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Abstract: To understand the complex phenomena in social space and monitor the dynamic changes
in people’s tracks, we need more cross-scale data. However, when we retrieve data, we often ignore
the impact of multi-scale, resulting in incomplete results. To solve this problem, we proposed
a management method of multi-granularity dimensions for spatiotemporal data. This method
systematically described dimension granularity and the fuzzy caused by dimension granularity, and
used multi-scale integer coding technology to organize and manage multi-granularity dimensions,
and realized the integrity of the data query results according to the correlation between the different
scale codes. We simulated the time and band data for the experiment. The experimental results
showed that: (1) this method effectively solves the problem of incomplete query results of the
intersection query method. (2) Compared with traditional string encoding, the query efficiency of
multiscale integer encoding is twice as high. (3) The proportion of different dimension granularity
has an impact on the query effect of multi-scale integer coding. When the proportion of fine-grained
data is high, the advantage of multi-scale integer coding is greater.

Keywords: spatiotemporal big data; dimensions; dimension granularity fuzziness; multi-scale
integer coding

1. Introduction

The spatiotemporal data reflect the quantitative and qualitative characteristics, spatial
structure, spatial relations, and their changes with time of various elements or phenomena
in the geographical world, which is the basis for human cognition of the geographical
world. Most of the problems we face must be addressed based on data-driven approaches
for understanding better and achieving more efficient and optimal decisions [1,2]. In recent
years, with the development of Internet technology and sensor equipment, the production
mode of spatiotemporal data has changed from passive production and active production
to automatic production, which makes the spatiotemporal data resources we obtain more
abundant [3–5]. We can use the monitoring video to analyze the vehicle operation and
the movement rule of people on the road, realize the tracking and real-time prediction
of traffic conditions, and avoid traffic and congestion. It can also improve the accuracy
of weather forecasting by establishing models for continuous years of observation data.
However, many social phenomena are complex. In order to reveal their essence, we need
more cross-scale data [6,7]. For example, in recent years, the outbreak of COVID-19 has
seriously affected the development of society. Many scholars have contributed to the
prevention of the outbreak of COVID-19 by analyzing the correlation between relevant
indicators at different scales and confirmed cases of COVID-19 [8,9]. Therefore, we can
see the importance of different scale data for data mining. However, when we query data,
we often ignore the multi-scale impact of data, resulting in incomplete data acquisition.
Therefore, there is an urgent need for a multi-granularity dimension management method
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of spatiotemporal data. The rest of this paper was organized as follows: “Related work”
introduced the content related to this study. “Method” introduced the DGFQM and the
multi-scale dimension integer coding method. “Results” verified the effectiveness of the
method and analyzed its results. “Discussion” was the content related to the results,
including shortcomings and prospects.

Multi-granularity dimensions of spatiotemporal data mainly included time and space.
First, we understand how to manage time and space in spatiotemporal data management.
A popular direction of spatial information management was the method based on the
grid model [10,11], which used a spatial filling curve to build grid code, and improved
the indexing and query efficiency of multi-scale spatial data. For example, Guo [12] and
others proposed an adaptive Hilbert –Geohash geogrid and coding method. Cao et al. [13]
and others used a Hilbert curve to store and retrieve spatiotemporal data. However,
geohash encoding lacked cross-scale spatial relations, resulting in low indexing efficiency.
Zhai et al. [14] and others proposed a level-by-level space-filling curve, which improves the
correlation between multiple levels by connecting adjacent levels. The clustering between
levels of this method was poor, and the existing spatial retrieval strategy only considered
the intersection and the included data that was not considered [15]. To solve the above
problems, Lei et al. [16] proposed a global multi-scale spatial grid coding model, and
designed a strategy to ensure the integrity of spatial queries based on this model. Multi-
scale time was more used for auxiliary processing in simple ways, such as timestamps [17]
and strings [18], which were scattered in file systems [19–21], databases [22–24], and
programming languages. This time management method did not retain the multi-scale
information of time, and it was difficult to manage the multi-scale time uniformly. To solve
this problem, Tong et al. [25] proposed a multi-scale time segment integer coding method,
which uses integer representation of time scale information and location information.
However, the management of multi-granularity dimensions had the following challenges:

First, the intersection query results based on time and other one-dimensional dimen-
sions are incomplete, and the impact of time multi-scale is not considered. The current
fuzzy query method used fuzzy set theory [26] to solve the problem of fuzzy words such as
“left and right” and “probably” in time description, and could solve the new fuzzy problem
caused by multi-granularity [27,28].

Secondly, the current research on multi-granularity dimensions was mainly about
time and space, and other multi-scale dimensions were not discussed. As a kind of
spatiotemporal data, remote sensing data have the ability to cover a wide area of spectrum.
The spectral band spanned from visible light, thermal infrared to microwave, and the
resolution changed from multispectral to hyperspectral, which was an important indicator
for distinguishing physical properties of ground objects in remote sensing data [29,30].
Recently, the application of radio wave imaging technology in daily life had made the band
information span larger [31–33]. Zhang et al. [34] designed five spatiotemporal spectral
integrated storage formats for long-term remote sensing data with time, space, and spectral
information. However, there were few studies on multiscale bands. At present, band
information was represented by unique identifiers in the database system. This method is
not conducive to the unified storage of multi-source information.

Based on the above analysis, we propose a multi-granularity dimensions management
method for spatiotemporal data, which is mainly divided into the DGFQM and multi-scale
dimension integer coding. The DGFQM divided the query results into fuzzy data and
fine data according to the dimension granularities, and obtained complete query results
according to the correlation between different scale codes. Multi-scale dimension integer
coding mainly applied the multi-scale integer coding method to the band. We designed an
association method between arbitrary scale band and multi-scale integer coding to improve
the efficiency of data retrieval.
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2. Materials and Methods
2.1. Dimension

Dimension refers to the inherent and measurable physical properties of physical
quantities. Internationally, the seven basic dimensions, such as time and length, are often
used to represent other physical quantities. Physical quantity under the same dimension has
the function of ordering and is often used to retrieve conditions. However, the dimensions
have multi-granularity characteristics. The multi-granularity dimensions easily lead to
data loss, so we defined the concept of dimension granularity fuzziness, and described the
fuzziness problem.

2.1.1. Dimension Granularity

Granularity refers to the size of the particles. Granularity is measured by particle
diameter (usually long or medium diameter). We expressed the measure of physical
quantity with dimension granularities. Database systems usually use existing units to
represent dimension granularities, such as standard time units (year, month, day, etc.), and
length units (meter, decimeter, millimeter, etc.). The premise of realizing this goal requires
a simple, effective, and easy-to-use multi-granularity dimension system. Therefore, we
defined the relevant concepts as follows:

Definition 1. Dimension Domain, D is a set of completely ordered points that satisfy a sorting
relation. D = {d1,d2,d3, . . . ,dn}, where d1 < d2 < d3 < . . . < dn.

Definition 2. Dimension Particle, G is a set of finite continuous points in a dimension domain.
G = {d1, d2, . . . , dk}, where k is the number of aggregate particles.

Definition 3. Dimension Granularity, R is a set of nonoverlapping dimension particles,
R = {G1, G2, G3, . . . , Gn}.

Definition 4. Dimension Granularity Relations refer to the correlation between different dimension
granularities. The relationship between Dimension Granularities can be divided into equal relations,
finer relations, and coarser relations according to the size of the particles that make up the Dimension
Granularity. Assume that R1 and R2 are two different granularities, and k1 and k2 are the numbers
of particles contained in R1 and R2. k1 = k2, the granularity of R1 is equal to that of R2, R1 = R2;
k1 < k2, the granularity of R1 is smaller than that of R2, R1 6< R2; k1 > k2, the granularity of R1 is
larger than that of R2, R1 6> R2.

Definition 5. Inclusion Relation, A point at a certain granularity can be expressed as a set of
finite points of another granularity, and the inclusion relation exists between the two granularities.
Assume that R1 and R2 are two different granularities, R1 6< R2. For any point at the granularity of
R2, there is always a finite number of corresponding points at the granularity of R1, where x1 is the
point at the granularity of R2 and yi is the point at the granularity of R1.

There are specific conversion rules between these units such as 60 min for an hour.
However, there is not only fixed granularity information but also other granularity infor-
mation. Therefore, it is urgent to implement the limited granularities to represent other
granularities. The dimensions have two different representations: point and segment type.
The point type represents a position on a dimension domain, represented by a value of a
certain granularity. The segment type represents the interval on the dimension domain,
which is represented by two points. This representation method realizes the representation
of various granularities by existing units.

2.1.2. Dimension Granularity Fuzziness

At present, the fuzzy problem adopts the fuzzy set theory. The method calculates the
probability of fuzzy data occurrence through the membership function. In this way, the
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fuzzy point was represented as a two-tuple (d1, δ1), where d1 represented the point, and δ1
represented the membership degree. The fuzzy segment was converted into a quad-tuple
(d1, δ1, d2, δ2), where d1 and d2 were the start point and endpoint, and δ1 and δ2 were the
membership degrees of the start point and endpoint, respectively. The premise of using
the fuzzy set theory was to obtain the fuzzy data set. However, the fuzzy data sets were
obtained through semantic computing or empirical knowledge. The above methods cannot
solve the fuzziness caused by multi-granularity dimensions. Therefore, we described point
fuzziness and segment fuzziness separately.

Compared with fine-grained data, coarse-grained data with multi-granularity dimen-
sions has uncertainty. Therefore, different granularity choices for the same event produce
different results. We defined the fuzziness induced by multi-granularity as the dimen-
sion granularity fuzziness, describing the fuzziness problem of point type and segment
type, respectively.

Point

At present, most database systems use a point of a certain granularity to represent
the state of an object, which is usually an index value. There are different granularities
in practical applications, so granularity conversion is needed. We defined the granularity
transformation function T:

T(dR,H) =h, (1)

where dR is a point at the granularity of R, H is a granularity of transformation, and h is a
point at the granularity of H.

Assume that d1 is a point at the granularity of R1, and R2 is a different granularity from
R1. The conversion of d1 from the granularity of R1 to that of R2 involves the following two
cases: R1 6< R2, there is a unique dimension point d2 at the granularity of R2, i.e., d2 = h;
R1 6> R2, {d2|l < d2 < u} = h, where l~u is a point set of R2. The constant is generally used as
the retrieval condition, so we divided the transfer function T into Ts and Tl.

Ts = min(T(dR,H)), (2)

Tl = max(T(dR,H)), (3)

where Ts is the minimum value converted to H granularity, Tl is the maximum value
converted to H granularity.

Because of the multi-granularity characteristic of dimension, different granularity
description of the same event produces different results. When describing the same event,
coarse-grained points are fuzzier than fine-grained points. For example, the Wenchuan
earthquake occurred on 12 May 2018 (China Standard Time), and the time under the annual
granularity is 2018. The time information at annual granularity is fuzzier than that at daily
granularity. We may miss this fuzzy information when retrieving data.

Segment

The segment represents a binary group [d1, d2], which is all points between d1 and d2.
The granularity of d1 and d2 are R1 and R2. In the ideal case, the segment can represent by
one index value. However, the length of the segment does not correspond to the existing
granularity. Currently, dimension segments represent by two fields, which is inefficient
when querying. With the introduction of multi-scale integer coding, we designed the
following rules to attain a reasonable and smaller number of index values to represent
segments. According to the granularity relationship between d1 and d2, there are two kinds
of cases.

Case 1: The granularity of d1 is equal to d2, i.e., R1 = R2. Assuming the interval length
is L. If Rx = L, select the value at the granularity of Rx to represent this interval, as shown
in Figure 1a. If Rx 6= L, there are two filling methods. One is to fill from coarse-grained to
fine-grained. The following three situations may exist depending on the coverage position
of the index value. (1) As shown in Figure 1b, the index value covers the middle position



ISPRS Int. J. Geo-Inf. 2023, 12, 148 5 of 20

of the interval. (2) As shown in Figure 1c, the coverage of the index value starts at the
starting position d1. (3) As shown in Figure 1d, the coverage of the index value ends at the
endpoint d2. Recalculate the length of the remaining sections and repeat the above steps
until all sections [d1, d2] are covered. The other is to fill from fine-grained to coarse-grained.
We can choose to start filling from the start point d1 or the endpoint d2. This method only
needs to determine the granularity of the starting index value and does not need to perform
multiple calculations. Therefore, we choose this method to study the band.
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value ends at the endpoint d2.

Case 2: The granularity of d1 is not equal to d2, R1 6= R2. First, we needed to convert
the coarse-grained point to a fine-grained point. If R1 6> R2, we reached the point of d1 at
R2 granularity by the transformation function Ts. If R1 6< R2, we converted d2 to the point
at R1 granularity through the transformation function Tl. According to the transformation
function, the starting and ending points of the segment have the same granularity. Secondly,
design the index values according to case 1. The fuzzy problem of segment type is similar
to that of point type. Let the segment D consists of several segments, D= {D1, D2, . . . , Dn}.
T is fuzzy relative to Di.

2.2. DGFQM

There are two main ways to retrieve data through dimensions. One is to query through
a point, and the other is to query through the start point and end point, also known as
the intersection query. Due to dimension granularity fuzziness, data are easily lost when
querying, such as in the following example:

Data record 1: MODIS blue-band image (450–530 nm) of Beiyuan Road, Chaoyang
District, Beijing, at 14:00 am on 15 November 2014.

Data record 2: MODIS visible-band image (380–780 nm) of Chaoyang District, Beijing,
15 November 2014.

Data record 3: MODIS panchromatic image (350–900 nm), Beijing, November 2014.
The above examples show that the same data was described differently due to the

multi-granularity characteristics of temporal, spatial, and spectral attributes. Data record 1
was more accurate than data record 2, and data record 3 was fuzzier than data record 2.
Important data may be missing from query results.

There are two kinds of missing data caused by dimension granularity fuzziness:
coarse-grained missing and fine-grained missing data. Therefore, we divided the query
results into fuzzy and exact data according to scales. Assume O (p1, p2, . . . , pi) is an
object with multiple attributes, where pi represents the i-th attribute. Take the intersection
query as an example. Let the query interval be [p1

i , p2
i ], the corresponding scales are N1
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and N2, respectively. We divided the query result S into S1, S2, and S3, S1, S2, and S3,
i.e., S = S1 ∪ S2 ∪ S3.

s1 =
{

O
∣∣∣O(pi) > max(O(p1

i ), O(p2
i ))
}

(4)

s2 =
{

O
∣∣∣min(O(p1

i ), O(p2
i ) ≤ O(p1

i ) ≤ max(O(p1
i ), O(p2

i )
}

(5)

s3 =
{

O
∣∣∣O(pi) < min(O(p1

i ), O(p2
i ))
}

(6)

where S1 is the set of objects whose scales are larger than p1
i and p2

i ; S2 is the set of objects
whose scales are between N1 and N2; and S3 is the set of objects whose scales are smaller
than p1

i and p2
i .

When N1 = N2, S1 is the fuzzy data set and S2 and S3 are the exact data set. When
N1 6= N2, S1 and S2 are the fuzzy data set and S3 is the exact data set. The DGFQM is to
obtain the missing accurate data and fuzzy data. This method obtains missing data by
analyzing the relationship between different dimension granularity. Since the specific steps
of this method are related to the dimension coding method, we will introduce them in
Section 3.

In practical application, the dimension granularity fuzzy query method must satisfy
the following conditions:

Condition 1: The dimension has a multi-scale characteristic in the concrete application.
Condition 2: Inclusion relationships exist between adjacent levels.
Condition 1 means that a dimension domain can be represented by sets of points with

different dimension granularities, or a point can be represented by multiple granularities.
Condition 2 means that there is an inclusion relationship between adjacent levels, and a
point on a certain scale includes all points on the next fine scale. As shown in Figure 2a, d1 is
expressed as one index value at R1 granularity, two index values at R2 granularity, and three
index values at R3 granularity, respectively. However, R2 and R3 do not satisfy condition 2.
As shown in Figure 2b, d1 can be represented as one index value at R1 granularity, two
index values at R2 granularity, and four index values at R3 granularity. Therefore, there is
an inclusion relationship between adjacent granularities, which satisfies condition 2.
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2.3. Dimension Coding Method

At present, dimensions are expressed in two ways: single-scale dimension coding
and multi-scale dimension coding. Single-scale dimension coding is the representation of
multi-granularity dimensions on a fixed scale. Multi-scale dimension coding represents
multi-granularity dimension by coding at different scales. The existing coding methods are
string coding and multi-scale integer coding. The multi-scale integer coding had been used
in the time segment (multi-scale time segment integer encoding, MTSIC). For a time, MTSIC
has had certain advantages compared to string coding. We extended it to multi-granularity
dimensions, and the implementation method was as follows:

Assuming the dimension is dim(α1, α2 . . . , αn−1, αn), where αi is the number of di-
mension components and n is the number of dimension components. Figure 3 shows the
principle of multi-scale dimension integer coding. Firstly, the components of the dimension
are expressed in binary, and the single-scale dimension integer coding is formed by bit
operation. Then, the multi-scale dimension integer coding is obtained based on the level
information N. Since the bands usually exist in the form of dimension segments, we used
multi-scale integer coding to manage the bands and designed the association method
between multi-scale integer coding and band.
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2.3.1. Multi-Scale Band Integer Coding

The band is encoded with an integer for single-scale band integer coding (SBIC) and
multi-scale band integer coding (MBIC). The main idea of MBIC is to transform the band
information into an SBIC, and then transform the SBIC into MBIC by level information.
Assume that the band was b(l1, l2, . . . , ln−1, ln), where l1, l2 . . . , ln−1, ln were the different
components of the band. An m-bit integer SC is used to represent a fixed-scale band (the
integer types in computers are 32-bit and 64-bit). The SC is transformed into the integer
coding MC of different levels according to the level information.

Since the band span is from kilometer to picometer, a 64-bit integer was used to
represent single-scale band coding. Let the band be b(l1, l2, l3, l4, l5, l6, l7, l8), where the
memory usage of the components of the band is as follows:

1. The range of l8-pm is 0–1000, represented by a 10-bit binary, where 1000–1023 is a
null value;

2. The range of l7-nm is 0–1000, represented by a 10-bit binary number, where 1000–1023
is null;

3. The range of l6-µm is 0–1000, represented by a 10-bit binary number, where 1000–1023
is null;

4. The range of l5-mm is 0–10, represented by a 4-bit binary number, where 10–16 is null;
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5. The range of l4-cm is 0–1000, represented by a 4-bit binary number, where 10–16
is null;

6. The range of l3-dm is 0–1000, represented by a 4-bit binary number, where 10–16
is null;

7. The range of l2-m is 0–1000, represented by a 10-bit binary number, where 10–16
is null;

8. l1-km is represented by a 12-bit binary number.

For example, 1 pm is the fixed scale. The SC is made up of l1(12-bit), l2(10-bit), l3(4-bit),
l4(4-bit), l5(4-bit), l6(10-bit), l7(10-bit), and l8(10-bit) in memory. As shown in Figure 4, the
band range is 0–4096 km, denoted by integers ranging from 0 to 264-1. Since the commonly
used scales (km, m, dm, . . . , nm, pm) are not integral multiples of 2, SC is not continuous.
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Since SBIC already occupies almost all 64-bit integers, it is necessary to select some
integers from them to represent other scale bands. We chose 1-bit from 64-bit to store
multi-scale band integer encoding. In this way, the single-scale band integer at the 1 pm
scale changed from 0~264-1 to 0~263-1, indicating that the range was 0~2048 km, and the
remaining 263 integers were used to store bands of other scales. The 264 integers were
divided into 64 levels according to the structure of the binary tree, effectively including
the commonly used units of length (km, m, dm, . . . , nm, pm), where level 63 consisted of
263 integers, level 63 consisted of by 262 integers, . . . , level 0 was represented by 1 integer,
the minimum scale level was 63, and the relationship between adjacent scales was a factor
of 2. The correspondence between levels and scales is shown in Table 1.

Table 1. Corresponding levels of different scales.

Level Scale Level Scale Level Scale Level Scale

63 1 pm 47 64 31 4 15 64
62 2 46 128 30 8 14 128
61 4 45 256 29 1 cm 13 256
60 8 44 512 28 2 12 512
59 16 43 1 µm 27 4 11 1 km
58 32 42 2 26 8 10 2
57 64 41 4 25 1 dm 9 4
56 128 40 8 24 2 8 8
55 256 39 16 23 4 7 16
54 512 38 32 22 8 6 32
53 1 nm 37 64 21 1 m 5 64
52 2 36 128 20 2 4 128
51 4 35 256 19 4 3 256
50 8 34 512 18 8 2 512
49 16 33 1 mm 17 16 1 1024
48 32 32 2 16 32 0 2048

As shown in Table 1, 64 scales are represented by 64-bit integers, namely: 1 pm,
2 pm, . . . , 1 nm, 2 nm, . . . , 1 µm, 2 µm, . . . , 1 mm, 2 mm, . . . , 1 cm, 2 cm, . . . , 1 dm,
2 dm, . . . , 1 m, 2 m, . . . , 1 km, 2 km, . . . , 2048 km, with scales ranging from 1 pm
to 2048 km. To include the common scale of the band, 1 nm is extended to 1024 pm,
1 µm to 1024 nm, 1 mm to 1024 µm, 1 cm to 16 mm, 1 dm to 16 cm, 1 m to 16 dm,
1 km to 1024 m. As shown in Figure 5, a 64-layer binary tree structure was obtained.
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The MBIC is obtained by the level N and b(l1, l2, l3, l4, l5, l6, l7, l8), and the specific
method is as follows:

1. Single-scale band integer coding calculation: SC is calculated according to Formula (7);

SC = (l1 << 52)̂(l2 << 42)̂(l3 << 38)̂(l4 << 34)̂(l5 << 30)̂(l6 << 20)̂(l7 << 10)̂l8 (7)

2. Multi-scale band integer coding calculation: according to Formulas (8)–(10), the
multi-scale band integer coding mc is obtained by using the level N;

SC = SC << 1 (8)

Deta0 = 1 << (63− N) (9)

MC = (sc >> (64− N)) << (64− N) + Deta0− 1 (10)

where Deta0 is the smallest number in the Nth level.

2.3.2. MBIC Related Operations

Since MBIC represents band data by integers, the related operations in MBIC mainly
involve the addition and subtraction of integers and bit operations. This section introduces
the level calculation and relationship calculation method of MBIC in detail.

Level Calculation

The multi-scale band integer code is a 64-bit integer, so the level information cannot
be intuitively obtained by giving the integer. It is necessary to calculate its level. According
to the parity of MC, the specific methods are as follows:

1. If MC is an even number, its level N is 63;
2. If MC is an odd number, first, calculate how much the high-order bits in front of the

binary of MC − 1 and MC + 1 are the same, i.e., Mid = (MC − 1) ˆ (MC + 1). Secondly,
the level is calculated by calculating how many consecutive zeros are on the left side of
the binary of Mid. MBIC is represented by a 64-bit integer and can use the bifurcation
method to efficiently obtain level information. The branch method judges how many
0 are on the left of the 64-bit integer according to the method of dichotomy.
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Level Relationship Calculation

The multi-scale band integer encoding has a containment relationship and a contained
relationship. The child coding set can be obtained by using the containment relationship,
and the parent coding set can be obtained by the contained relationship.

1. Child coding set: Given a multi-scale band integer encoding MC, the corresponding
level is N. The integer encoding MC′ of the calculated level N′ (N′ ≥ N) is the child
coding set. Let the interval of the child coding set be [C1, C2], where C1, C2 are
calculated as Formulas (11) and (12):

C1 = MC− (1 << (63− N)) + 1 (11)

C2 = MC + (1 << (63− N)) + 1 (12)

2. Parent coding set: Let the MC level be N, and the parent encoding level is N′. The
integer MC′ of the calculated level N′ (N′ < N) is the parent coding set. According
to Formulas (13) and (14), the parent coding set of MC is obtained from N − 1 to 0
through loop variable N′:

Deta0 = 1 << (63− N′) (13)

FMC = (MC >> (64− N′) << (64− N′)) + Deta1− 1 (14)

2.3.3. The Association Method between MBIC and Band

The bands often exist in the form of an interval, and establishing the association
between band intervals and MBIC is crucial for data retrieval. Since MBIC is designed
according to the binary tree rules based on common granularity units, the following rules
are designed to establish the association between band and MBIC:

• Rule 1: The maximum level Nmax of MBIC is not larger than the maximum level Nmax
′

of the start and end point of the band.
• Rule 2: First, the bands are padded with fine-grained to coarse-grained integer encod-

ing, then the bands are padded with coarse-grained to fine-grained integer encoding
until the band interval is filled. The specific filling method is shown in Figure 6, where
L represents the band, and A, B, C, and D represent multi-scale integer coding at
different levels.
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The steps to associate the band with the multi-scale band integer coding are as follows:

1. Convert the start and end point of the bands to the same granularity.

Analyze the levels of the start(b1(li)) and end (b2(lj)) points of the bands. If i 6= j, use
the conversion function to convert coarse-grained to fine-grained. When the granularity of
b1 is coarser than that of b2, the Ts conversion function is used, and when the granularity
of b1 is finer than that of b2, the T1 conversion function is used;

2. Gradually divide and determine its level scope.

Assuming that both b1(li) and b2(lj) are data at the micrometer scale, i.e., i = j = 6,
according to each component, its grade is divided into 6 grades (33~43, 29~33, 25~29,
21~25, 11~21, 0~11). The minimum level Nmin and the maximum level Nmax of the MBIC
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is determined grade by grade. The maximum level is the maximum level at this grade,
i.e., Nmax = 43 at the (33~43) grade. The minimum level calculation is divided into two cases:

• Case 1: If li−1 = lj−1, calculate the band length l, i.e., l = lj − li + 1, and convert l to the
sum of the power of 2, where the maximum value in the addend corresponds to the
level of is Nmin;

• Case 2: If li−1 6= lj−1, calculate the band length l, l = maxj−li + 1, where maxj is the
maximum value of the j-th component, for example, if j = 6, then maxj = 1000. Then
convert l to the sum of the power of 2, where the maximum value in the addend
corresponds to the level of is Nmin;

3. Accurate filling step by step.

According to Table 1, obtain the level N of the corresponding component for each
grade, if N ≤ Nmin, convert the l of this grade to the sum of the power of 2, and obtain the
level corresponding to the addend. Finally, calculate the multi-scale band integer encoding
according to the level information; if N > Nmin, execute the loop body until l = 0. Assuming
that the corresponding scale of N is v, the loop body is as follows:

l = l − v. If l > 0, multi-scale integer encoding is performed on the data of the current
level and N = N − 1, li = li + v; If l < 0, N = N + 1, l = l + v; If l = 0, multi-scale integer
encoding is performed on the data at the current level and the loop is exited.

For example, the band range is (6 km 626 m 4 dm 5 cm 1 mm~6 km 626 m 4 dm 5 cm
4 mm).

1. Step 1: Calculate the corresponding level of b1 and b2, N1 = 33, N2 = 33;
2. Step 2: According to the components of b1 and b2, it is divided into 5 grades (29~33,

25~29, 21~25, 11~21, 0~11); It is only necessary to calculate the band length l at the
(29~33) grade, l = 4 mm, the level corresponding to 4 mm is Nmin = 27, Nmax = 33;

3. Step 3: The level corresponding to l5 = 1 mm is N = 33, N > Nmin, and the multi-scale
integer coding is obtained: MC1= 59,551,923,803,521,023 (N = 33), MC2= 59,551,927,
024,746,495 (N = 32), MC3= 59,551,930,245,971,967 (N = 33);

As shown in Figure 7, the relationship between MBIC and band is many-to-many.
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3. Results

To verify the effectiveness of the design method in this paper, we conducted related
experiments on multi-granularity dimensions (time, band) that satisfy the fuzziness of
dimension granularity. The verification content mainly includes the following three points:
the effectiveness of the DGFQM, the relevant factors that affect the query efficiency of
MTSIC and string coding, and the influence of the association method between MBIC and
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band on data retrieval. In response to the above contents, we designed the experiments
as follows:

Experiment 1: To verify the effectiveness of the DGFQM, we simulated time data, and
then compared the query results of the DGFQM and the intersection query method.

Experiment 2: We designed time data sets with different proportions using string
encoding and MTSIC methods and compared the retrieval efficiency of the two ways.

Experiment 3: We used the string coding method and the association method between
MBIC and band to build an index table for the simulated band data, respectively, and then
compared the query efficiency of the two ways.

Development experiment environment: Windows Intel(R) Core(TM) i5-8500 CPU @
3.00 GHz, 64-bit,8 GB, Visual Studio 2019, C++, MySQL 5.7.19.

3.1. DGFQM

At present, we mostly use the intersection query method for data queries. We used
string coding and MTSIC to store time data, respectively, and then compared the results of
the DGFQM and the intersection query method. First, randomly generate n different time
scales (year, month, day, hour, minute, second, millisecond, microsecond), then perform
string coding and multi-scale integer coding. Finally, build a B-tree for the intersection
query method and the DGFQM.

3.1.1. The DGFQM Based on String Coding

Dimension granularity fuzziness query steps based on string coding:

1. Perform string encoding on the query interval [t1, t2] to obtain the string interval [s1, s2];
2. Decode the strings s1 and s2 to attain levels N1, N2;
3. Parse the string s1, and then obtain the parent data set Cf1 of s1 by coding;
4. Parse s2, and then obtain the child set Cs2 of s2 through string coding;
5. Obtain query results through set operations and query statements;

Set n to be 10,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, and select various
query intervals to perform the intersection query and the DGFQM, respectively. The query
intervals are the annual scale, the daily scale, and the second scale. The query results are
shown in Figure 8. The intersection query method does not take into account the dimension
granularity fuzziness, but only relies on the size sorting function of the code to obtain
the data. Therefore, the number of results obtained by DGFQM is higher than that of the
intersecting query method. From Figure 8, it can be seen that the amount of missing data in
the intersection query is affected by the amount of data and the query interval. The amount
of missing data is proportional to the query interval and the total amount of data.
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annual scale query interval. (b) the number of query results for the daily scale query interval. (c) the
number of query results for the second scale query interval.
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To verify the correctness of the data in the query results of the dimension granu-
larity fuzziness, we took the query interval (15 November 2014, 15 February 2015) as
an example to compare query results for both methods under the 1 million data set.
The number of query results for the DGFM is 5727, and the number of unequal results
is 5564. The query results of the intersection query method are 5564, of which 5408 are
unique. As shown in Table 2, the query results of the DGFM are more complete than
the intersection query.

Table 2. Two query results based on the string encoding.

Partial Results of Granular Fuzzy Queries Partial Results of an Intersect Query Partially Missing Data for Intersecting Queries

‘2014’
‘2014-11’

‘2014-11-15’
‘2014-11-15T00:08:08.216495’

‘2014-11-15T01:25’
‘2014-11-15T01:59:09.074094’
‘2014-11-15T03:08:31.252138’
‘2015-02-15T00:10:09.460989’

‘2015-02-15T00:21:15.373’

‘2014-11-15’
‘2014-11-15T00:08:08.216495’

‘2014-11-15T01:25’
‘2014-11-15T01:59:09.074094’
‘2014-11-15T03:08:31.252138’

‘2014’
‘2014-11’

‘2015-02-15T00:10:09.460989’
‘2015-02-15T00:21:15.373’

3.1.2. The DGFQM Based on MTSIC

The DGFQM steps based on MTSIC:

1. According to the multi-scale time segment integer encoding method, the integer
coding MTC1 and MTC2 of t1 and t2 were obtained, so the integer coding interval was
Cb = [MTC1, MTC2];

2. Calculate the level of MTC1 and MTC2, and obtain the corresponding levels N1 and
N2 through level operations;

3. The parent data sets Cf1 and Cf2 are obtained through the contained relationship
operation, and the missing fuzzy data set C1 is obtained according to Formula (15);

C1 =
{

x
∣∣∣x ∈ C f 1 ∨ x ∈ C f 2 ∧ x /∈ Cb

}
(15)

4. The child data sets Cs1 and Cs2 of MTC1 and MTC2 were obtained by using the
containment relationship operation, and then the missing precise data set C2 was
obtained according to the following Formula (16);

C2 = {x|x ∈ Cs1 ∨ x ∈ Cs2 ∧ x /∈ Cb} (16)

5. Obtain query results through set operations and query statements;

Set n to be 10,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, and select various
query intervals to perform the intersection query and the DGFQM respectively. The query
intervals are the annual scale, the daily scale, and the second scale. The query results were
consistent with the query result based on string coding, as shown in Figure 8.

3.2. The Influence of the Proportion of Different Time Scales on Retrieval Efficiency

MTSIC uses an integer type to store time data, which occupies less memory and is
more computationally efficient than a string type. Therefore, the proportion of different
scales in the time data may have an impact on the query efficiency. We designed different
temporal data sets to compare the query efficiency of temporal string encoding and MTSIC
using DGFQM. The experimental design process was as follows:
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1. Randomly generate n time data (year, month, day, hour, minute, second, millisecond,
microsecond) according to equal and unequal proportions. The non-proportional
data is generated in the way of 1: 2: 4: 8: 16: 32: 64: 128, which will generate a
combination of factorials of 8, so we divided the scales into fine scales (hour, minute,
second, millisecond, microsecond) and coarse scales (year, month, day). The specific
design is shown in Table 3.

2. Establish a B-tree index. Perform string encoding and MTSIC on time data, and then
build B-trees, respectively.

3. Dimension granularity fuzzy query. According to Section 3.1, we performed the
DGFQM on string coding and MTSIC, respectively, and counted the results.

Table 3. Proportion designs in the temporal data set.

Proportional Way Representation Symbols Proportional Design

y: m: d: h: m: s: ms: µs
dbl (equal proportion) 1: 1: 1: 1: 1: 1: 1: 1

bdbl (unequal proportion) 1: 2: 4: 8: 16: 32: 64: 128
fdbl (unequal proportion) 128: 64: 32: 16: 8: 4: 2: 1

Set n to 10,000, 10,000, 100,000, 1,000,000, 5,000,000, 10,000,000, and select the query
range: “2014 to 2015”, “15 November 2014 to 15 February 2015” for querying. Each query
result was taken ten times, and the query efficiency was counted. The result was shown in
Figure 9.
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November 2014–15 February 2015”).

The red marks in Figure 9a–e are all lower than the blue marks, so the query time
of MTSIC is less than that of string coding. Under the data volume of 10,000, the
time-consuming of the string coding was 1.2 (dbl1) times, 1.5 times (bdbl1), 1.1 times
(dbl2), and 1.2 times (bdbl2) of MTSIC, respectively. Under the 10,000 data volume of
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fdbl, the time-consuming of string coding was roughly equal to that of MTSIC. The
time-consuming of string coding under 10 million data volume is 1.2 times (fdbl1),
1.7 times (dbl1), 2.1 times (bdbl1), 1.1 times (fdbl2), 1.5 times (dbl2), 2.1 times (bdbl2) of
MTSIC, respectively. Therefore, we can draw the following conclusions: Under the
same proportion, with the increase in the total amount of data or the expansion of the
query scope, the query effect of MTSIC was better and better compared to string coding.
In the case of the same amount of data, with the increase in the fine-scale ratio, the
query effect of MTSIC was better and better.

3.3. Comparing the Retrieval Efficiency of MBIC and String Encoding

Randomly generate n bands and manage them in two ways. One was the string coding
method, which was stored and indexed through two fields of string type. The other was
to use the association method between MBIC and band to store and index. Table 4 is a
comparison of the expressions of the two codes. Let the band be [b1, b2], and retrieve data
according to the DGFQM. The steps for the DGFQM of bands were as follows:

Table 4. Comparison of two coding methods.

Storage Method Method Description Example

string Use two fields to store bands “6-626-4-5-1”–“6-626-4-5-4”

MBIC Store bands with a
column of integer

The multi-scale integer encoding of “6-626-4-5-1”–“6-626-4-5-4” is:
59,551,923,803,521,023, 59,551,927,024,746,495, 59,551,930,245,971,967

The steps of the DGFQM based on string coding:

1. Perform string coding on the query interval [b1, b2] to obtain the string interval [s1, s2];
2. Attain the exact data set Cx in the query interval. Let the storage fields be field1 and

field2, respectively, and obtain the exact data set Cx according to Formula (17);

Cx = { f iled1 ≤ s1 ≤ f iled2 ∨ f iled1 ≤ s2 ≤ f iled2} (17)

3. Obtain the fuzzy data set Cm in the query interval. Obtain the fuzzy data set Cm
according to the Formula (18);

Cm = {s1 ≥ f iled1 ∧ s2 ≥ f iled2} (18)

4. Obtain query results through set sum operation;

The steps of the DGFQM based on MBIC:

1. According to the association method between MBIC and band, the corresponding
MBIC set B= {MC1, MC2,..., MCn} is obtained;

2. Attain the exact data set Cx in the query interval. Obtain the child interval xi of the
i-th code in B by including relational operation, i.e., B(i) and repeat the operation until
all codes in B are traversed. The specific process was shown in Figure 10a:

3. Attain fuzzy data set Cm of query interval. Obtain the parent interval mi of the i-th
code in B by including relational operation, i.e., B(i) and repeat the operation until all
codes in B are traversed. The specific process was shown in Figure 10b;

4. Obtain query results through set operations;

Set n to 500,000, 1,000,000, 5,000,000, and 10,000,000, and make multiple queries.
We considered four query intervals as an example, which contained four different scale
intervals. The query intervals were represented by the string coding method and the
multi-scale integer coding method, and the specific design is shown in Table 5. Then query
according to DGFQM under different codes. Finally, take ten times for each query and
count the query efficiency.
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Table 5. Corresponding codes for different queries.

Query Interval MBIC String Coding

query1 4,003,612~4,003,619 mm
36,058,524,635,103,231
36,058,531,077,554,175
36,058,537,520,005,119

“04-003-6-1-2”–“04-003-6-1-9”

query2 400,362~400,367 cm 36,058,586,912,129,023
36,058,689,991,344,127 “04-003-6-2”–“04-003-6-7”

query3 40,032~40,039 dm
36,056,834,565,472,255
36,058,483,832,913,919
36,060,133,100,355,583

“04-003-2”–“04-003-9”

query4 2004~2060 m

18,067,175,067,615,231
18,119,951,625,748,479
18,225,504,742,014,975
18,366,242,230,370,303
18,471,795,346,636,799
18,524,571,904,770,047
18,546,562,137,325,567

“02-004”–“02-060”

query5 4003~4230 m

36,059,583,344,541,695
36,072,777,484,075,007
36,081,573,577,097,215
36,134,350,135,230,463
36,239,903,251,496,959
36,451,009,484,029,951
36,873,221,949,095,935
37,436,171,902,517,247
37,858,384,367,583,231
38,016,714,041,982,975
38,056,296,460,582,911

“04-003”–“04-230”

The statistical results are shown in Figure 11. The association method between MBIC
and band proposed in this paper has a better effect than the traditional string representation.
The query time for both methods increase with the amount of data. Under the same amount
of data, when using the method proposed in this paper, the query time gradually increased
with the expansion of the band range. It can be seen from Figure 11 that the time-consuming
of queries 1–3 was about zero. However, when using the string coding method to retrieve
the band range, it is necessary to traverse all the data, which took a long time. The results
show that the query band range has little effect on it.
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3.4. Discussion

Aiming at the problem of the multi-granularity dimension in spatiotemporal data, we
proposed a management method of multi-granularity dimensions for spatiotemporal data.
Mainly study the fuzziness and organization methods of multi-granularity dimensions.
First, according to the inclusion relationship between granularities, we proposed DGFQM,
which solved the problem of data loss caused by the multi-granularity characteristic of
dimensions. Second, we discussed the encoding method of bands and designed the
association method of multi-scale integer coding and bands. The correlation experiments
were carried out by simulating time and band data. Correlation experiments are carried
out by simulating time and band data. The experimental results are as follows:

(1) Whether the string coding method or MTSIC, the DGFQM can obtain more com-
plete data than the intersection query method;

(2) Although the query efficiency of MTSIC is higher than that of the string coding
method, its effect is affected by the proportion of different scales in the data. With the
increase in the amount of fine-scale data, the query effect of multi-scale time integer coding
is better;

(3) Compared with the string coding method, the association method between MBIC
and band designed in this paper effectively improves the data retrieval efficiency. The
retrieval efficiency of this method is related to the range of the query band, and the query
effect is better as the range of the band decreases. Especially when the band range is small,
the query time is about 0.

4. Conclusions
4.1. DGFQM

Few studies have discussed the fuzziness caused by the multi-granularity of dimen-
sions. Although a cross-scale spatial filling curve was proposed in reference [16] to provide
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a query method for multi-scale spatial data, the relevant theories and methods of dimension
granularity fuzzy such as time were not proposed. In this paper, we discuss the fuzziness
of multi-granularity dimensions from point and segment, and proposed the DGFQM. To
verify the effectiveness of the DGFQM, we simulated temporal data and compared the
query results of the intersection query method [25] and DGFQM.

4.2. Multi-Scale Integer Coding

At present, multi-scale integer coding has achieved good results in time and space.
However, there were few studies on other multi-granularity dimensions. The concept of
time-spectrum was proposed in reference [34], which put our focus on spectral information.
We extended multi-scale integer coding to multi-scale dimension and took the band as an
example to describe the application of multi-scale integer coding in a band in detail. We
used the scale information contained in multiscale integer coding to design the correlation
method between multiscale integer coding and band. The band was converted into a one-
dimensional array by filling. The experiment showed that the association method proposed
in this paper improved the efficiency of data retrieval compared with the traditional
binary form.

In the above research, we studied the multi-granularity metric in spatiotemporal data
from the above two aspects. The results were generally good, but there were still some
limitations, and there are still some problems to be discussed.

(1) This method was to solve the problem of incomplete query results based on time
and other multi-scale dimensions. This requires that the query data cover as many areas
as possible. Secondly, the method uses multi-scale integers to fill multi-scale dimensions.
When the scale is one year, three months, one day, and five hours, this complex situation
needs to be filled with many multi-scale integer codes, which would affect the efficiency of
data retrieval.

(2) We analyzed the fuzziness of spatiotemporal data from the multi-scale dimension
level, and provided a new perspective for the study of spatiotemporal data fuzziness. We
obtained fuzzy data with hidden values from the data through the DGFQM, so as to better
understand and analyze the change trend in various fields such as economy and culture.
Next, we will further study the query results, analyze the potential information in the fuzzy
data, and build the corresponding knowledge map.

(3) We applied multi-scale integer coding to the band, and discussed the applicability
of multi-scale integer coding. It can be seen that multi-scale integer coding has certain
advantages in terms of memory occupation and query efficiency. At present, multi-scale
integer coding was applied to time, space, and band, respectively. Next, we will con-
sider building the coding of a space-time, spatiotemporal spectrum based on multi-scale
integer coding.
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