile pyramid
technology achieves rapid image retrieval by slicing remote sensing images and generating
multi-resolution images. The amount of data needed to be processed for single-image
retrieval and display is reduced. Presently, research on spatial index algorithms and tile
pyramid technology is relatively mature and has been applied to many remote sensing im-
age management software systems. Both technologies optimize remote sensing image data
organization, greatly enhancing image scheduling performance. However, the image data
scheduling process still involves multiple stages, such as data retrieval, transmission, and
image visualization. This can result in data loading stalls and a lack of real-time response.

Considering the shortcomings and limitations of the current research on remote
sensing image management and scheduling, this paper designs and implements a new
remote sensing image management and scheduling system (RSIMSS) which realizes the
efficient management and real-time scheduling of massive remote sensing image data. Its
characteristics and advantages are:

(1) Based on the spatial index algorithm and tile pyramid model research, the scheduling
process of remote sensing images is deeply analyzed regarding computer network
transmission, and three new scheduling mechanisms (ring caching, multithreading
and tile-prefetching mechanism) are designed to optimize the scheduling process.
As the three mechanisms work together, the remote sensing image data scheduling
achieves second-level real-time response rates.

(2) According to the spatial distribution characteristics of massive multi-source heteroge-
neous remote sensing image datasets, a spatial index based on a multi-layer Hilbert
grid is constructed to achieve efficient retrieval. The PostgreSQL database cluster is
distributed with the same Hilbert grid, and the multithreading mechanism is relied on
in the cluster to substantially improve the efficiency of cross-server and cross-database
image retrieval.

(3) The distributed file system and relational data library are used to manage remote
sensing image data in a hybrid manner. HDFS with high I/O performance and high-
capacity scalability is used to store massive unstructured file data. The PostgreSQL
relational database with powerful retrieval performance manages structured metadata.
RSIMSS takes full advantage of the respective benefits of distributed file systems and
relational databases.
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The rest of this paper is organized as follows. Section 2 introduces the RSIMSS in
detail, including its system architecture, data organization, data scheduling and scheduling
optimization strategy. Section 3 tests the storage performance, retrieval performance and
scheduling performance of RSIMSS, and discusses the results. Section 4 summarizes the
main work of this paper.

2. Materials and Methods
2.1. The RSIMSS System Architecture

The RSIMSS adopts a modular layered architecture, divided into a data layer, service
layer and user layer (Figure 1). The data layer adopts a PostgreSQL database cluster to
store the structured metadata of remote sensing images. It constructs a spatial index using
a multi-layer Hilbert grid algorithm to improve the efficiency of image retrieval. An HDFS
file system is used to store unstructured data of the remote sensing images, which has high
I/O performance and good capacity scalability. The service layer is the core of the whole
system and achieves image scheduling. It is divided into three modules for data retrieval,
transmission, and visualization. The efficiency of image data scheduling is optimized by
multi-threading, caching and prefetching mechanisms. The user layer hides the complex
internal structure of the entire system and only provides users with a functional interface
for data retrieval, preview and download. In addition, the system also reserves some
interfaces developed by Java, which is convenient for future expansion of the system.
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2.2. Organization and Storage of Remote Sensing Images
2.2.1. Spatial Index Based on a Multilayer Hilbert Grid

The retrieval process must often consider the image’s spatial location, access date,
resolution, sensors and other multi-attribute information. In addition to the location, other
attributes can be expressed and stored in the database as fundamental data types, such
as integer, float, string and time. Almost all databases have mature retrieval algorithms
for these basic data types. Location and coverage are essential features that distinguish
remote sensing images from other data types. Quickly and accurately finding images for a
specific geographic space is one of the critical issues in remote sensing data organization
and management.

Establishing a spatial index is an effective way to improve the performance of remote
sensing image retrieval. Such images represent Earth in three-dimensional space, while the
index is a one-dimensional coding. Therefore, the Earth must initially be projected from
three-dimensional space into a two-dimensional plane, and the projection planes are then
divided into grids. Finally, the grids are encoded to map the two-dimensional projection
into a one-dimensional index coding. The Plate Carree projection method is used in this
paper. The lower-left corner is the projection coordinate point of the earth’s south pole (90◦

S, 180◦ W), while the upper-right corner coordinate is that of the north pole (90◦ N, 180◦ E).
A rectangular projection range is more conducive to grid division (Figure 2).
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The coding algorithm used in this paper is the Hilbert space-filling curve algorithm.
The space-filling curve was first proposed by the mathematician Peano in 1890 [26]. It is
essentially a spatial dimension-reduction method. The basic idea is to use a continuous
curve to pass through each space unit in turn, only once. As one of the most representative
space-filling curves, the Hilbert curve has excellent spatial aggregation and low loss of
spatial characteristics. It can better retain local points in multi-dimensional space [27] and
is more suitable for remote sensing image retrieval in continuous space (Figure 3).

As remote sensing images from different sources have different resolutions and cov-
erage, a single-layer spatial grid cannot retrieve image data from all potential sources.
Therefore, the global plane map is divided into multi-layer grids based on the Hilbert space-
filling curve, then it builds a multi-layer grid spatial index on this basis. The first-level grid
divides the world into four equal parts, with each subsequent grid dividing the previous
one into four equal parts. The size of the k-level grid is (360◦/2 k, 180◦/2 k). All grid
levels are encoded according to the direction of the Hilbert curve with a combination of
numbers from 1 to 4. Each level of grid coding is extended based on the previous level of
grid coding. Assuming that the level 1 grid coding is C1, the k-level grid coding is C1C2C2
. . . Ck (Figure 4). Finally, the grid is iteratively calculated based on the remote sensing
image’s central coordinates and coverage area. The iteration starts with the 1-level grid and
iteratively divides the grid where the image center is located. The criterion for terminating
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an iteration is that the area of the image is greater than the grid area. The grid encoding of
the final iteration is used as the spatial index of the remote sensing image.
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2.2.2. Structural Design and Automatic Analysis of Remote Sensing Image Metadata

In this study, the FGDC Metadata Standard [28] and GB/T 35643-2017 Remote Sensing
Image Metadata Standard [29] were used as references to set a unified metadata standard
for multi-source heterogeneous remote sensing image data. The metadata were divided
into ‘Product Set’, ‘Image Public Property’ and ‘Image Specific Property’. The ‘Product Set’
is used to store the attribute information of an image dataset from a particular data source
that is processed by the same method. The primary purpose of its design is to speed up the
retrieval efficiency of images from a particular data source. Due to the different formats
of remote sensing image metadata from various sources, other metadata (except product
set information) are divided into two parts: ‘Image Public Property’ and ‘Image Specific
Property’. This ensures the integrity of the remote sensing image metadata and improves
the image retrieval performance.

Remote sensing image metadata are structured data, so the RSIMSS deploys a Post-
greSQL database cluster to realize the storage of multi-source heterogeneous remote sensing
image metadata. PostgreSQL is a very popular open-source relational database, and its
extension module PostGIS allows it to support many geographic functions. The distributed
database system has more efficient data management and retrieval performance than other
databases [30]. Part of the ‘Product Set’ table structure design is shown in Table 1, while
part of the ‘Image Public Property’ is in Table 2. As the ‘Image Specific Property’ tables of
remote sensing images from different data sources have different structures, this article will
not include separate detailed descriptions.
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Table 1. ‘Product Set’ table structure.

Field Name Data Type Field Description

Id integer Unique identification of the product set
Name text Name of product set

Satellite text Satellite parameter information
Sensor text Sensor parameter information

Institution text Institution
Type text Type of product set

Gridlevel integer Corresponding multilayer grid levels calculated by
image size

Area double Average area covered by remote sensing imagery (km2)
Interval double Period of sampling at the same position

Resolution double Resolution of remote sensing images
Stime timestamp Time taken to generate the first image of the product set
Etime timestamp Time taken to generate the last image of the product set
Status bool Identify whether satellites and sensors are still working

Description text Introduction to the product set

Table 2. ‘Image Public Property’ table structure.

Field Name Data Type Field Description

Id integer Unique identification of the image

PId integer Unique identification of the product set to which the
image belongs

GridCode integer Spatial index coding calculated according to image
center coordinates and multi-layer grid levels

Cloud double Percentage of area covered by cloud
Atime timestamp Time the image was acquired
Band integer Band of the image

CenterPoint point Latitude and longitude of image center
UpperLeftPoint point Latitude and longitude of upper-left corner of image
UpperRightPoint point Latitude and longitude of upper-right corner of image
LowerLeftPoint point Latitude and longitude of lower-left corner of image
LowerRightPoint point Latitude and longitude of lower-right corner of image

FileSize double Size of image file
Downloads integer Number of image downloads

The extraction of metadata mainly depends on file reading operations. Remote sens-
ing image metadata from different sources may have different formats, such as Landsat
metadata (TXT format) and MODIS metadata (XML format). Semantic heterogeneity exists
between each source’s remote sensing image metadata [31]. According to the metadata
standard, we designed a set of algorithms for automatic metadata analysis and storage.
Different file formats are analyzed by different methods. Locate the field position step
by step and extract the field. The corresponding Hilbert code of the image is calculated
according to the extracted spatial information. Finally, all metadata are output as a unified
database record. The specific algorithm flow is shown in Figure 5.
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2.2.3. Storage of Massive Image Tiles Based on an HDFS Distributed System

An HDFS is a distributed file storage system that runs securely and efficiently on a
computer cluster using streaming data access mode to store massive datasets. Its most
remarkable feature is that it can shield the computer hardware differences in the underlying
cluster and present the cluster as a whole. A high-performance server is assigned as the
Namenode of HDFS. The remaining computer nodes are Datanodes, and the number
of Datanodes can be increased according to storage requirements to achieve capacity
expansion. Namenode is used to store metadata of data blocks, and store and access data
blocks through metadata. As the centralized metadata core of HDFS, Namenode manages
and maintains metadata in memory to improve overall reading efficiency. Datanode is
used to store the actual data. The default minimum storage space of HDFS is a block, and
the default size of each block in Datanode is 128 MB.

When the user stores data, the Namenode splits the data according to the size of
the pre-set block, and then stores the split data separately into Datanodes and makes a
redundant backup. Then, Namenode will generate metadata to record the storage location
of data blocks in Datanode and the mapping relationship between data blocks. When the
user reads the data, the first request is made to the Namenode, which queries the mapping
table to determine the location of the data block in the Datanodes. Then, all data blocks
from the Datanodes are read out, and the data are re-assembled according to the mapping
table [32,33]. Figure 6 shows a flowchart of HDFS data storage derived from Hadoop’s
official website [34].

The original file of the remote sensing image is stored in the HDFS file system. Due
to the large amounts of remote sensing image data, if the HDFS file system only stores
the original image, the hardware loading and network transmission performance cannot
provide real-time image loading for browsing. Using the tile pyramid model can reduce
the data rendered in the current view, thereby reducing image loading times and system
memory loads. Pyramid construction and tile segmentation of remote sensing images are
implemented by the Python script ‘gdal_retile.py’ in GDAL. This script can cut remote
sensing images according to their basic information, such as the data source, starting
coordinates in the x-y direction, generated pixel values, the data compression type used in
slicing, the number of tile layers, and the generated target path.
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The lowest-resolution image tiles are stored at the top of the pyramid structure. In
further pyramid layers, the resolution increases in turn. The original-resolution data are
stored at the bottom of the pyramid. The whole pyramid structure is a series of images
arranged in pyramids with resolutions from low to high. The hierarchical division of the
image pyramid and the process of image size calculation are as follows. Assuming that
the basic level of an image is J, and its size is 2J × 2J or N × N (J = log2N), then the size of
the j-level in the middle of the pyramid is 2j × 2j, where 0 ≤ j ≤ J. The complete pyramid
consists of J + 1 resolution levels, with sizes ranging from 2J × 2J to 1 × 1; that is, 20 × 20

(Figure 7). The total number of elements in the P + 1-level (P > 0) pyramid is:

N2
(

1 +
1
41 +

1
42 + · · ·+ 1

4P

)
(1)
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Hadoop Archive organizes the tile pyramid of remote sensing images. Hadoop
Archive is a small file-merging method of Hadoop. The tiles of each image are packaged into
a ‘.har’ format file in Hadoop Archive and stored in HDFS. We create ‘J + 1’ subdirectories
in the image storage file to store image data for each pyramid level and create another
subdirectory under each directory to store tiles for each level of the pyramid image. The
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tile data are segmented based on the row and column numbers, and the specific number of
subdirectories depends on the number of tile rows in the pyramid image.

Establishing a pyramid and image tile segmentation can significantly improve the
speed and performance of image preview but will take up more storage space. The pyramid
is a collection of image versions with different resolutions. However, due to the substantial
capacity scalability of the HDFS distributed file system, sacrificing storage space for better
image preview is a worthwhile efficiency optimization strategy.

2.3. Scheduling of Remote Sensing Images
2.3.1. Efficient Retrieval of Remote Sensing Images

Remote sensing image retrieval is based on multiple retrieval factors, including spatial
location, time range, product set, cloud amount, etc. Spatial location retrieval depends
on a spatial index. To further improve the performance of image retrieval, retrieval of
the spatial location is also based on a multi-layer Hilbert grid, which transforms complex
spatial intersection operations into simple coding matching (Figure 8). The specific steps
are as follows:

1. Wait for the user to submit the search conditions. The area of the retrieved region is
denoted as S1. The Hilbert level corresponding to the product set is retrieved from the
PostgreSQL cluster’s ‘Product Set’ table, designated as L0. The grid area is denoted
as S0;

2. If S1 ≤ S0, the code of the L0-level Hilbert grid that intersects with the retrieval area
is returned directly; if S1 > S0, we find the minimum Hilbert grid that can surround
the search area and mark its grid level as L1.

3. The L1-level grid is divided by a multi-layer Hilbert grid iteration, and the grid outside
the retrieval area is eliminated in the division process. Once divided into L0-level
grids, all L0-level Hilbert grid codes intersecting with the retrieval area are returned.

4. The search factor submitted by the user and the calculated Hilbert code set is transmit-
ted to the PostgreSQL cluster for query. Finally, the image sets retrieved from different
PostgreSQL databases are collected, merged and returned to the client.
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2.3.2. Transmission of Remote Sensing Image Tiles

To load remote sensing image tiles, we first need to calculate the row and column
numbers of the image tiles to be loaded according to the latitude and longitude range of
the client’s current view. Assuming that the current pyramid level is N, the degree of the
partition interval between tiles at that level is D. The row and column number calculation
process of the tiles to be loaded is as follows:

1. First, we obtain the zoom ratio of the current view and the screen coordinates of the
bottom left and top right. Then, the screen coordinates are converted into geographic
coordinates in the lower-left corner (XLB, YLB) and upper-right corner (XRT, YRT). The
corresponding pyramid level N is calculated based on the view scaling.

2. Traverse the previously retrieved remote sensing images. If the image is outside the
current view range, the tile of the image is not read. If the image intersects with
the current view range, continue to the next step. If the image is entirely within the
current view range, all tiles of the N-level pyramid of the image are read. In addition,
to reduce unnecessary tile reading, only the latest image tiles in the retrieval time
range are read for the image overlap area in the current view.

3. Calculate the row and column numbers of the N-level pyramid tiles in the lower-left
corner of the current view based on (XLB, YLB):{

colLB = XLB+180
◦

D

rowLB = YLB+180
◦

D

(2)

4. Calculate the row and column numbers of the N-level pyramid tiles in the upper-right
corner of the current view according to (XRT, YRT):

{
colRT = XRT+180

◦

D

rowRT = YRT+180
◦

D

(3)

5. Read the image tiles in the collection {(colLB, rowLB),(colRT, rowRT)} from the HDFS
distributed file system.

2.3.3. Visualization of Remote Sensing Images

Visualization of remote sensing image tiles is achieved through the Leaflet library
(Figure 9), which is an open-source online mapping JavaScript library developed by
Vladimir Agafonkin’s team. Although its source code is only 33 KB, it has most of the
functionality required for developing online maps [35,36]. The user view mainly includes
map translation, scaling, browsing, image tile display and image metadata query functions.
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2.4. Strategies for Optimizing Image Scheduling Efficiency

Section 2.3 describes the core method of remote sensing image scheduling. The
scheduling process is divided into three steps:

1. According to the data request, retrieve the required image dataset from the PostgreSQL
database cluster;

2. Retrieve image tiles from the HDFS file system through the I/O interface;
3. Visualize and render the image tiles through Leaflet and present the final view to

the client.

One can achieve faster image data scheduling through these steps, but it is still not a
real-time second-scale response. To further optimize the scheduling efficiency, this section
describes measures that improve data retrieval, transmission, visualization and other
aspects, including mechanisms for image tile prefetching, multi-threading and ring caching.

2.4.1. Ring Caching Mechanism

When scheduling images, the computer will continue to allocate and release memory
when performing many read and write operations. The memory size of each allocation
and release is inconsistent. Frequent memory operations can lead to a large amount of
fragmented memory, resulting in a gradual decrease in CPU access to memory efficiency,
and computer stalling [37]. Therefore, we designed a multi-caching ring buffer design to
display images. The core principle is to apply for continuous memory so that data storage
and release occur within a closed-loop memory address. This design can handle a steady
stream of data without continuing to apply for new memory space to temporarily store
new data (Figure 10). After the remote sensing images are segmented and resampled, the
data size of each image tile is about 1~2 MB. The primary purpose of the ring caches is
to act as a data transfer station for loading image tiles. Therefore, we set the size of each
memory block to 3 MB to ensure that the image tiles are scheduled correctly.
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To ensure the correctness of the input/output order in the ring buffer, two types of
pointers are set for the ring buffer—a read pointer and a write pointer. The read pointer
points to the data being read in the ring buffer, while the write pointer points to its writable
memory. Moving the read and write pointers ensures that the order of reading and writing in
the buffer is not disordered. The pointer movement process of the ring caching mechanism
depends on the multi-threading mechanism, and their specific interaction methods will
be introduced in Section 2.4.3. A traditional chain buffer may allocate new storage space
to store new data when writing. During readout, the storage space of discarded elements
may be released. All storage space in the ring buffer is allocated in advance. All write and
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read operations are carried out within a fixed storage space. The data are emptied for the
cache where the data have been read, but the storage space is not released. So, compared to
an ordinary chain cache, the ring cache avoids frequent allocation and release of storage
space during the data transmission process, improving the data scheduling efficiency and
storage stability.

2.4.2. Tile Prefetching Mechanism

Users may frequently perform translation and scaling operations when previewing
images. The view needs to perform dynamic data scheduling according to user viewpoint
changes. However, suppose the data scheduling process is restarted when the required
data have entered the view range. In that case, the preview process will inevitably stagnate,
making it fail to meet the real-time requirements. Therefore, the image tile prefetching
problem must be considered.

Inspired by the binary tree traversal algorithm, the image tile prefetching mechanism
is divided into breadth-based prefetching and depth-based prefetching.

• Breadth-based prefetching is used to prefetch image tile data in the scene of the view
translation operation. The purpose is to read the image tile data spatially adjacent to
the current view area and transfer it to the cache area in advance. Figure 11 shows a
schematic diagram based on the breadth prefetching model. The grey area represents
the current view area range, while the white area represents the prefetching range for
the tiles. The side length of the prefetching range is twice the side length of the current
view range.
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• Depth-based prefetching is used for image tile data prefetching under map zoom
operations. The purpose here is to read the image tile data of the current view area
from the adjacent zoom levels and transfer it to the cache in advance. A schematic
diagram based on the depth-based prefetching model is shown in Figure 12. The
left side of the image is the image pyramid. Assuming that the image pyramid
level corresponding to the scaling ratio of the current view is k, the k + 1-level and
k − 1-level image pyramid tiles are prefetched from the storage system to the cache.
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To respond quickly when the user sends a signal that the view range changes, we
divide the roaming direction of the view into ten categories. These comprise the eight
directions of view plane roaming, view reduction and view amplification. The prefetched
tile blocks are stored in ring memory according to these ten categories. The prefetched tiles
in each category are stored in adjacent memory locations, and pointers are created at the
starting position of each block. When the view range changes in a particular direction, the
cache position of the image tile in that direction is quickly located by a pointer.

2.4.3. Multi-Threading Mechanism

The scheduling process is further optimized using a multi-threading mechanism to
maintain image scheduling efficiency and achieve smooth image data visualization. Multi-
threading refers to a computer using multiple threads to perform concurrent operations
based on software or hardware, thereby accelerating processor efficiency [38]. The image
scheduling process is divided into three threads: an image retrieval thread, an I/O thread
and an image visualization thread.

The image retrieval thread is responsible for retrieving the attribute information
of a desired image from the PostgreSQL database cluster based on the front-end data
request. As shown in Figure 13, to improve the concurrency and capacity scalability of the
PostgreSQL database cluster, differently encoded image metadata are stored in different
databases according to the 3-level Hilbert grid and the 64 databases are deployed to four
servers according to the 1-level Hilbert grid division. Each server in the cluster is accessed
through a sub-thread. When the data requested by the user are stored in a server, the
sub-thread corresponding to the server is awakened to perform data retrieval according to
the spatial index.

The I/O thread is responsible for reading the image tile data required by the current
view, which needs to be prefetched into the ring buffer from the HDFS distributed cluster.
When the I/O thread reads the data, it first needs to obtain the DistributeFileSystem ()
instance, which calls an RPC mechanism to access the Namenode through the open ()
method to obtain the description and location information of the requested data block.
Then, the information obtained is read to the Datanodes.
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The image visualization thread is responsible for reading the image tile data from the
ring buffer to the user view. When the user retrieves image data, the image tile data are read
into the first memory in the ring buffer by the I/O thread to wake up the image visualization
thread. Then, the pointer to the cache address is passed to the image visualization thread.
The image visualization thread then begins reading the data to the user view through the
pointer. When the user view range changes, the image visualization thread returns the
pointer of the data removed from the view range to the I/O thread, and the I/O thread
clears the cache of these data. At the same time, the image visualization thread finds the
available prefetched data in the ring buffer and reads it to the view. Finally, the image
visualization thread submits the read data information to the I/O thread, so that the I/O
thread reduces the read amount of the new round of prefetched data.

As the image retrieval thread, I/O thread and image visualization thread are not
executed at the same time, the I/O thread should wait for the memory storage space to be
empty before writing data, while the image visualization thread needs to wait for the space
to not be empty before reading data. A pointer tunes these two waiting processes. Two
types of pointers for the ring buffer are set: ‘Is writing’ and ‘Is reading’.

‘Is writing’: If the identifier is ‘True’, the cache is being written to data by the I/O
thread. Therefore, if the image visualization thread reads the data too fast, it will be paused
at the cache. After waiting for the I/O thread to write and reset the ‘Is writing’ identifier to
‘False’, the image visualization thread can read the data in the cache area.

‘Is reading’: If the identifier is ‘True’, the data in the cache are being used by the image
visualization thread. At this time, the I/O thread cannot read and write to the memory
buffer. When the data are moved out of the view range, and the I/O thread receives the
cache emptying instruction, the I/O thread resets the identifier to ‘False’ and empties the
cache. The I/O thread can then write data to the cache.

Figure 14 shows the interaction between the multi-threading and ring caching mecha-
nisms. The ‘Is writing’ and ‘Is reading’ pointers ensure that the multi-threading mechanism
does not mess up the process of dispatching data from the ring caches. This does not mean
that the two threads are sequential, but are interleaved. When the I/O thread reads the
data and stores it in the hollow memory space of the ring cache, the memory is passed to
the image visualization thread. The I/O thread itself continues to read data from the HDFS
distributed system and then stores it in other empty memory spaces in the ring buffer. In
such a scheduling process, the I/O thread always writes and leaves to the empty memory
of the ring cache, and the image visualization thread reads and leaves from the non-empty
memory. Thus, fast data scheduling is achieved.
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too fast, and the image visualization thread is locked).

3. Results
3.1. System Testing
3.1.1. Test Environment Deployment

In this experiment, 14 virtual machines were created by VMware software to build a
system cluster. The configuration of the virtual machines is shown in Table 3. Among them,
one was used to build the system server, four were used to create the PostgreSQL database
cluster, one was used to build the Namenode of the Hadoop cluster, and eight were used
to build the Datanodes of the Hadoop cluster. All virtual machines were on the same
LAN. The environment was limited to system testing. A complete set of fully distributed
Hadoop clusters often requires several to dozens of dedicated high-performance servers
as computer nodes and large-scale high-speed networks must be deployed to achieve
interconnection of various nodes.
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Table 3. Virtual machine configuration parameters.

Purpose of the Virtual Machine Quantity Parameters for the Virtual Machine

Web Server 1
CPU: 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50 GHz, Memory: 16 GB,

HDD: 200 GB, NIC: 1000 Mbit/s,
OS: Windows 10

PostgreSQL Clustering 4
CPU: 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50 GHz, Memory: 4 GB,

HDD: 200 GB, NIC: 1000 Mbit/s,
OS: CentOS 7

Namenode 1
CPU: 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50 GHz, Memory: 4 GB,

HDD: 200 GB, NIC: 1000 Mbit/s,
OS: CentOS 7

Datanodes 8
CPU: 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50 GHz, Memory: 2 GB,

HDD: 200 GB, NIC: 1000 Mbit/s,
OS: CentOS 7

3.1.2. Experimental Data

Since collecting and downloading remote sensing images requires much time and
storage space, this experiment only collected remote sensing images from three datasets:
Landsat 5 TM, Landsat 8 OLI/TIRS and Sentinel-2A MSI. A total of 252 GB of images
was obtained to test the storage and image scheduling performances of RSIMSS. To test
the retrieval performance of RSIMSS with massive image sets, the experiment virtualized
10,000,000 image metadata in batches according to the metadata structure of the three
image datasets and stored them in the PostgreSQL cluster. The virtual image metadata
were evenly distributed worldwide. The information on the experimental data are shown
in Table 4.

Table 4. Experimental data.

Datasets Resolution (m) Time Coverage Dimensions (km2) Hilbert Grid Level

Landsat 5 TM 30 1 January 1990–31 December 2010 185 × 185 6
Landsat 8
OLI/TIRS 30 1 January 2014–31 December 2020 185 × 185 6

Sentinel-2A MSI 10, 20 1 January 2018–30 June 2022 290 × 290 6

3.1.3. Storage Performance Testing of the RSIMSS

To test the storage performance of RSIMSS, a CEPH distributed storage system was
selected as a reference for comparison, which is a popular distributed storage system. It uses
the CRUSH algorithm to realize decentralized distributed storage. It is suitable for storing
massive datasets and has uniform data storage distribution and high parallelism [39].

With RSIMSS and CEPH deployed under the same hardware conditions, the following
two tests were constructed to evaluate the performance of their image data storage.

Test 1: Under the same client-server, 5, 10, 20, 50, 75, or 100 images were randomly
selected. According to the same order, RSIMSS and CEPH were used to upload and down-
load images, respectively, and the average upload and download speeds were recorded.
The test results are shown in Figure 15.
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Test 2: This was used to test the concurrency of RSIMSS and CEPH by simulating
multiple users through concurrent I/O processes. Their input and output performances
were tested under 10, 20, 50 and 100 concurrent I/O processes. The image data read by
each thread were 1 GB in size. The test results are shown in Figure 16.
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The test results show that RSIMSS had slightly lower data upload speeds than CEPH,
but the former data download speed was better than the latter. In the case of multi-process
access, with increases in the number of I/O processes, the image upload/download speeds
of RSIMSS and CEPH remained stable, which proves that both have excellent concurrency.
However, under the storage mode with remote sensing image single entry and multi-user
concurrent access, the download speed requirement is much higher than the upload speed.
Therefore, RSIMSS is more suitable for remote sensing image storage than CEPH. Due to



ISPRS Int. J. Geo-Inf. 2023, 12, 199 18 of 24

the experimental environment’s limitations, testing the capacity scalability and stability
of the storage system was challenging. However, Arafa [40], Peter [41] and others have
done research in this area. Although the storage capacity of the CEPH system can be
expanded infinitely, this process is not smooth. The change in Crushmap during each
expansion will lead to CEPH rebalancing, with frequent changes impacting its internal
stability. The underlying distributed file system HDFS in RSIMSS adopts a centralized
metadata structure. Datanodes are almost unlimited in capacity expansion. Blocks in
Datanodes will back up copies at other nodes. Even if a failure occurs, it does not affect the
external service of the cluster, so the system stability is high.

3.1.4. Image Retrieval Performance Test of the RSIMSS

This experiment tested how RSIMSS improved the spatial retrieval performance of
remote sensing images through the multi-layer Hilbert spatial index algorithm. The re-
trieval efficiencies of the multi-layer Hilbert spatial index and BRIN spatial index algorithm
in PostGIS were compared under the same server environment. PostGIS is an extension
module of the PostgreSQL database, which follows the Open GIS specification and provides
functions such as spatial object building, spatial data indexing, spatial data manipulation
functions, and spatial data operators. The two most widely used spatial index algorithms
in PostGIS are GIST and BRIN. The BRIN index is chosen as the contrast reference because
the GIST index has a complex structure and large storage space, making it more suitable
for spatial operations with complex spatial relations. BRIN is more suitable for spatial data
retrieval when there are large amounts of data and continuous spatial distribution and is
more suitable for retrieving remote sensing images.

To compare the image retrieval performance of the multi-layer Hilbert spatial index
and BRIN spatial index in PostGIS, three polygonal regions were selected for image retrieval
(Figure 17).
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Figure 17. Areas used for the retrieval performance test.

The three retrieval regions are from different global locations and have different sizes.
Region A1 is the smallest and only lies in a single Level 3 Hilbert grid, where the imagery
metadata are stored in the same database. Region A2 spans multiple Level 3 Hilbert
grids but is only in a single Level 1 Hilbert grid, and the imagery metadata for the area
are stored in multiple databases on the same server. Region A3 is the largest and spans
multiple Level 1 Hilbert grids, with the imagery metadata stored on different servers in the
database cluster.

Test 3: To test the image retrieval performance, a multi-layer Hilbert spatial index and
BRIN spatial index were used to retrieve images from the above three regions. The time
consumed is shown in Figure 18.
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number of images retrieved.

The Test 3 data show that the number of images retrieved from Region A1 was 6607,
and the Hilbert index and BRIN index retrieval times were 0.6 s and 1.1 s, respectively. The
retrieved data increased from 6607 in A1 to 1,193,044 in A3, the Hilbert index retrieval time
increased to 3.6 s and the BRIN index retrieval time increased to 11.5 s. The test results
show that the retrieval efficiency of the multi-layer Hilbert spatial index designed in this
paper is better than the BRIN index. The advantage becomes more evident with increasing
amounts of retrieved data.

3.1.5. Image Scheduling Performance Test of the RSIMSS

The RSIMSS adopts multi-threading, ring cache and prefetching mechanisms to opti-
mize image scheduling. These three optimization mechanisms must be started sequentially,
as subsequent mechanisms can only be started if the previous mechanism has started. To
test the improvement conferred by each mechanism to image scheduling performance, we
componentized them in the service layer of the RSIMSS and controlled their activity via
interfaces. The invocation status of the components can be divided into three cases:

• Case 1: All three optimization mechanisms are closed;
• Case 2: Only the ring cache mechanism is enabled;
• Case 3: Simultaneously start the ring cache mechanism and the multi-threading

mechanism;
• Case 4: All three optimization mechanisms are started.

The following two tests were designed in this experiment.
Test 4: Cases 1, 2 and 3 were used to test the image scheduling efficiency of RSIMSS: a

total of 20 image tiles were scheduled in different user views. After the image retrieval was
completed, the timer was set at the image tile read from the HDFS cluster. Statistical image
tiles take time from the start of reading to full display in the user view. The test results are
shown in Figure 19.
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Test 5: The view roaming efficiency of RSIMSS is tested by cases 3 and 4. This test
performed pan, zoom-in, and zoom-out operations 20 times. The elapsed time between
mouse release and refreshing the user’s view was recorded. The results are shown in
Figure 20.
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The results of Test 4 show that the average times for image tile scheduling in cases 1, 2
and 3 were 1.93 s, 1.66 s and 1.00 s, respectively. The scheduling time was reduced by 0.27 s
when only the ring cache mechanism was started and by 0.93 s when both the ring cache
and multi-threading mechanisms were started. The results of Test 5 show that the average
times taken for panning, zooming in and zooming out of the view in case 3 were 0.84 s,
0.96 s, and 0.95 s, respectively, while the average times in case 4 were 0.46 s, 0.54 s, and
0.56 s. With the support of a 1000 Mbit/s network card, the prefetching mechanism reduces
the view roaming time to about half a second, realizing real-time roaming response.

3.2. Discussion of Test Results

Section 3.1 describes RSIMSS performance tests using remote sensing imagery from
different data sources, including 252 GB of image files and 10,000,000 pieces of image
metadata. A total of five experimental tests were carried out, with the results showing that
RSIMSS provides efficient and stable image storage, retrieval and scheduling performance.

With increases in the number of Earth observation satellites, the number of remote
sensing images has gradually increased. Theoretically, the capacity of the remote sensing
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image storage system must be indefinitely expandable. The remote sensing image files
and tile pyramid of RSIMSS are stored in the HDFS distributed cluster. HDFS is based
on using the Namenode of centralized metadata to control the storage system as a whole.
The Datanodes can be extended to any number of locations, and communication and data
transmission between nodes can be undertaken through the network. Many nodes form a
file system network. This architecture makes HDFS almost unlimited in capacity scalability,
making it suitable for mass remote sensing image data storage. In use, users do not need
to care about the image storage details and only need to manage and store image data
through the Namenode. Tests 1 and 2 compared the image input/output performance and
concurrency of RSIMSS and CEPH. The test results show that although RSIMSS and CEPH
have higher storage performance, HDFS has higher system stability, making it more suitable
for storing massive image datasets with a single entry and multi-user concurrent access.

All the metadata of the remote sensing images are stored in the PostgreSQL database
cluster. The automatic metadata extraction and storage algorithm is customized according
to each data source’s metadata characteristics, dramatically reducing the workload and
avoiding the human error risk of manual storage. We designed a multi-layer Hilbert spatial
index algorithm based on a Hilbert space-filling curve. According to the characteristics of
Hilbert grid segmentation, the global image metadata are evenly stored in 64 databases on
four servers in the PostgreSQL cluster, which improves the cluster’s capacity scalability and
I/O concurrency. The retrieval algorithm converts complex spatial intersection operations
into simple code matching in image retrieval. The multi-level Hilbert grid division method
enables the system to quickly filter out a large number of images when performing spatial
queries and achieve accurate retrieval area positioning. Thanks to the extremely high
locality retention of the Hilbert curve, deploying the PostgreSQL cluster according to the
Hilbert grid division method avoids cross-server data retrieval as much as possible. Even
when this cannot be avoided, retrieval efficiency can be improved by using multi-threaded
parallel retrieval. According to the Test 3 outcomes, the RSIMSS can retrieve millions of
images in seconds. The multi-layer Hilbert spatial index has higher and more stable spatial
retrieval performance than the BRIN index, making it more suitable for retrieving massive
remote sensing image datasets.

The image scheduling process is divided into three parts: image tile retrieval, trans-
mission and visualization. In Section 2.4, ring cache, multi-threading and tile prefetching
mechanisms were designed to optimize the scheduling process. Although the optimization
strategy is divided into three parts, these three are closely linked, and it is not a simple
sequential execution process. As the basis of the entire image scheduling process, the ring
caching mechanism is the data transfer station for image transmission, image reading, and
tile prefetching. The ring cache is a contiguous memory allocated in advance, eliminating
the frequent allocation and release of storage space during data reading, avoiding memory
fragmentation, and improving system stability. The multi-threading mechanism acts as a
regulator of the entire image-scheduling process. It divides the writing and reading of im-
age tiles in the ring cache into two parallel processes, accelerating the scheduling efficiency.
Two pointers control the correct order of image tile writing and reading to ensure that the
scheduling process is not disordered. The image tile prefetching mechanism optimizes
the view roaming efficiency of the image tiles. It reads the image tiles adjacent in space
and resolution to the current view and stores them in the ring cache in advance. It then
quickly locates the storage location of the prefetching tiles through the pointer when the
user makes roaming instructions. According to the Test 4 and 5 data, the three optimization
mechanisms work together to greatly improve the image tile scheduling efficiency, allowing
real-time data scheduling and view roaming.

In summary, RSIMSS has excellent storage, management, retrieval and scheduling
performance of massive remote sensing images. Its advancement and advantages mainly
come from the following aspects: (1) According to the data format characteristics of remote
sensing images, a HDFS distributed file system and PostgreSQL relational database are
used to hybrid manage remote sensing images, so that RSIMSS has both the powerful
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transaction processing ability of relational databases and the massive data throughput
ability of distributed file systems. (2) Aiming to evaluate the spatial characteristics of
remote sensing images, a multi-level Hilbert grid coding is designed and applied to spa-
tial index construction, rapid retrieval area location and PostgreSQL cluster deployment.
RSIMSS converts complex spatial intersection operations into simple coding matching,
substantially improving the spatial retrieval performance of multi-source heterogeneous
remote sensing images. Notably, multithreading mechanisms realize fast cross-database
and cross-server queries. (3) RSIMSS is not limited to the traditional spatial index algorithm
and tile pyramid technology to optimize the efficiency of image scheduling. At the same
time, according to the data transmission characteristics of remote sensing images in the
computer network, three new optimization mechanisms (ring cache, multithreading and
tile prefetching mechanism) are used to achieve real-time scheduling and data roaming.

4. Conclusions

Remote sensing images are increasingly important in environmental protection, disas-
ter prevention and engineering. They have become one of the most critical data sources in
many industries. However, managing and scheduling large amounts of remote sensing
imagery remains a considerable challenge. This study designs and develops a new remote
sensing image management system (RSIMSS) to achieve efficient storage and real-time
scheduling of massive remote sensing image datasets.

Distributed file systems have gradually emerged due to their powerful capacity expan-
sion capabilities and data throughput, becoming one of the mainstream methods to store
massive remote sensing images. However, the data retrieval method of the distributed file
system is based on the file, and it is difficult to identify the specific attribute information in-
side the file. Therefore, realizing the attribute retrieval and spatial retrieval of multi-source
heterogeneous remote sensing images is difficult. RSIMSS uses the relational database
and the distributed file system to manage remote sensing images in a hybrid manner. The
PostgreSQL database is used to manage the structured metadata of remote sensing images.
A unified data organization integrates and stores the multi-source heterogeneous image
metadata. The spatial index is established according to the multi-layer Hilbert grid to
improve the spatial retrieval performance of the image. HDFS stores unstructured file
data of remote sensing images with high I/O performance and almost unlimited capacity
scalability. RSIMSS gives full play to the advantages of relational databases and distributed
file systems, providing a new mode for storing and managing massive remote sensing
image data.

Scheduling remote sensing images is more computer-oriented research, and its process
relies on computer hardware and network transmission. Presently, most of the research on
remote sensing image scheduling efficiency optimization methods is regarding the spatial
index algorithm and the tile pyramid model, which have not been further explored. This
paper analyzes the data transmission process of remote sensing images between the storage
system, server and front end and divides the image scheduling process of RSIMSS into
three modules. The data retrieval module is responsible for retrieving remote sensing
images from the PostgreSQL cluster via the Hilbert spatial index. The data transmission
module is responsible for input/output of remote sensing image tiles from the HDFS file
system according to the instructions of the user and administrator. The data visualization
module is responsible for visualizing and rendering the remote sensing image tile data
through the Leaflet, and passing the final view to the user layer for display. At the same
time, three scheduling optimization strategies (ring cache mechanism, multi-threading
mechanism and tile prefetching mechanism) for RSIMSS were also designed. According to
the test results, the three optimization mechanisms work together to greatly improve the
scheduling efficiency of image tiles, and realize real-time data scheduling and view roaming.
Based on the spatial index algorithm and tile pyramid model, this paper advances the
research on remote sensing image scheduling efficiency optimization from the perspective
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of computer network transmission. The optimization strategy of RSIMSS provides a novel
strategy for the real-time scheduling of remote sensing images.

However, there are still some areas for improvement in the RSIMSS process. First
of all, due to hardware constraints, the small HDFS distributed file system deployed is
limited to testing the I/O performance of RSIMSS and fails to test the capacity scalability
and system stability of RSIMSS. In addition, the current RSIMSS mainly focuses on data
storage, management and scheduling. Still, in the future, we hope to further develop
remote sensing image processing functions for RSIMSS on the reserved function expansion
interface so that RSIMSS covers the whole process of remote sensing images from retrieval
and scheduling to application.
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