Supplementary Material:

Interaction of Crime Risk across Crime Types in Hotspot Areas

Hong Zhang '?3, Yongping Gao 2%*, Dizhao Yao 22 and Jie Zhang 123

1 Key Laboratory of Virtual Geographic Environment, Ministry of Education,
Nanjing Normal University, Nanjing 210023, China

2 State Key Laboratory Cultivation Base of Geographical Environment
Evolution (Jiangsu Province), Nanjing 210023, China

3 Jiangsu Center for Collaborative Innovation in Geographical Information
Resource Development and Application, Nanjing 210023, China

* Correspondence: 211302077@njnu.edu.cn; Tel.: +86-136-9796-0344

Supplemental Material

Algorithm S1: DBSCAN algorithm

The steps of the DBSCAN algorithm are as follows:

(1) Generate a list of Eps parameter values: The Eps parameter list is generated using the K-means nearest
neighbor algorithm. The main principle of this algorithm is to first calculate the K-nearest neighbor
distance matrix of the input dataset and then find the median of the K-nearest neighbor distances of all
element points, thus forming the K-means nearest neighbor set. To take the K-means nearest neighbor
set as the Eps parameter list, the specific steps are as follows:

(1.1) Calculate distance distribution matrix DiSt,,«, > as shown in formula 1, where n is the number
of element points in the dataset and dist(i, j) is the Euclidean distance between element point i and
element point ;.

Distpy, ={dist(i, D1 <i<n1<j<n} [1]

(1.2) Arrange each row of the distance distribution matrix in ascending order DiSt,, . Then, average

the K (1 <K <n) column of the matrix to obtain m After subtracting the self-attenuation value (A =
0.3), obtain the Eps parameter candidates, as shown in formula 2.

Epsg = (1 - 2*)Dg (2]
(1.3) Calculate all K values, and obtain the Eps parameter list, as shown in formula (3).

Eps_list = {Epsg|1 < K < n} [3]

CREATE OR REPLACE FUNCTION pearson.f_dbscan_sps_list_center(
table_name character varying)
RETURNS TABLE(eps double precision)
LANGUAGE 'plpgsql'
COST 188
VOLATILE PARALLEL UNSAFE
ROWS 1888

AS SBODYS
declare
string wvarchar;
rownum integer;
BEGIN
EXECUTE format('select count(#)-1 from %=', table_name)
into rownum;

raise notice '%',rownum;

string = format('select avgldistance) = (1 - 0.3 = ©.3) Eps_List
from (select #, (row_number() over ()} %% %s as index
from (select tl.sid,
t2.s1d,
tl.center,
t2.center,

st_distance(tl.center::geometry, t2.center::gsometry) as distance
from (select = from %s) as tl,
(select = from %s) as t2
where tl.sid != t2.sid
order by tl.sid, distance) as v)
as vl
group by dndex
order by Eps_List', rownum, table_name, table_name);
-= raise notice '%',string;
return query
EXECUTE string;
END
SBODYS;

ALTER FUNCTION pearson.f_dbscan_sps_list_center(character varying)
OWNER TO "crime-analysis"

(2) Generate a list of Minpts parameter values:

The mathematical expectation method based on the self-decay value is used to generate the Minpts
list, as shown in Formula 4. P; is the number of objects in the Eps domain. After all K values are
calculated, the Minpts parameter list is obtained, as shown in Formula 5.

MinPts, = =2y, P 4]

MinPts;;o, = {MinPtsg|1 < K < n} [5]

CREATE OR REPLACE FUNCTION pearson.f_dbscan_pts_list_centerl(
table_name character varying)
RETURNS TABLE(pts double precision)
LANGUAGE 'plpgsql’

COST 100
VOLATILE PARALLEL UNSAFE
ROWS 1000
AS $BODYS
declare
epslist double precision[]; ----eps
h double precision;
distance double precision[];
dist double precision;
num double precision := 0; ---
nums double precision; ----

ptslist double precision[];
points geography([];
pointnum double precision;

BEGIN
---crime data
EXECUTE format('select array(select center from %s)', table_name)
into points;
== raise notice 'points:%',points;
pointnum = array_length(points, 1);
- raise notice 'pointnum:%',pointnum;
---eps
EXECUTE format('select array(select eps from pearson.f_dbscan_eps_list_center(%L))"', table_name)
into epslist;
— raise notice 'epslist:%',epslist;

EXECUTE format('select array(select distance from (select
tl.sid as sidl,t2.sid as sid2, tl.center as centerl,t2.center as center2,
st_distance(tl.center::geometry, t2.center::geometry) as distance
from (select * from %s) as tl,
(select x from %s) as t2
where tl.sid != t2.sid) as vv) as vvv', table_name, table_name)
into distance;
= raise notice 'distance:%',distance;

foreach h in array epslist
loop
foreach dist in array distance
loop
if dist < h then
num = num + 1;

else
num = num + ©;
end if;
end loop;
return query select round(num * ©.7 / pointnum);
num = 0;
end loop;
END
$BODYS;

ALTER FUNCTION pearson.f_dbscan_pts_list_centerl(character varying)
OWNER TO "crime-analysis";

(3) Eps and Minpts parameter pair optimization: The Eps and Minpts parameter value pairs
corresponding to different K values are selected in turn as the clustering parameters of the DBSCAN

algorithm, and the number of clustering results using Eps and Minpts parameter values corresponding to
different K values is obtained, as shown in Formula 6.

MinPts;

Density; = Tpsz

[6]

CREATE OR REPLACE FUNCTT
table_name character
RETURNS TABLE (center geogra
LANGUAGE 'plpgsql’

CoST 100
VOLATILE PARALLEL UNSAFE
ROWS 1680

f_center_stat_hotspotl(

phy, cid integer, convexhull geography, sdel geography, sde2 geography, sde3 geography

AS SBODYS
BEGIN
return query EXECUTE format(
‘select distinet newcenter,cid, convexhull,sdel,sds2,sde3
from(

select *, glib.f _creat v_tablel.stddisty

5) sdel,
2,

glib.f_create_sde
glib.f_create_sde le2.stddisty»3, 5) sde
from(

sqrt{(sum(power (ST_V("center
count(#)over(
from(

select center,cid,centerx, centery,

From(
select center:igeometry ,<id,
ST_X(ST_Centroid(ST_collect(center: :geometry)over (partition by as centerx,
ST_Y(ST_Centroid(ST_collect(center: igeometry)over (partition by as centery
from{

select center,
ST_ClusterDBSCAN (center: igeometry, eps :=0.005174924817333853 , minpoints := 8) over() as cid
from %s

v where cid>=0

Jes v_table3’,"table_name");
END
$BODYS;

When the number of clusters in the clustering result tends to be stable, the optimal parameters are
selected inversely through the K value. Stable interval refers to the stable interval obtained for a number
of consecutive times with the same number of clusters that becomes stable with the increase in the K
value, which is recorded as the optimal number of clusters. By selecting the corresponding K value, the
corresponding Eps and Minpts are the optimal parameters.

This paper considers that when the number of clustering results does not change for five consecutive
times, the number of clustering results is stable, and the current number of clustering results is recorded
as the optimal number of clustering results. When the number of clustering results is stable, we continue
the above operations until the number of clustering results changes.

The interval from the optimal number of clustering results to the change in the number of clustering
results is called the stable area. For the stable area corresponding to all the Eps and Minpts parameter
value pairs, the expected Eps and Minpts are obtained, respectively, and Eps and Minpts are taken as the
optimal Eps and Minpts values.

CREATE OR REPLACE FUNCTION pearson.f_dbscan_para_centerl(
table_name character varying)
RETURNS TABLE(eps double precision, minpst dinteger)
LANGUAGE 'plpgsql'

COST 1e@
VOLATILE PARALLEL UNSAFE
ROWS 1808
AS 3BODYS
declare
eps_list double precision[];
minpst_list Adnteger[];
K integer; —-point
flag integer; —-number of clustering results is stable

cluster_num dinteger;
temp integer; --temporary clustering
stable_value integer;

BEGIN
EXECUTE format('select array(select eps from pearson.f_dbscan_eps_list_center(%L))', table_name)
into eps_list;
EXECUTE format('select array(select pts from pearson.f_dbscan_pts_list_centerl(%L})', table_name)
into minpst_list;
EXECUTE format('select count(#) from s ', table_name)

into K;
flag = 0;
temp = 03

- raise notice '%,%,%',eps_list,minpst_list,K;
EXECUTE format('select maxicid)
from (select =*,
ST_ClusterDBSCAN (center:igsometry, eps = %s, minpoints = %s)
over () as cid

fram

select = from %s) as v) as vl1', eps_list[l], minpst_list[1], table_name)
into cluster_num;
raise notice '%,%',K,cluster_num;
stable_wvalue = 2;
- the number of clustering results does not change for five consecutive times
flag = @;
for j in 5..K - 1
loop
EXECUTE format('select max{cid)
from (select =*,

ST ClusterDBSCAN{center::geometry, eps = %s , minpoints := %s)

over () as <id
from (
select = from %s) as v) as vl', eps_list[j], minpst_list[j], table_name
into temp;
if temp = cluster_num
then
flag = flag + 1;
else
flag = 0;
cluster_num = temp;
end if;

raise notice '%,%,%',j,temp,flag;
if flag = stable_value

then
return query select eps_list[j - stable_wvaluel, minpst_list[j - stable_wvaluel;
exit;
end if;
end loop;
END
$BODYS;

ALTER FUNCTION pearson.f_dbscan_para_centerl(character varying)
OWNER TO "crime-analysis";

