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Abstract: Natural hazards threaten millions of people all over the world. To address this risk,
exposure and vulnerability models with high resolution data are essential. However, in many areas
of the world, exposure models are rather coarse and are aggregated over large areas. Although
OpenStreetMap (OSM) offers great potential to assess risk at a detailed building-by-building level,
the completeness of OSM building footprints is still heterogeneous. We present an approach to
close this gap by means of crowd-sourcing based on the mobile app MapSwipe, where volunteers
swipe through satellite images of a region collecting user feedback on classification tasks. For our
application, MapSwipe was extended by a completeness feature that allows to classify a tile as “no
building”, “complete” or “incomplete”. To assess the quality of the produced data, the completeness
feature was applied to four regions. The MapSwipe-based assessment was compared with an intrinsic
approach to quantify completeness and with the prediction of an existing model. Our results show
that the crowd-sourced approach yields a reasonable classification performance of the completeness of
OSM building footprints. Results showed that the MapSwipe-based assessment produced consistent
estimates for the case study regions while the other two approaches showed a higher variability. Our
study also revealed that volunteers tend to classify nearly completely mapped tiles as “complete”,
especially in areas with a high OSM building density. Another factor that influenced the classification
performance was the level of alignment of the OSM layer with the satellite imagery.

Keywords: OpenStreetMap; MapSwipe; data completeness; disaster management; exposure;
volunteered geographic information; data quality

1. Introduction

Natural hazards such as earthquakes, floods and tornadoes threaten millions of people
all over the world [1]. The effects of these hazards on society and infrastructure depend on
the vulnerability towards the hazards [2]. These vulnerabilities are highly dynamic as some
are decreasing due to new building codes, preparedness actions and resilient planning,
while others are increasing due to rapid urbanization, increased industrialization, aging
infrastructure and stronger interdependencies in modern societies [3,4]. Regardless of the
different hazards or even combinations of them, it is key for emergency planning, resilience
building and first response to catastrophes to understand the risks that a society is exposed
to. Because risk is the combination of hazard, exposure and vulnerability, all three aspects
of the risk chain need to be well understood for any measure to be taken to reduce it [5].

In this paper, we focus on the exposure part of the risk chain. Exposure models,
describing the spatial distribution of assets (usually buildings and people) and the relative
distribution of different building types, show different levels of resolution and precision [6].
In well-regulated countries, such models may describe the location of each building. In high-
resolution studies, each building may be individually described in all relevant parameters.
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However, in many areas of the world, exposure models are rather coarse and are aggregated
over large areas, sometimes even over entire countries. This results in them being useful
only if the damage or losses are estimated at this aggregation level too. To address local
planning or local emergency response, exposure models with high resolution down to the
building scale are desired. To create exposure models on the building scale, the location
and additional parameters of the buildings such as the building footprint, building height
and building material need to be known. This information is usually provided by cadastral
data. However, such data is not available everywhere, either because its use is restricted,
expensive or it does not even exist [7].

The free and open geographic data community project OpenStreetMap (OSM) is
potentially able to fill this gap. Although OSM data have been used extensively in disaster
mapping and management [8], their completeness is heterogeneous, with some areas very
well mapped and other areas lacking basic features [9–11]. For example, the completeness
of highly populated urban areas is often higher than that of remote and rural areas [10,12].
There are also differences between developed and developing countries [11,13]. These
disparities depend on social factors, such as population distribution and population density,
as well as the location of contributing users [14].

Therefore, the assessment of the spatially heterogeneous data quality in OSM is of
great importance. Current approaches can be distinguished mainly in extrinsic and intrinsic
approaches. Extrinsic approaches use reference datasets as a benchmark to compare OSM
against using indicators such as the length of the road network or the number of buildings
or the positional accuracy of features such as buildings [10,15,16]. These approaches face
the challenge of missing reference data of sufficient quality, especially for large parts of the
global South. For building footprints Biljecki et al. [17] provide an overview about available
administrative data. Object detection by deep learning approaches seems promising to
provide reference data for OSM objects. For land-cover OSM objects, Schott et al. [18]
demonstrated the potential of noise-robust deep-learning approaches used on satellite
imagery to detect potential errors in OSM land-use information. For building footprints,
datasets such as the Microsoft building footprints layer [19] are a potential reference for
an increasing—but still limited—number of countries and have been used to assess the
completeness of building footprints for 13,189 urban agglomerations by fitting a machine
learning model to them [13]. Research by Herfort et al. [13] has shown that crowd-sourcing
approaches, such as the one presented here, and deep-learning approaches might comple-
ment each other.

Even if reference data are available, it might be less current than OSM and cover
only a subset of the relevant features [20]. To overcome these issues, intrinsic approaches
have been developed which address different aspects of data quality only based on the
historical development of OSM [21–24]. Completeness of map features is thereby, for
example, addressed by fitting saturation curves to the OSM contribution time series to
assess the difference between fitted asymptote and current number of objects [12] or
by deriving community activity stages [25,26]. The completeness assessment based on
saturation curves can only be used for areas with a reasonably high number of OSM
features. Other approaches have tried to estimate the expected number of objects based on
covariates, such as building density or geometric indicators at street-block level to estimate
building completeness [27,28], socioeconomic indicators, population density or urban–rural
gradients [12,29,30]. Given large regional differences in both real-world features (such as
building density) and mapping activity, the latter approaches are limited with respect to
their transferability between regions, especially across urban–rural gradients or cultural
boundaries. Schott et al. [31] have implemented and tested a set of 32 intrinsic and semi-
intrinsic indicators for different aspects of data quality. While they tested for land-use- and
land-cover-related feature classes, many indicators are presumably transferable to other
domains such as building footprints.

The Humanitarian OpenStreetMap Team (HOT) [32] and other humanitarian organi-
zations have been addressing the issue of OSM data completeness since 2010 by activat-
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ing volunteers to map buildings and roads. HOT stimulated volunteers through mostly
catastrophe-related activities in collaboration with first responders in need of good maps
with building locations. This imminent benefit of the volunteers’ work for first responders
has certainly drawn a lot of attention to humanitarian mapping activities in OSM. However,
HOT and other organizations have not limited their activities to ongoing or imminent
catastrophes, but expanded them to mapping larger areas [11,14]. This led to the missing
maps network that aims to move from reaction to action, putting vulnerable areas/people
on the map before the next disaster hits [33].

While a lot of resources and tools are in place to ease mapping in OSM, some learning
effort is still needed for newcomers wanting to contribute. To ease that initial hurdle,
the smartphone application MapSwipe [34] has been designed as a tool that requires only a
minimum training effort and that uses a simple and easy-to-learn user interface. The tool
has been developed and is maintained by the Heidelberg Institute for Geoinformation
Technology (HeiGIT) in cooperation with the British Red Cross (BRC), the Humanitarian
OpenStreetMap Team (HOT), Médecins Sans Frontières (MSF) and volunteers. MapSwipe
introduced the aspect of gamification to the detection of buildings by showing the user
satellite imagery prompting for the selection of areas in which buildings can be identified
by the user [35]. Once these areas are marked, the user swipes the satellite imagery aside to
receive the next images—hence the name MapSwipe.

The images are categorized into groups: those with buildings and those without
buildings. This process simplifies the task of digitizing the building footprints for OSM
contributors, as they no longer have to scan through the entire area for buildings. This
pre-selection of areas for mapping activities has proven useful as nearly 50,000 MapSwipe
users have mapped more than 1,750,000 sqkm and finished about 500 projects. The data
are publicly available for further use [36]. The HOT activities, together with MapSwipe
as well as regular OSM volunteer mapping, have made data in OSM become a ubiquitous
part of disaster planning, emergency management and first response [37]. The intended
target group for MapSwipe has been users that lack experience in mapping in the OSM
ecosystem. Therefore, the app was designed to require only a minimum training effort,
which is reflected in an easy-to-learn user interface.

MapSwipe conceptually extends desktop-based approaches such as Tomnod to the
smartphone, thereby further lowering the bar for volunteers by enabling them to contribute
easily during idle periods such as while riding a subway or waiting for a bus. Tomnod—a
former project of the satellite company DigitalGlobe—was known for its campaigns such
as searching for the missing Malaysian Airlines flight MH370, which attracted over eight
million participants [38] before being discontinued in August 2019.

Gamification in MapSwipe was implemented by experience points the users obtain for
completed tasks which are reflected in experience levels through the badges gained. This
simple approach has been frequently used for crowd-sourcing applications with relatively
simple repetitive tasks [39]. The user-level information about MapSwipe activity accessible
for registered users is comparable to other approaches in the OSM ecosystem such as for the
HOT tasking manager or “How did you contribute to OSM?” [40]. User level comparison
such as those implemented for OSM users by “OSMFight” [41] was not implemented at
the time of writing.

Because risk assessment models that use OSM data also have to address the spatially
varying completeness, it is important to identify areas with complete OSM building foot-
prints for which detailed exposure models can be provided. Furthermore, emergency
groups can plan additional mapping efforts in unmapped areas that are particularly af-
fected by natural catastrophes. In contrast to the previous MapSwipe project types that
are used to provide information about the presence or absence of buildings on satellite
imagery, we introduced a completeness project type that classifies areas with regard to the
completeness of OSM building footprints. This is intended to steer mapping activities of
volunteers, for example in the HOT tasking manger, to areas where information is missing
for activities such as disaster response or forecast-based financing. The new project type
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was designed with the intended target group of unexperienced users in mind. Therefore,
the design was kept simple at the cost of limited user input options.

This study aims at investigating the robustness of the completeness data produced by
this crowd-sourced approach and aims to examine the following specific research questions:

1. What factors influence the performance of the OSM building completeness classifica-
tion?

2. How well can the completeness feature produce reliable results so that it can be used
in applications of risk-assessment solutions, such as exposure modeling?

3. How well can building completeness be captured by the MapSwipe approach com-
pared to existing approaches?

The new completeness feature in the MapSwipe application is part of a larger project.
The Heidelberg University, the German Research Centre for Geosciences (GFZ) in Pots-
dam, the Karlsruhe Institute of Technology (KIT), the Research Center for Information
Technology (FZI) in Karlsruhe and the company Aeromey GmbH have teamed up in the
project LOKI (Airborne Observation of Critical Infrastructures) to deliver a system based
on OSM data for rapid damage assessment after earthquakes using a variety of technolo-
gies including unmanned aerial vehicles (UAV), machine learning, crowd-sourcing for
recording the disaster scene and exposure models at the building scale. LOKI combines in
an interdisciplinary way new technologies with existing expertise in earthquake research
and earthquake-engineering knowledge [42]. In this light, the completeness feature from
MapSwipe aims to increase the resolution of existing exposure models from aggregated
exposure information to a detailed building-by-building description, and to identify areas
where further mapping effort is required.

2. MapSwipe Data Model

MapSwipe is a mobile application that was developed within the Missing Maps project
in 2014 [34]. Generally, the app comprises four important concepts: projects, groups, tasks
and results. A project describes a region of interest. Based on the defined region, satellite
imagery tiles are requested from a specific imagery provider. While creating the project,
the project name, a project image, a zoom level (usually zoom level 18, extending approx.
150 m in equatorial areas and about 100 m in central Europe), and the number of users that
are requested to verify a single tile, can be defined. The MapSwipe tasks correspond to the
satellite imagery at the specified zoom level. Other parameter such as metadata about the
map provider can also be specified.

Regarding the completeness feature, each task is associated with a satellite imagery
tile from Bing Maps with a semi-transparent overlay of the OSM building footprints.
The mobile app, representing the client, requests these tasks from the database. In order
to enable a fast and efficient communication between the client and the database, groups
have been introduced to reduce the amount of client requests. Each group consists of
several tasks, which compose one mapping session. Results contain information on the
user classification. A single classification result comprises information about the task ID,
task geometry and tile classification. For the completeness feature project type, volunteers
have to classify the completeness of each task into one of three categories: “no building” (no
tap), “complete” (one tap) or “incomplete” (two taps). The classification is conducted by
tapping on each tile; tapping loops through the three options. The main screen of the app
is divided into six tasks (cf. Figure 1). A tile is considered complete if the blue colored OSM
building footprints cover all the buildings in the satellite imagery. Conversely, if the OSM
building footprint does not cover all buildings visible in the imagery, the tile is regarded
as incomplete. In case of no buildings are present in the satellite imagery, there is no need
to tap and the user can swipe to the next screen, hereby indicating that the tile does not
contain any buildings. Additionally, the users are aided in the tasks by a brief tutorial.
The results of the volunteers can be obtained from the MapSwipeDev-API [43].
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a b

Figure 1. MapSwipe main screen. Two examples are given: (a) Green-colored tiles represent complete
tiles, untapped tiles represent no building tiles; (b) Orange-colored tiles represent areas that are
incompletely mapped in OSM with respect to building footprints.

3. Case Study

In our case study, we investigated building completeness at four study sites (cf.
Figure 2): Siros, Taipei, Tokyo and Medellin. These sites comprise heterogeneous OSM
building coverage, including fully complete areas as well as incomplete areas. The four
sites cover an overall area of 89.3 sqkm subdivided into 4797 tasks (cf. Table 1). Multiple
sites were selected as the varying building shapes, building sizes, building roof textures,
as well as different land-cover settings (e.g., trees overlapping buildings) allow for the
assessment of the classification behavior of the volunteers in different geographical settings.

In order to create a project in MapSwipe, all four sites were combined into one area
of interest. After the project creation, a completeness mapping event was organized on
16 September 2020. Nine participants with different levels of experience took part in the
project to evaluate the completeness of OSM building footprints. On average, a participant
required 0.38 s per task with an interquartile range of 0.1 s.
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Figure 2. Case study locations. The completeness of mapping in OSM differed across and within the
case studies. However, all four case studies contained a large number of OSM features as indicated
by the detail maps which were limited for this figure to the most relevant features (main roads and
building footprints). Data source: OpenStreetMap contributors under ODbL and Natural Earth
(world map). Map tiles for detailed maps by Carto, under CC BY 3.0.

Table 1. Characterization of the MapSwipe projects used as case study sites for the assessment of
building completeness. For the average number of buildings and the average building footprint area
per task area, the standard deviation is provided in parenthesis.

Name Area
[sqkm] Tasks OSM Building Coverage

Number of OSM
Buildings per Task

[1/ha]

OSM Building
Footprint Area per

Task [%]

Tokyo 27.5 1914 Urban area including fully mapped, partly
mapped and unmapped areas 23.6 (24.4) 21.0 (17.8)

Taipei 13.7 792 Urban area including fully mapped, partly
mapped and unmapped areas 3.6 (5.2) 11.5 (15.2)

Siros 25.0 981
Island accompanied by smaller patches of
agricultural land including fully mapped
and partly mapped areas

7.1 (15.3) 5.7 (11.4)

Medellin 23.1 1110

Northern part including high building
density with almost completely mapped
areas, less densely populated southern part
consisting of single-family homes with
partly mapped areas

4.8 (8.0) 13.4 (16.3)

Total 89.3 4797

4. Materials and Methods
4.1. Data

All participants collected completeness-classification data during our mapping event
using MapSwipe on their smartphones. Each task was assessed by at least five of the nine
volunteers. To validate the crowd-sourced classification results, the data were compared to
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a reference dataset. For the reference data, three experts from the LOKI project classified
each task carefully, resulting in three expert classifications per task.

4.2. Data Pre-Processing

Based on the answers of the five users for each individual task (“no building”, “com-
plete”, “incomplete”), we first computed the aggregated answer for each task by using
majority voting. Thus, the aggregated answer was regarded as “complete” if at least half
of the volunteers classified the task as “complete”. The same applied to the other labels
(“no building”, “incomplete”). For tasks with no clear majority, the final aggregated label
was set to “incomplete”, as shown in Table 2. Since the study by Albuquerque, Herfort,
and Eckle [44] revealed that user tends to oversee small settlements on satellite imagery,
we chose a pessimistic aggregation method, where a task was regarded as “incomplete”
rather than “complete”, or “no building” in case of a tie (cf. Table 2). The same aggregation
method was applied on the raw reference dataset by the LOKI experts.

For the reference dataset and the crowd-sourced classification, 22 and 27 tasks out of
4797 tasks were considered as unclear majority tasks, respectively.

Table 2. Classification aggregation schema. Si (x = “no building”) describes the share of users that
assigned the label “no building” to task i. Si (x = “incomplete”) and Si (x = “complete”) describe
similar the share of users that assigned the label incomplete or complete to task i.

Majority Rule Criteria Aggregated
Result

Clear majority
Si (x=“no building” ≥ 0.5) “no building”

Si (x=“complete” ≥ 0.5) “complete”
Si (x=“incomplete” ≥ 0.5) “incomplete”

Unclear majority
Si (“no building”) == Si (“incomplete”) “incomplete”

Si (x=“incomplete”) == Si (x=“complete”) “incomplete”
Si (x=“no building”) == Si (x=“complete”) “incomplete”

Si (x=“incomplete”) == Si (x=“complete”) ==
Si (x=“no building”) “incomplete”

4.3. Analysis: Performance Evaluation

The aggregated results of the crowd-sourced classification were assessed in terms of
their correspondence to the expert classification. We used the usual metrics applied in
information retrieval (accuracy, sensitivity, precision, F1 score; Equations (1)–(4)). The cor-
respondence was checked for the three binary conditions: (i) “complete” (true) vs. “not
complete” (false), (ii) “incomplete” (true) vs. “not incomplete” (false), and (iii) “buildings
present” (true) vs. “no building” (false). Tasks where experts and volunteers agreed on the
completeness condition were considered as “true positives” (TP), while tasks where both
agreed on the absence of the condition were seen as “true negatives” (TN). Accordingly,
tasks for which the experts assessed the presence of a condition, such as “buildings present”,
but the volunteers chose absence of the conditions, such as “no building”, were regarded
as “false negatives” (FN). Finally, tasks, where the experts chose ‘condition absent’ and the
volunteers selected ‘condition present’ were considered as “false positives” (FP).

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Sensitivity =
TP

TP + TN
(2)

Precision =
TP

TP + FP
(3)

F1 =
2TP

2TP + FP + FN
(4)
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4.4. Analysis of Factors Influencing Crowd-Sourced Classification Performance

Classification performance might be influenced by a couple of factors. Classification
performance presumably depends—in addition to individual and situational factors, which
were both not available—on the complexity of the situation that needs to be assessed by
the user. We considered two factors to describe the complexity of the tile: (i) the part of the
task area that was covered by OSM buildings, and (ii) the number of OSM buildings per
task. The underlying assumption was that it is easier to classify correctly as “incomplete”
those tasks which comprise a lower OSM building coverage (cf. Figure 3a). It is presumably
more difficult to assign as “incomplete” the tasks where the OSM building footprints are
almost complete (cf. Figure 3b).

OSM data were extracted using the ohsome API [23]. Overlapping building areas
were cleaned and resulting geometries intersected with the task boundaries. Afterwards,
the number of resulting OSM building parts with unique OSM ID and the area of the
building parts per task were calculated. This step was performed in R [45] using the
packages sf [46], tidyverse [47] and lwgeos [48]. As the tasks differ in their size in the
different case study sites, we normalized the numbers by the task areas. We compared
the statistical distribution of the OSM building area for correctly and incorrectly classified
tasks using histograms and conditional density plots. Furthermore, a predictive analysis
of the crowd-sourced classification results for the class “incomplete” was conducted by
using a logistic regression model. As the residuals of a logistic regression indicated a
correlation between the errors of the different sites, we applied a binomial generalized
linear mixed model (GLMM) [49–51] using the logit link function and a random intercept
model with the sites as grouping factor. Thus, calculated fixed effects were corrected for the
unaccounted differences between the four sites without limiting the analysis to the specifics
of the four case studies, as would have been the case if we would have included the sites as
a fixed effect [51]. In the calculations, we did not consider tasks with 0 m2 OSM building
footprint. The analysis was performed in R using the package lme4 [52]. In addition to
the likelihood-based information criteria AIC and BIC, we also calculated the pseudo-R2

values from Nakagawa and Schielzeth [53], which describe the explained deviance for fixed
effects (R2

GLMM(m)) and for fixed and random effects (R2
GLMM(c)).

a b

Figure 3. (a) Example of a task with low OSM building completeness; (b) example of a task with
almost complete OSM building coverage.

4.5. Comparison of MapSwipe Results with Other Approaches

We compared the completeness assessment of MapSwipe with two other approaches
that operate at larger scales: In the first approach, we fitted a saturation curve to the
building contribution data and compared the asymptote with the observed count data.
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For the second approach, we used the results from a machine learning model that predicts
building footprint areas based on OSM road network data and larger-scale data [13].

The history of building contributions was collected based on the ohsome-r package [54],
which provides access to the ohsome API [23] from R [45]. We used the period from January
2010 to March 2023 with a monthly time step. For each month, we retrieved the sum of
buildings for each study site. As intrinsic data quality analysis requires a sufficiently large
area, we used both the outline of the MapSwipe tiles and a 2 km buffer around the outline as
the area for which we retrieved the building counts. For each region, we fitted a saturation
curve. Given the shape of the data, a three-parameter logistic curve (cf. Equation (5)) was
considered appropriate and fitted using the function nls in R that fits a non-linear function
to data based on the least-squares approach. Details of the approach can be found e.g., in
Brückner et al. [12]. As for Sirios, since the mapping activity happened during a very short
period, this approach was considered not suitable for Sirios. Therefore, no results are reported
for Sirios. Based on the asymptote, we calculated an estimate of the completeness by dividing
the building count from September 2020—the date of the MapSwipe assessment—by the
asymptote, which provides an estimate for the expected number of buildings in the region.

y(t) =
Asymp

1 + e
tmid−t

scale

, (5)

where y represents the building count for the region at a given point in time, Asmp rep-
resents the saturation to which the curve converges, t represents time, tmid represents the
mid point of the logistic curve—at which half the saturation level is attained—and scale
describes the steepness of the logistic curve.

Herfort et al. [13] trained a machine learning model to predict building footprint areas
for urban areas based on the Microsoft building footprint datasets and administrative
data. The model used the Global Human Settlement Layer Population, the Subnational
Human Development Index, OSM road length as well as night-time lights and land-cover
information as predictors. It predicted OSM building footprint areas at square kilometer
grid cell level. We compared the estimates of the model with the aggregated MapSwipe
assessments for Taipei, Tokyo and Medellin. For Sirios, no predictions were available
as Herfort et al. [13] focused on urban areas. Without modifications, the model would
presumably also not be suitable for a rural region. The raster cells used by Herfort et al. [13]
did not align with the tiles used in MapSwipe. For the comparison, all raster cells from the
Herfort et al. [13] model were used that were covered by at least 50% by MapSwipe tiles.

For both approaches, the completeness estimate was compared to the percentage of
MapSwipe tiles for which volunteers assigned the “buildings complete” label. Tiles without
buildings were not incorporated in the calculation.

5. Results
5.1. Overall Classification Performance

Generally, the metrics for all classes regarding accuracy, sensitivity, precision and F1
score indicated a high agreement between the reference dataset and the majority votes of
the participants (cf. Tables 3 and 4). The highest accuracy value was obtained for the class
“no building” (0.98), while the accuracy values of the label “complete” and “incomplete”
showed a slightly lower accuracy (0.91, 0.90). The wrong classifications for the category “no
building” were more strongly affected by false positives (57) (e.g., Figure 4c) rather than
by false negatives (34) (e.g., Figure 4d). For the class “complete”, a high sensitivity value
was obtained (0.95). The precision value (0.80) was lowest compared to the other classes,
due to a higher number of false positives (372). Volunteers wrongly classified 368 tasks as
“complete”, which should have been classified as “incomplete” (cf. Table 4). Consequently,
the class “incomplete” comprised more of false negatives (412) (e.g., Figure 4a) than false
positives (89) (e.g., Figure 4b).
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a b

dc

Figure 4. Examples for mismatches between volunteer and expert assessment: (a) Tasks predicted as
complete, true class is incomplete; (b) Tasks predicted as incomplete, true class is complete; (c) Tasks
predicted as no building, true class is incomplete; (d) Tasks predicted as incomplete, true class is no
building. Shown are MapSwipe tiles with the OSM building footprints (blue) overlaid.

Table 3. Classification performance metrics for the completeness classification task. TP, TN, FN and
FP are the total number of tiles that were classified as true positives, true negatives, false negatives
and false positives, respectively, by the aggregated voting of the volunteers.

TP TN FN FP Accuracy Sensitivity Precision F1
Score

no building 562 4144 34 57 0.98 0.94 0.91 0.93
complete 1516 2837 72 372 0.91 0.95 0.80 0.87

incomplete 2201 2095 412 89 0.90 0.84 0.96 0.90

Table 4. Confusion matrix of the completeness classification task.

Crowd Classification
No Building Complete Incomplete Total

no building 562 4 30 596
Reference complete 13 1516 59 1588

dataset incomplete 44 368 2201 2613

total 619 1888 2290
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5.2. Classification Performance for Each Site

In general, the performance measures between all sites were relatively similar (cf.
Table 5). However, there were some interesting deviations between sites. Comparing the
different sites together, regarding the overall classification performance, the accuracy value
for class “no building” was highest, followed by class “complete”. For all sites, the class
“complete” indicated a higher rate of false positives rather than false negatives. For the
class “incomplete”, we observed the opposite characteristics. It seems that, for some tasks,
the volunteers tended to assign “incomplete” tasks as “complete”. Comparing all sites,
Siros had the lowest sensitivity (0.60) value for the class “incomplete”. Closer inspection
of the tasks at Siros showed that the OSM building footprint layer did not exactly align
with the satellite imagery (Figure 5). Hence, a shifted OSM layer seems to have affected the
performance of the crowd-sourced classification.

Figure 5. Example for a misalignment of the OSM building footprint layer and satellite imagery.
The example is taken from the case study at Sirios.

Table 5. Classification performance metrics for the completeness classification task for each site. TP,
TN, FN and FP are the total number of tiles that were classified as true positives, true negatives, false
negatives and false positives, respectively, by the aggregated voting of the volunteers.

TP TN FN FP Accuracy Sensitivity Precision F1 Score

Sirios
no building 318 634 13 16 0.97 0.96 0.95 0.96

complete 447 448 24 62 0.91 0.95 0.88 0.91
incomplete 108 772 71 30 0.90 0.60 0.78 0.68

Medellin
no building 52 1049 3 6 0.99 0.95 0.90 0.92

complete 225 813 15 57 0.94 0.94 0.80 0.86
incomplete 775 280 60 15 0.93 0.93 0.98 0.95

Taipei
no building 117 644 15 16 0.96 0.89 0.88 0.88

complete 219 517 11 45 0.93 0.95 0.83 0.89
incomplete 373 340 57 22 0.90 0.87 0.94 0.90

Tokyo
no building 75 1815 3 19 0.98 0.96 0.80 0.87

complete 625 1057 22 208 0.88 0.97 0.75 0.84
incomplete 963 703 224 22 0.87 0.81 0.98 0.89
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The results of the classification performance indicate that volunteers achieved a high
performance in general. However, for all sites, the class “complete” faced a higher false-
positive rate. For the class “incomplete”, we observed a higher rate of false negatives.
We thus further investigated the effect of factors such as the OSM footprint area and the
number of OSM buildings on the performance of crowd-sourced classifications.

5.3. Factors That Influenced the Crowd-Sourced Classification Performance

Tasks with a smaller OSM building area were more frequently classified correctly as
“incomplete” (Figure 6), indicating that these tasks might have been easier. In contrast,
“incomplete” tasks not classified as “incomplete” appeared more frequently for tasks with
a larger OSM building footprint area relative to the task area (conditional density plot
in Figure 6). The same characteristics were observed for the number of OSM buildings
per area of the task: incorrectly classified tasks occurred more frequently for sites with a
high number of OSM buildings per area (Figure 6). The conditional density plots for the
individual sites indicated that the functional relationships were similar across sites but
with different offsets at the different sites, specifically for Siros, where the probability of
correct classification of incomplete task was much lower despite the same number or area
of buildings. Furthermore, the histograms indicate that the range of the two predictors
differed across sites.

The fixed effects part of the logistic GLMM for the OSM building area share explained
24% of the deviance in the crowd-sourcing performance (cf. Table 6). For the GLMM,
with the number of OSM buildings per area, the fixed effects part explained 26% of the
variability in the crowd-sourcing performance. AIC and BIC were in favor of the GLMM
with the area of OSM buildings as the predictor. For this model, the variance of the normal
distribution for the random intercept was higher, indicating a higher variability between
sites captured in the random effect; this presumably explains the higher explained deviance
(as well as the smaller AIC/BIC values) if both random and fixed effects are considered.

Regression coefficients for both predictors were negative, indicating that volunteers
had more problems in correctly identifying incompletely mapped areas that already had a
relatively high number of buildings or a larger area covered by mapped building footprints.

Table 6. Fixed and random effects for the logistic GLMM regression model for the identification
of factors influencing the correctness of the classification for “incomplete” tasks. The coefficients
belong to two single-predictor models. Coefficients, confidence intervals (CI) and standard errors are
reported at the link scale.

Coefficient Std.Error 95% CI z-Value p-Value

GLMM using building area share as predictor

Intercept 2.73 0.75 [0.83, 4.65] 3.62 0.00029
OSM building

area [%] −9.11 0.54 [−10.19,
−8.07] −16.83 <2 × 10 −16

AIC: 1341.0, BIC: 1357.6
Random intercept: σ2 = 2.20 (95% CI = [0.82–3.67])

R2
GLMM(m) = 0.24, R2

GLMM(c) = 0.55

GLMM using buildings per area as predictor

Intercept 2.05 0.55 [0.65, 3.45] 3.71 0.00021
OSM building

area [%] −744.9 42.2 [−845.68,
−649.57] −17.57 <2 × 10 −16

AIC: 1398.1, BIC: 1414.16
Random intercept: σ2 = 1.19 (95% CI = [0.60–2.70])

R2
GLMM(m) = 0.26, R2

GLMM(c) = 0.46
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Figure 6. Conditional density plots for the classification correctness of tasks classified as “incomplete”
by the volunteers dependent on the part of the task area covered by buildings (left column) or the
number of buildings per hectare (right column). In addition to the plots for all sites (first row), site-
specific conditional density plots are shown (second row) as well as the distribution of the explanatory
variable through histograms (last row). The histograms show the two classes in a stacked way.

5.4. Comparison of MapSwipe Results with Other Approaches

A comparison of the share of MapSwipe tiles flagged as incompletely mapped in
relation to building footprints with the other two approaches showed clear differences (cf.
Table 7): the completeness estimate based on the machine learning model prediction [13]
underestimated completeness compared to the expert-based MapSwipe assessment for
Medellin, slightly overestimated building completeness for Taipei, and was in line with the
estimate for Tokyo. The estimate of the intrinsic approach based on the saturation-curve
fitting clearly depended on the size of the region chosen: if only the area covered by the
MapSwipe tiles was used, the estimate was overly optimistic, assuming very high levels
of completeness for Taipei and Tokyo as well as high completeness for Medellin. If the
area was enlarged by buffering the area by 2 km, the results were in line with the expert-
based judgment for Tokyo, lower than the expert judgment for Medellin, and still overly
optimistic for Tokyo. The MapSwipe-based assessment by volunteers—which would be the
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indicator one would obtain in a real-world application—was close to the expert judgment
for Medellin but 5–10% lower for Taipei and Tokyo. For Taipei and Medellin, the volunteer-
based assessments were better than any of the other approaches. However, for Tokyo, the
comparison with the machine-learning-based prediction as well as the estimation by the
intrinsic approach based on the buffered region were both closer to the expert judgment.

Table 7. Comparison of MapSwipe completeness assessment with a saturation-curve fitting approach
and the prediction of OSM buildings by a machine learning model by Herfort et al. [13]. All values
are given as percentages. For MapSwipe, the values represent the share of cells that were flagged
as incomplete by volunteers or by experts. Tiles without buildings were not incorporated in the
calculation. For the intrinsic approach, the comparison was made by relating the fitted asymptote of
the saturation curve with the observed count for September 2020. For the machine learning model,
the comparison is made between number of buildings observed at the date of the analysis and the
predicted building footprints by the model. Both approaches used for comparison were not applicable
for Sirios.

Location MapSwipe
Experts

MapSwipe
Volunteers

Intrinsic,
MapSwipe

Area

Intrinsic, 2 km
Buffer ML Model

Medellin 77.3 73.2 83.0 65.6 48.9
Taipei 65.2 59.9 91.4 94.8 76.5
Tokyo 64.8 54.2 96.7 64.1 66.3

6. Discussion

In this study, we analyzed the quality of the crowd-sourced classification of the
completeness of OSM building footprints. We showed that the completeness feature in
MapSwipe has the potential to produce spatially explicit information about the complete-
ness of OSM building footprints. A factor that influenced the OSM building completeness
classification were tasks with a high OSM building density, expressed both by the number
of buildings or their footprint area. More buildings or a larger share of the area covered by
building footprints distracted the users from a correct “incomplete” classification. After cor-
recting for the correlated error structure, the share of the footprint area led to a slightly
improved model compared to the model based on the number of buildings. Moreover,
the classification performance was dependent on how exactly the OSM layer aligned with
the satellite imagery. Presumably, the currentness of the satellite imagery used in MapSwipe
is of importance for the quality of the assessment as well. Unfortunately, image offsets
often differ between imagery from different providers. The offset might even vary across
the imagery, especially in hilly or mountainous terrain. Using more recent imagery in Map-
Swipe than that used for the mapping of the buildings in OSM might therefore introduce
a challenge for volunteers if this introduces an offset between OSM building footprints
and imagery. Herfort et al. [35] have shown that other factors, such as the resolution of the
satellite imagery, missing images as well as presence of clouds, might also influence the
quality of the classification. By successfully testing the approach at four different sites with
different building textures, we suggest that the completeness feature in MapSwipe can be
applied to most inhabited areas.

A main limitation of this study is the low number of volunteers taking part in the
completeness mapping event. It is important to highlight that other authors have shown
for OSM that a higher number of volunteers is positively related to the accuracy of the
produced data [15]. Because the answer of each MapSwipe volunteer is also prone to errors,
a larger group of volunteers would presumably reduce the overall uncertainty (“wisdom
of the crowd”). The same applies to the number of experts. The quality of the classification
task clearly depends not only on the properties of the task (such as building density,
alignment of OSM and satellite imagery) but also on the experience of the volunteers with
such pattern recognition tasks, on the knowledge of potential building types in the area as
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well as on factors influencing the concentration and motivation of the volunteers [55–57].
These factors are, by design, not available for the researcher as MapSwipe does not request
personal data from the user.

A further limitation of this study was that incomplete tasks did not provide quanti-
tative information about the number of missing buildings. Therefore, the completeness
feature does not provide information about the share of missing buildings in the incomplete
tasks. While it would be possible to extend the MapSwipe completeness tool with respect
to additional classes—such as “mostly complete”, “up to 50% complete”, etc.—this would
come at the cost of increasing complexity. MapSwipe was designed as a tool that requires
only minimum training effort and that uses a simple and easy-to-learn user interface. Ex-
tending the tool with more complex features might reduce its attractiveness for its intended
users. Future work will assess how far increasing the complexity of MapSwipe tasks corre-
lates with decreasing user satisfaction and decreasing classification quality. The current
idea is that MapSwipe is used to identify areas that demand more mapping and that the
mapping itself is done in established OSM editors. The amount of missing buildings could
later on be derived by an analysis of the newly mapped features by tools such as the ohsome
API [23].

Herfort et al. [58] proposed a workflow combining deep-learning and crowd-sourcing
methods to generate human settlement maps. An extension to this study could be used
to perform an automated approach within the incomplete tiles in order to automatically
identify the share of missing human settlements. Completely mapped tiles from nearby
areas might be used in this context as a training dataset. As Pisl et al. [59] have shown,
it is possible to fine-tune pre-trained deep neural networks for building detection based
on a relatively small set of additional training data. Furthermore, new products such
as the World Settlement Footprint 2015 or similar datasets on the global distribution of
built-up areas have already relied on crowd-sourcing approaches to assess classification
performance and completeness of built-up areas [60]. In this light, the completeness feature
in MapSwipe could be used in future applications to complement automated approaches
by generating training as well as validation datasets and could also address specific cases
in which automated approaches do not perform well.

Despite the low number of volunteers taking part in the completeness mapping project,
this study has shown the characteristics of the data produced by the completeness feature
from MapSwipe, which can be useful for exposure models. The misclassifications mostly
happened in nearly complete tasks. For exposure modeling, these are of minor importance,
since results will only be affected marginally if a few buildings in nearly complete tiles are
unmapped. It would have been more problematic if actually incomplete tiles with a big
share of unmapped buildings had been considered as “complete”.

The comparison of the MapSwipe completeness assessment with the other two ap-
proaches showed clear differences. The comparison was complicated by the different spatial
units as well as by the different granularity of the results, as the MapSwipe assessment
returned only binary classification at the level of the tiles, while the comparison of model
predictions with observed OSM buildings returned continuous complete estimates. For re-
gions where only a few buildings are missing per tile, the MapSwipe-based assessment
might therefore be too pessimistic. The quality of the intrinsic approach relies on a area
what is big enough to capture the mapping dynamics in the region. The 2 km buffer chosen
here might not be well suited for all study sites; further research is needed to establish
better knowledge on adequate region sizes. The quality of the machine-learning-based
approach [13] differs between urban areas, so it is not clear how well the model predicts the
building footprints for a specific area. The MapSwipe assessment by volunteers was able
to provide, for all three considered study sites, a good estimate for the expert judgment.
The other two approaches showed stronger variability, which makes a judgment based on
those approaches more uncertain for a new study site. In addition, one should consider
that the volunteer-based approach offered a much finer and detailed view on the OSM
completeness as it is available at the level of the MapSwipe tiles. The OSM completeness
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estimation based on the model by Herfort et al. [13] was currently only available for urban
centers at 1 sqkm grid cell level, which might be sufficient enough for disaster-based appli-
cations. The intrinsic approach requires integration across larger areas and can therefore be
less detailed. However, the different approaches presumably complement each other as the
labor-intensive MapSwipe approach can only be applied to smaller-scale areas while the
approach by Herfort et al. [13] provides coarser-scale prediction for urban centers world-
wide and the intrinsic approach can be easily applied at a bit larger scale. The MapSwipe
approach and the intrinsic approach can be extended to other OSM feature classes such as
roads relatively easily, while the machine learning approach requires extensive training
data as well as huge training effort for other OSM feature classes.

User experience presumably constitutes another relevant factor for the quality of
contributions. As the new feature was tested in a developer instance of the app, it was, for
the case study, not possible to quantify this effect. However, future work will investigate
the effects of user experience on the classification performance of the users. This might
lead to a new aggregation scheme across users, which may use MapSwipe experience
as weights.

Further analysis should test extended possibilities for gamification of MapSwipe and
how this affects user motivation. This might involve possibilities for the comparison of
different users or rankings of users. We have provided such rankings on demand for
a few organizations involved in larger MapSwipe campaigns. However, we were also
confronted with the potential drawbacks of such rankings: these might stimulate low-
quality classifications to speed up the swiping and to position one higher in the ranking.

Another aspect that requires further improvement is the user interface. The way that
OSM buildings are displayed in the tiles is currently optimized for OSM building visibility.
The cost is that the semi-transparent filled polygons tend to hide the underlying parts of the
satellite imagery. Extensive testing with users will be needed to identify a compromise that
allows both to see the satellite imagery and to easily grasp the existing building footprints.
As MapSwipe is used in very different geographic settings, a solution needs to work for
different terrain and land-cover settings. In densely populated urban areas, images with a
higher resolution than that of zoom level 18 could be beneficial. However, this requires the
availability of drone or aerial imagery, which is, so far, only available for selected areas.

In our study, we focused on the completeness of buildings. An interesting application
might be a local assessment of machine learning predictions such as the Microsoft buildings
footprint [19]. The approach could, in principle, be extended also to other machine-learning-
based feature predictions such as the Map With AI roads dataset by Facebook [61]. We
can think of many other OSM classes such as land-use features or streets where a similar
completeness-task design could be developed. In the domain of land-use and land-cover,
classification studies that underline the potential of crowd-sourcing approaches for better
earth observation already exist [62,63]. Further studies are needed to fully comprehend
which OSM classes perform well and which OSM classes are too complex. The use of
MapSwipe to detect incompletely mapped regions at a small scale is limited to tasks that can
be easily detected based on satellite imagery. It is not a silver bullet approach suitable for all
types of OSM aspects, but it complements other approaches such as intrinsic and extrinsic
data-quality assessments, incorporation of other Volunteered Geographic Information
sources such as Twitter [64] and awareness-raising campaigns for mapathons [65].

7. Conclusions

Our results demonstrate that the completeness feature for MapSwipe provides a good
opportunity for the fast assessment of OSM building completeness at smaller scales, as is
often required in a disaster setting. Building density was shown to affect the complexity
of the task and, thereby, the reliability of the assessment. However, the quality of the
assessment also differed clearly between the individual users. This offers opportunity for
further research with respect to how individual factors, such as user experience, influence
the quality of the assessment. The aggregation of feedback by the different users provided
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reliable estimates of completeness for the selected task. The tool complements other
approaches to estimate OSM feature completeness in a region. It allowed to identify parts
of an affected region that require more mapping of buildings at high spatial resolution.
Intrinsic approaches, in contrast, require larger regions for reliable assessments as they
work by integrating mapping history over time and space. If predictions by models such
as the one used here are available, they might offer a good alternative as well. However,
as long as these are not available for a required feature class, a combination of regional-scale
assessment of intrinsic approaches and detailed evaluation by volunteers using the tool
presented here can combine the best of both worlds to quickly assess data quality, which
is often necessary in disaster contexts. For building footprints, a combination of all three
presented approaches might be a suitable solution to obtain a timely estimation about
where additional mapping effort is needed.
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